

Quantum-chaotic sensors Daniel Braun

KITP Santa Barbara, April 2019

Lukas Fiderer Jonas Schuff

Parameter estimation

- Known distribution p(A,x)
- Sample random variable A => M results A_i
- Estimate parameter x given the A_i with estimator function

$$x_{est}(A_1,\ldots,A_M)$$

Unbiased estimator: $\langle x_{\rm est} \rangle = x$

Uncertainty of estimation of x:

$$\delta x \equiv \sigma(x_{est}(A_1, \dots, A_M))$$

Smallest uncertainty, optimized over all unbiased estimators:

$$\delta x \ge \delta x_{\min} = \frac{1}{\sqrt{MI_{\text{Fisher}}}}$$

p(A,x)

portraits of statisticians, www.york.ac.uk

 $p(A,x+\Delta x)$

Cramér-Rao bound

$$I_{\text{Fisher}} = \int dA \, p(A, x) \left(\frac{\partial \ln p(A, x)}{\partial x} \right)^2$$

H. Cramér '46; C.R. Rao '45

Parameter estimation

- Known distribution p(A,x)
- Sample random variable A => M results A_i
- Estimate parameter x given the A_i with estimator function

$$x_{est}(A_1,\ldots,A_M)$$

Unbiased estimator: $\langle x_{\rm est} \rangle = x$

Uncertainty of estimation of x:

$$\delta x \equiv \sigma(x_{est}(A_1, \dots, A_M))$$

Smallest uncertainty, optimized over all unbiased estimators:

$$\delta x \ge \delta x_{\min} = \frac{1}{\sqrt{MI_{\text{Fisher}}}}$$

Can be saturated for M→∞ with max likelihood estimator

$$I_{\text{Fisher}} = \int dA \, p(A, x) \left(\frac{\partial \ln p(A, x)}{\partial x} \right)^2$$

H. Cramér '46; C.R. Rao '45

Quantum Parameter Estimation

QM: state ρ_x . Choice of measurement! Create p(A,x).

$$\begin{array}{lcl} \delta x \geq \delta x_{\min} & = & \frac{1}{\sqrt{M\,I_{\rm QFisher}}} \\ I_{\rm QFisher} & = & {\rm tr}(\rho_x L_{\rho_x}^2) \\ & \frac{\partial \rho_x}{\partial_x} & = & \frac{1}{2}(\rho_x L_{\rho_x} + L_{\rho_x} \rho_x) & \text{symmetric logarithmic derivative} \end{array}$$

Quantum Cramér-Rao bound

Helstrom '67,'68,'76; Holevo '73,'74

Quantum Parameter Estimation (q-pet)

Physical meaning of Quantum Cramér-Rao bound:

$$I_{\mathrm{IQFisher}} = 4 ds_{\mathrm{Bures}}^2(\rho_x, \rho_{x+dx})/dx^2$$
 Braunstein & Caves, PRL '94

- (Quantum) information-theoretical interpretation:
 - distinguishability of quantum states: Bures distance
 - function of quantum state $\rho_{\rm X}$

 ρ_{x} ρ_{x+dx}

- Ultimate achievable lower bound
 - for all possible data-analysis schemes (unbiased estimator)
 - for all possible measurements (POVMs)
- Relevant, once all technical noise problems are solved

Quantum-chaotic sensors

General motivation:

- Probes for measurements always (?) taken as integrable so far
 - e.g. harmonic oscillator (mode of light field)
 - precessing spin (magnetometer)
- What happens for non-integrable (chaotic) dynamics?
- Possible to render integrable dynamics chaotic by making hamiltonian time-dependent (e.g. kicked top)

Classical chaos

- Extreme sensitivity to initial conditions:
 - Close-by trajectories diverge exponentially
 - Quantified by Lyapunov exponent: $\lambda = \lim_{t \to \infty} \lim_{d_0 \to 0} \left| \frac{1}{t} \ln \left(\frac{d(t)}{d_0} \right) \right|$
 - λ is function of starting point
- Very few systems have proven full chaos (mixing, e.g. Sinai billard)
- Most physical systems show mixed phase space

e.g. Henon attractor

- Exponential divergence of distance between quantum states impossible for unitary time evolution (scalar product conserved)
- But: possible exponential sensitivity to parameters of system

=> useful for metrology?

A. Peres 1995

- Exponential divergence of distance between quantum states impossible for unitary time evolution (scalar product conserved)
- But: possible exponential sensitivity to parameters of system

=> useful for metrology?

Loschmidt echo:

$$F_{\delta\alpha}(t) = |\langle \psi | U_{\alpha+\delta\alpha}(-t) U_{\alpha}(t) | \psi \rangle|^2$$

A. Peres 1995

- Exponential divergence of distance between quantum states impossible for unitary time evolution (scalar product conserved)
- But: possible exponential sensitivity to parameters of system

=> useful for metrology?

Loschmidt echo:

$$F_{\delta\alpha}(t) = |\langle \psi | U_{\alpha+\delta\alpha}(-t) U_{\alpha}(t) | \psi \rangle|^2$$

Related to pure state QFI:

$$I_{\alpha}(t) = \lim_{\delta \alpha \to 0} 4 \frac{1 - F_{\delta \alpha}(t)}{\delta \alpha^2}$$

A. Peres 1995

- Exponential divergence of distance between quantum states impossible for unitary time evolution (scalar product conserved)
- But: possible exponential sensitivity to parameters of system

A. Peres 1995

=> useful for metrology?

Loschmidt echo:

$$F_{\delta\alpha}(t) = |\langle \psi | U_{\alpha+\delta\alpha}(-t) U_{\alpha}(t) | \psi \rangle|^2$$

Related to pure state QFI:

$$I_{\alpha}(t) = \lim_{\delta \alpha \to 0} 4 \frac{1 - F_{\delta \alpha}(t)}{\delta \alpha^2}$$

=> learn about viability of quantum chaotic sensors from literature on Loschmidt echo!

- Exponential divergence of distance between quantum states impossible for unitary time evolution (scal
- But: possible available online at www.sciencedirect.com
 Available online at www.sciencedirect.com

Physics Reports 435 (2006) 33-156

Dynamics of Loschmidt echoes and fidelity decay

Thomas Gorin^a, Tomaž Prosen^b,*, Thomas H. Seligman^{c,d}, Marko Žnidarič^b

^a Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Street 38, D-01187 Dresden, Germany b Physics Department, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia

^c Centro Internacional de Ciencias, Apartado postal 6-101, C.P.62132 Cuernavaca, Morelos, Mexico

d Instituto de Ciencias Físicas, University of Mexico (UNAM), C.P.62132 Cuernavaca, Morelos, Mexico Taditium chaotic sensors

time

A. Peres 1995

Both used for phase transitions, e.g. Zanardi et al. PRA 2009!

Model system: Kicked top

• (Pseudo-)angular momentum of size j, J=j+1/2

$$\mathcal{H}_{\mathrm{KT}} = \alpha J_z + \frac{k}{(2j+1)\hbar} J_y^2 \sum_{n=-\infty}^{\infty} \tau \delta(t-n\tau) \qquad (\hbar = \tau = 1)$$

[•] F. Haake, M. Kus, R. Scharf, Z. Phys. Cond. Matt. (1987)

[•] F. Haake, "Quantum Signatures of Chaos" (Springer, 1992, 3rd ed. 2010, 4th ed. 2018)

Kicked top

• (Pseudo-)angular momentum of size j, J=j+1/2

$$\mathcal{H}_{KT} = \alpha J_z + \frac{k}{(2j+1)\hbar} J_y^2 \sum_{n=-\infty}^{\infty} \tau \delta(t - n\tau) \qquad (\hbar = \tau = 1)$$

$$U_{\alpha}(k) = T \exp\left(-i \int_t^{t+1} dt' H_{\rm KT}(t')\right) = e^{-ik\frac{J_y^2}{2J}} e^{-i\alpha J_z}$$
 non-linearity

- F. Haake, M. Kus, R. Scharf, Z. Phys. Cond. Matt. (1987)
- F. Haake, "Quantum Signatures of Chaos" (Springer, 1992, 3rd ed. 2010, 4th ed. 2018)

Kicked top

• (Pseudo-)angular momentum of size j, J=j+1/2

$$\mathcal{H}_{KT} = \alpha J_z + \frac{k}{(2j+1)\hbar} J_y^2 \sum_{n=-\infty}^{\infty} \tau \delta(t - n\tau) \qquad (\hbar = \tau = 1)$$

$$U_{\alpha}(k) = T \exp\left(-i \int_{t}^{t+1} dt' H_{\mathrm{KT}}(t')\right) = e^{-ik\frac{J_{y}^{2}}{2J}} e^{-i\alpha J_{z}}$$

- F. Haake, M. Kus, R. Scharf, Z. Phys. Cond. Matt. (1987)
- F. Haake, "Quantum Signatures of Chaos" (Springer, 1992, 3rd ed. 2010, 4th ed. 2018)

Two time scales

• Ehrenfest time: Time that an initial minimal quantum uncertainty spreads to entire accessible phase space

$$t_E = \frac{1}{\lambda} \ln \left(\frac{\Omega_V}{h^d} \right)$$

Heisenberg time: Inverse typical level spacing

$$t_H = \hbar/\Delta$$

Phase space structure

Poincaré sections: Phase space $(p,q)=(J_z/J,\phi)$

Chaudhury et al. Nature 2009

 α =0.99, k=2

- k=0 integrable, $k \approx 2.5$ mixed phase space, $k \approx 3.5$ almost fully chaotic
- Initial SU(2) coherent state (most classical state possible), area $1/J \sim \hbar$ in phase space for quantum dynamics

Benchmarks without kicking

• QFI for top without kicking, initial SU(2) coherent state

$$I_{\alpha}(t) = 2t^2 j \sin^2 \theta$$
 => Standard Quantum Limit

QFI for top without kicking, initial GHZ state (N spins-1/2)

$$I_{\alpha}(t) = 4t^2 j^2 \equiv I_{\rm top,GHZ}$$

=> Heisenberg limit

Results: Kicked top vs integrable top

- Ininitial coherent state at $\theta = \pi/2, \phi = \pi/2$
- Reproduces behavior expected from known Loschmidt echo results:

$$t \simeq t_E$$
: $I_{\alpha} \propto tj^2$ $t_E = \sim \frac{1}{\lambda} \ln(2j+1)$

$$t \gg t_H$$
: $I(t) = 8s\sigma_{\rm cl}t^2J$ $t_H = \sim J$

(s=3, σ_{cl} transport coefficient)

Gain

$$\Gamma = I_{\alpha, \mathrm{KT}} / I_{\mathrm{top, CS}}$$

Ininitial coherent state at $\theta = \pi/2, \phi = \pi/2$

Dependence on initial state

- 2D Phase space, coordinates (Z=J_z/J,φ)
- Gain correlated with chaoticity (Lyapunov exponent)
- For large times, largest gain for "edge states", border to chaotic sea

Dissipative kicked top

"Superradiant damping"

$$\frac{d}{dt}\rho(t) = \gamma([J_-, \rho(t)J_+] + [J_-\rho(t), J_+]) \equiv \Lambda\rho(t)$$

 Commutes with precession about z-axis, and negliglible during kicks

$$\rho(t+\tau) = P\rho(t) = U_{\alpha}(k) \left(\exp(\Lambda \tau) \rho(t) \right) U_{\alpha}^{\dagger}(k)$$

Classically: Strange attractor in phase space (multifractal)

$$k=8$$
, α=2, $2J\gamma\tau=1$

DB Chaos 1999

Dissipative kicked top: results

- Comparable maximum (as function of time) of QFI
- Finite plateau value for large time: non-equilibrium steady state contains information about parameter!
- Max value reached much earlier => useful when time counts!
- Relatively large plateau for j=2

Rescaled QFI: sensitivities per Hz^{1/2}

- Max rescaled QFI of kicked dissipative top outperforms the one without kicks in broad range of dampings
- Optimization in both cases over location of initial coherent state

Dependence of sensitivity gain on non-linearity and dissipation

- Fixed initial state for dissipative kicked top
- QFI for top without kicks optimized over initial state
- Large gain in a broad damping regime through strong kicking

Improving a state-of-the-art SERF magnetometer

SERF magnetometer

- Cesium vapor magnetometer
- Precession of atomic spins in magnetic field
- "Sping exchange relaxation free" regime

- State preparation: optical pumping to almost fully (0.95) polarized hyperfine state, $j \rightarrow F=3$
- $B_z => linear parameter \alpha$
- Non-linear kicks: off-resonant laser pulses (AC-Stark shift)
- Read-out: rotation of polarization of probe beam (Faraday effect)

 ρ

z-polarized state: spin-temperature distribution

 ρ

z-polarized state: spin-temperature distribution

 $R_y(\alpha)$

precession in the magnetic field ${\cal B}$

z-polarized state: spin-temperature distribution

precession in the magnetic field B

non-linear kicks
via the ac Stark effect (rank-2 light shift)

 \Rightarrow kicking strength $k = 6 \times 10^{-4}$

intensity $I_{\rm kick} = 0.1 \, \frac{\rm mW}{\rm cm^2}$

Doppler broadening 357 MHz (FWHM)

z-polarized state: spin-temperature distribution

precession in the magnetic field B

non-linear kicks via the ac Stark effect (rank-2 light shift)

Faraday rotation of off-resonant light detected with polarization measurement

Doppler broadening 357 MHz (FWHM) f=4 f=3 f=3 off-resonant, linearly polarized light pulse f=4 f=4

Detailed numerical model

spin exchange

hyperfine coupling

$$\frac{d\rho}{dt} = R_{\rm se} \left[\varphi (1 + 4 \, \langle \mathbf{S} \rangle \cdot \mathbf{S}) - \rho \right] + R_{\rm sd} \left[\varphi \right]$$

$$[\mathbf{K} \cdot \mathbf{S}] - \rho] + R_{\mathrm{sd}} [\varphi - \rho] + a_{\mathrm{hf}} \frac{[\mathbf{K} \cdot \mathbf{S}, \rho]}{i\hbar} + \frac{H_{\mathrm{A}}^{\mathrm{eff}} \rho - \rho H_{\mathrm{A}}^{\mathrm{eff}\dagger}}{i\hbar}$$

spin exchange spin distruction hyperfine coupling K=nuclear spin
$$\frac{d\rho}{dt} = R_{\rm se} \left[\varphi(1+4 \langle \mathbf{S} \rangle \cdot \mathbf{S}) - \rho \right] + R_{\rm sd} \left[\varphi - \rho \right] + a_{\rm hf} \frac{\left[\mathbf{K} \cdot \mathbf{S}, \rho \right]}{i\hbar} + \frac{H_{\rm A}^{\rm eff} \rho - \rho H_{\rm A}^{\rm eff\dagger}}{i\hbar} + \gamma_{\rm nat} \sum_{q=-1}^{1} \left(\sum_{f,f_1} W_q^{ff_1} \rho_{f_1f_1} \left(W_q^{ff_1} \right)^{\dagger} + \sum_{f_1 \neq f_2} W_q^{f_2f_2} \rho_{f_2f_1} \left(W_q^{f_1f_1} \right)^{\dagger} \right)$$

$$H_{\mathrm{A},f}^{\mathrm{eff}} = \hbar\Omega_{\mathrm{Lar}}F_y + \sum_{f'} \frac{\hbar\Omega^2 C_{j'f'f}^{(2)}}{4(\Delta_{ff'} + i\gamma_{\mathrm{nat}}/2)} \left| \boldsymbol{\epsilon}_{\mathrm{L}} \cdot \mathbf{F} \right|^2 \qquad \text{precession and kicks}$$

$$\Omega = \gamma_{\mathrm{nat}} \sqrt{I_{\mathrm{kick}}/(2I_{\mathrm{sat}})}$$

 $\Omega = \gamma_{\rm nat} \sqrt{I_{\rm kick}/(2I_{\rm sat})}$ Rabi-frequency of the D1 line

$$W_q^{f_b f_a} = \sum_{f'=3}^4 \frac{\Omega/2}{\Delta_{f_a f'} + i \gamma_{\mathrm{nat}}/2} \left(\mathbf{e}_q^* \cdot \mathbf{D}_{f_b f'} \right) \left(\boldsymbol{\epsilon}_{\mathrm{L}} \cdot \mathbf{D}_{f_a f'}^{\dagger} \right)$$
 jump operators

Detailed numerical modeling

- Experimentally confirmed modelling:
 - SERF magnetometer ($\Omega_{lamor} >> \gamma_{SE}$)

- non-linear pulses

Budker et al. PRA 2008; PRL 2010

Chaudhury et al. Nature 2009

- Master equation includes all relevant decoherence mechanisms:
 - spin-exchange collisions
 - spin-destruction collisions
 - jump processes induced by kicks
 - Doppler broadening (average detuning over Maxwell-Boltzmann distribution of thermal cloud of atoms)
- F=3, so no large gain to be expected, but still...

Results for SERF magnetometer

- 1.5 times smaller ∆ B based on rescaled QFI
- 3.1 times smaller ∆ B from Faraday effect read-out

Beyond quantum chaos?

- Large new freedom
 - Kicking times and total number of kicks
 - Kicking strengths
 - Kicking directions
- Gain beyond quantum-chaotic kicked-top?
 - High-dimensional optimization problem!
 - Calls for Machine Learning!
- Classical ML for q-metrology
 - Classical information, quantum actions
 - Reward (final QFI) at end of long sequence of pulses
 - Reinforcement Learning

Reinforcement learning

Agent performs (probabilistic) actions based on observed state of environment, and memory and rewards from previous actions

Pic: medium.freecodecamp.org

quantum state of sensor

- Final policy typically probabilistic
- Take best sequence from sampling the best policy many times

Results reinforcement learning

Jonas Schuff, bachelor thesis

Superradiant damping, γ =0.02 j=2

2 orders of magnitude increase of stationary-state QFI over dissipative kicked top!

Connection to Antonella de Pasquale's talk

PHYSICAL REVIEW A 96, 022322 (2017)

Amending entanglement-breaking channels via intermediate unitary operations

Á. Cuevas, ¹ A. De Pasquale, ² A. Mari, ² A. Orieux, ^{1,3,4} S. Duranti, ^{1,5} M. Massaro, ^{1,6} A. Di Carli, ^{1,7} E. Roccia, ^{1,8} J. Ferraz, ^{1,9} F. Sciarrino, ¹ P. Mataloni, ¹ and V. Giovannetti²

$$\Phi^n = \underbrace{\Phi \circ \Phi \circ \cdots \circ \Phi}_{n \text{ times}}$$

$$\underbrace{\Phi \circ \mathcal{F} \circ \Phi \circ \cdots \circ \mathcal{F} \circ \Phi}_{a \text{ times}}$$

- Decohering quantum channel repeated n times
- Entanglement breaking after a minimum n
- Intercept channel with tailored unitaries (rotations)
- Non-entanglement breaking for arbitrarily large q
- What are the conditions for fighting decoherence with unitary intercepts?
- Connection to/framework of quantum optimal control?
- What are the ultimate limits of this type of fighting decoherence?

Conclusions

- New freedom for quantum metrology: tailor dynamics

 J. Fraisse & DB, PRA '17;
 QMQM '17
 - quantum Fisher-information related to Loschmidt echo
 - profit from knowledge in q-chaos
- Gain in sensitivity in model system "kicked top"
 - directly linked to classical chaos (phase space structure!)
 - large gain for large spin
 - robust under superradiant dissipation/decoherence
- Improvement of existing SERF magnetometers
 - detailed model close to experimental Cs-vapor magnetometer
 - 2-3 fold improvement of sensitivity despite small spin, additional decoherence due to kicks
- Machine learning can improve sensitivity even more (drastically so!)
- L. Fiderer and D. Braun, Nat. Com. (2018) 9:1351; patent application pending

