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Context
• Dynamics of quantum systems simplifies if there are 

emergent, well-defined quasiparticles. 

• Collisions of these quasiparticles leads to e.g. diffusion 
of energy. 
 
 
 
 

• Theoretical framework: Boltzmann equation.

D ⇠ v2qp⌧qp ⇠ vqp`qp

[Maxwell, 
Boltzmann, 
Einstein …]



Context
• Emergence of quasiparticles from a quantum many 

body system is nontrivial (eg. in Fermi Liquid theory) 
and may not occur. 

• Strongly correlated many-body quantum dynamics in 
space and time — what theoretical framework 
generalizes the Boltzmann equation? 

• Ingredients: conserved charges, spatial locality, 
thermalization. 

• What can we say about the resulting diffusion?



Measuring diffusion



Bounding diffusion

A bound can identify fundamental constraints  
(cf. bound on efficiency of heat engines) 

Key ingredients: Conservation law + locality



• Diffusion is a late time phenomenon. 

• Almost all non-conserved quantities decay on a local 
thermalization timescale 𝜏~𝜏th. 

• After 𝜏th there is a locally well-defined temperature, 
chemical potential, magnetization etc. 

• Long wavelength inhomogeneities of these local 
thermodynamic variables then reach global thermal 
equilibrium via diffusion: 𝛤k = 1/𝜏k = Dk2.

Diffusion and thermalization



Lieb-Robinson velocity
• Even non-relativistic systems have a ‘lightcone’: 

bounded propagation of signals from locality.

• This is a microscopic, state-independent velocity. It 
describes the growth of operators under time evolution.

• The “Lieb-Robinson” velocity:

||[A(t, x), B(0, 0)]|| . ||A||||B||e�µ(|x|�vt)

v ⇠ J a

~
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[Lieb- 
Robinson 72]



Bounding diffusion
• The LR velocity clearly bounds ballistic transport 

(e.g. in ordered phases: vspin wave < vLR). 

• It also bounds diffusivity: [Inspired by [Blake PRL 16]]
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LR causality implies disallowed 
region must not be diffusive  
— i.e. must occur before 
local thermalization, so that:

D . v2LR⌧th



Measuring diffusion
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Beyond quasiparticles
• In systems with a finite on-site Hilbert space (spins, 

fermions), diffusion is bounded by: 
 — The Lieb-Robinson velocity  
 — The local thermalization time 

• These concepts do not make reference to 
quasiparticles. 

• Next: establish rigorous version of this bound in 
context of open quantum dynamics.



Lindbladian dynamics
• Rigorous argument: ‘Lindbladian’ quantum 

evolution:  
 

• Thermalizing degrees of freedom are integrated out 
but evolution is local in time (Markovian).  

• Technical simplification: in thermal case diffusion 
only occurs in a particular state, need to work with 
thermal expectation values. In dissipative context, 
operators themselves will diffuse.
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Lindbladian diffusion
• Translation invariant — label operators by 

momentum k. 

• Strategy: Conserved charge operator C implies 
small k eigenoperator (note: operators decay):  

Ċk = �Dk2Ck +O(k3)

With
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‘Solvable’ example
• XXZ model with on-site dephasing. Truncate to 

operators below a certain length.

Hx = XxXx+1 + YxYx+1 +�ZxZx+1

Lx = Zx

[Agrees with Znidaric, Prosen, … ]



Bounding the diffusivity

D = |
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Bounding the diffusivity
• Lieb-Robinson bound  

• And the moment 

• ‘Single-mode ansatz’: All local operators other than 
C’s decay on timescale τ (property of Lindbladian).

||J̇(t)||  A
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Bounding the diffusivity

D  ↵vCvLR⌧ + �vC⇠

vC = ||J ||/||C||with

New in rigorous version:  
     Extra          term. If thermalization becomes very fast, 
diffusivity can still saturate at scale set by microscopic 
interaction range. Picture for resistivity saturation? 

�vC⇠



Questions
• The Lieb-Robinson velocity is microscopic, and will 

control high-temperature transport. Is there a non-
quasiparticle velocity at finite temperatures? Is it the 
butterfly velocity (quantum chaos)? 

• Dissipative Markovian dynamics simplifies theory 
(and is interesting in its own right!). Again tied to 
infinite temperatures. Can a finite temperature be 
introduced while preserving tractability?



Questions
• The local thermalization time also controls transport. 

At infinite temperature it can itself be bounded in 
terms of local couplings in the Hamiltonian. What are 
constraints on thermalization time in finite 
temperature systems? When does the ‘Planckian’ 
time 𝜏 = ℏ/kT emerge? 

• Is our formula for the diffusivity of open quantum 
systems useful in experiments?


