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ters, and compute a series of key benchmark quanti-
ties to demonstrate classical hardness, including volume
entanglement, signatures of quantum chaos in the form
of distance from a Porter-Thomas distribution, number
fluctuations, inverse participation ratio and expected fi-
delity loss from various sources, both experimental and
in simulation. Extrapolating from these, we provide esti-
mates for expected classical simulation di�culty at larger
system sizes, and show that, under the assumption that
direct Hamiltonian time evolution is the most e�cient
simulation method, the system should become impossible
to accurately simulate with near-term classical hardware
for chains of between 25 and 30 qubit-cavity pairs, de-
pending on protocol details. Finally, we o↵er concluding
remarks, and speculate about other possible applications
of these ideas for quantum simulation.

PROPOSED PROTOCOL

Quantum sampling problems based on unitary evolu-
tion amount to calculating the probabilities Pk of ob-
serving basis state |ki after evolving known initial state
with a potentially time-dependent H (t) up to some time
T . Sampling problems including noise are also based on
computing Pk, which are in this case the diagonal entries
of a density matrix evolving under the Lindblad equation
[22]:
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Here, K / L is the number of Lindblad operators and L
is the system size. For simplicity we assume that H (t)
can vary in time but that the Lindblad operators Oi do
not, though of course they may depend on time as well.
Within this extremely general class of possible simula-
tion problems, the protocol we consider in this work is a
modification of the gmon chain experiment reported in
[10]. We begin with the L-qubit Hamiltonian
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Here, hi are a set of local detunings, the �n are the
qubit nonlinearities and g (t) is a time dependent cou-
pling strength which is ramped up and down, with the
pulse waveform carefully optimized so that the popula-
tion of |2i and |3i states is negligible at the end of each
pulse (though the population of such states mid-pulse
may be significant). In principle each qubit-qubit cou-
pling can be tuned independently from the others, but
we ramp them all up and down with the same profile for

Initialize
qubits

Set all
detunings

Pulse all
couplings
N times

Measure all
qubits

FIG. 1: Basic protocol studied in this work, an extension
of the experiment reported in [10]. As in the original work,
a chain of qubits is initialized in a simple product state in
the z basis, a random set of detunings is applied to the qubits
(circles), the nearest neighbor qubit-qubit exchange couplings
(purple lines) are repeatedly pulsed on and o↵, and then the
detunings are turned o↵ and all qubits are measured in the z
basis. This cycle is repeated many times to generate an out-
put distribution, which is then compared to a classical simula-
tion to calculate fidelity. The key di↵erence in our protocol is
that driven sideband interactions (dashed lines), coupling the
qubits to their readout cavities (boxes), are simultaneously
turned on whenever the qubit-qubit couplers are, significantly
changing the quantum dynamics and implementing a Hamil-
tonian where total photon number is no longer conserved.
The magnitudes of all detunings and sideband interactions
are weak compared to the qubit-qubit coupling terms, ensur-
ing delocalized evolution and sharp resonance conditions in
the qubit-cavity interactions.

simplicity. Each qubit is coupled to a lossy readout cav-
ity; in the default protocol these terms do not appear in
HQ because the cavities are only used for state measure-
ment and do not e↵ect the quantum evolution. We mod-
ify this protocol by including a set of driven qubit-cavity
couplings, which couple each qubit to its lossy readout
cavity via the Hamiltonian
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Here the hCi are a set of resonator detunings (which we
take to zero in this work), � is the qubit-cavity disper-
sive shift and ⌦R

QCi and ⌦B
QCi are the amplitudes of the
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QUANTUM SAMPLING PROBLEMS
• Quantum sampling problems present the best 

near-term chance of demonstrating quantum 
“supremacy” in real, noisy hardware

• Boson Sampling, IQP circuits, QAOA, random 
quantum circuits, Bose-Hubbard chains, etc.

• Goal: sample the output of a system evolved from 
a simple initial state through a quantum entangling 
process. Exponentially hard for classical machines!

• But: rapid progress in simulation algorithms & 
classical hardware make this a fast-moving target

• Guiding principle: maximize simulation complexity 
and minimize quantum hardware complexity
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Figure 3. Complexity: uniform sampling of an exponen-
tially growing state-space. a Histograms of the raw prob-
abilities (see Fig. 1b) for 5 to 9 qubit experiments, after five
cycles of evolution. Before making the histogram, probabilities
are weighted by the number of states in the Hilbert-space, this
places all of the curves onto a universal axis. The width of the
bars represents the size of the bins used to construct the his-
togram. The data is taken from over 29.7 million experiments.
For dynamics which uniformly explore all states, this histogram
decays exponentially; an exponential decay is shown as a solid
line for comparison. For contrast, we plot a histogram of the
probabilities for 7 qubits after 100 cycles. Here, decoherence
dominates and we observe a tall narrow peak around 1. b In
order to measure convergence of the measured histogram to an
exponential distribution, we compute their distance as a func-
tion of the number of cycles. Distance is measured using the
KL-divergence (see Eq. 2). We find that a maximum overlap oc-
curs after just two cycles, following which decoherence increases
their distance.

e�probability⇥Nstates ; this is also referred to as a Porter-
Thomas distribution [14, 17]. The universal and exponen-
tial behavior of the data leads us to conclude that the dy-
namics are uniformly exploring the state-space. Deviations
from an exponential distribution are the result of decoher-
ence which drives the output states to appear with equal
probability; this is the behavior that we observe at long
times. This demonstration of dynamics that take advan-
tage of the full exponentially growing number of states (a
direct probe of computational complexity) is a key ingredi-
ent for experimentally demonstrating quantum supremacy.

In Fig. 3b we study the number of cycles it takes for the
system to uniformly explore all states by comparing the
measured probabilities to an exponential distribution. Af-

Figure 4. Fidelity: learning a better control model. a
Average fidelity decay versus number of cycles for 5 to 9 qubit
experiments (circles). The fidelity is computed using Eq. 3. The
error per cycle, presented inset, is the slope of the dashed-line
which best fits the data. b Using the fidelity as a cost-function,
we learn optimal parameters for our control model. Here, we take
half of the experimental data and use this to train our model.
The other half of the data is used to verify this new model; the
optimizer does not have access to this data. The corresponding
improvement in fidelity of the verification set provides evidence
that we are indeed learning a better control model.

ter each cycle, we compare the measured histogram to an
exponential decay. The distance between these two distri-
butions is measured using the KL-divergence DKL,

DKL = S(⇢
measured

, ⇢
exponential
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where the first term is the cross-entropy between the mea-
sured distribution ⇢

measured

and an exponential distribu-
tion ⇢

exponential

, and the second term is the self-entropy of
the measured distribution. The entropy of a set of proba-
bilities is given by S (P ) = �

P
i pi log (pi) and the cross-

entropy of two sets of probabilities is given by S (P,Q) =

�
P

i pi log (qi). Their difference, the KL-divergence, is zero
if and only if the two distributions are equivalent.

We find that the experimental probabilities closely resem-
ble an exponential distribution after just two cycles. For
longer evolutions, decoherence reduces this overlap. These
results suggests that we can generate very complex dynam-
ics with only two pulses - a surprisingly small number.

In addition to demonstrating an exponential scaling of
complexity, it is necessary to characterize the algorithm fi-
delity. Determining the fidelity requires a means for com-
paring the measured probabilities P

measured

with the proba-
bilities expected from the desired evolution P

expected

. Based

Image credits: Neill et al 2018, 
Chen et al 2018
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sponding to ✏ = 0.005 [2, 19]. We plot our simulator bounds, given less than two hours of runtime, superimposed on
the two-qubit gate fidelity graph required for a 5% circuit fidelity. We observe that we are well above the supremacy
threshold for a 99.5% two-qubit gate fidelity. Roughly, we estimate that a 99.8% two-qubit gate fidelity is required
for supremacy within this circuit family. These results are summarized in Figure 9.

FIG. 9: A scatter plot of the runtime superimposed on a contour graph of the two-qubit gate fidelity required for at least a
5% circuit fidelity. The y-axis represents the depth while the x-axis represents the side length of a square circuit, so that the
total number of qubits being simulated is n

2. The color scale specifies the two-qubit gate fidelity. Each red circle represents the
80th percentile runtime for that circuit size and depth over 1000 samples, with the size of the circle representing the value of the
runtime. The circle size is plotted on a log-scale. For reference, the smallest circles represent approximately one second of runtime
and the black circles represent at most two hours of runtime. The largest circle at 9 ⇥ 9 ⇥ 40 represents approximately 13 hours
of runtime. The target two-qubit gate fidelity for current state-of-the-art superconducting systems is 99.5% [2, 19]. Compared
to the 9 ⇥ 9 ⇥ 40 simulation, a two-qubit gate fidelity of approximately 99.7% meets the upperbounds of our simulator while
maintaining a 5% circuit fidelity. By this estimation, a two-qubit gate fidelity of 99.8% could be used to convincingly demonstrate
quantum supremacy within this circuit family.

We re-emphasize that we are reporting runtimes for single-amplitude simulation. In order to generate a full
distribution, significant overhead may be required in generating many amplitudes and sufficient trials. However,
these runtimes give evidence that, subject to tolerating this overhead, quantum supremacy will be difficult to achieve
within this particular framework. Generating a large slice of amplitudes, similar to [7], would be an interesting future
direction that could provide more robustness to this simulation model.

VI. DISCUSSION

In summary, we have described a cluster-based algorithm for quantum circuit simulation. By appropriately choos-
ing vertices to eliminate in the undirected graphical model, we can reduce the treewidth significantly compared to
selecting vertices at random. By running our algorithm on the cluster provided by data infrastructure & search tech-
nology division of the Alibaba Group, we simulated quantum supremacy circuits of 6⇥ 6⇥ 68, 7⇥ 7⇥ 53, 8⇥ 8⇥ 44,



QUANTUM SAMPLING PROBLEMS
• Continuous time evolution is harder to simulate 

than gates/optical circuits

• Experimental demonstration of c.t. sampling problem 
(9 qubit “gmon” chain): Neill et al, Science 2018. (see 
talk section A42, yesterday) System evolves under:

• Partitioning/tensor contraction methods not 
generally applicable to evolution under continuously 
varying H.

• Entanglement-scaling schemes (MPS, PEPS, etc) fail in 
volume entangled limit
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Figure 3. Complexity: uniform sampling of an exponen-
tially growing state-space. a Histograms of the raw prob-
abilities (see Fig. 1b) for 5 to 9 qubit experiments, after five
cycles of evolution. Before making the histogram, probabilities
are weighted by the number of states in the Hilbert-space, this
places all of the curves onto a universal axis. The width of the
bars represents the size of the bins used to construct the his-
togram. The data is taken from over 29.7 million experiments.
For dynamics which uniformly explore all states, this histogram
decays exponentially; an exponential decay is shown as a solid
line for comparison. For contrast, we plot a histogram of the
probabilities for 7 qubits after 100 cycles. Here, decoherence
dominates and we observe a tall narrow peak around 1. b In
order to measure convergence of the measured histogram to an
exponential distribution, we compute their distance as a func-
tion of the number of cycles. Distance is measured using the
KL-divergence (see Eq. 2). We find that a maximum overlap oc-
curs after just two cycles, following which decoherence increases
their distance.

e�probability⇥Nstates ; this is also referred to as a Porter-
Thomas distribution [14, 17]. The universal and exponen-
tial behavior of the data leads us to conclude that the dy-
namics are uniformly exploring the state-space. Deviations
from an exponential distribution are the result of decoher-
ence which drives the output states to appear with equal
probability; this is the behavior that we observe at long
times. This demonstration of dynamics that take advan-
tage of the full exponentially growing number of states (a
direct probe of computational complexity) is a key ingredi-
ent for experimentally demonstrating quantum supremacy.

In Fig. 3b we study the number of cycles it takes for the
system to uniformly explore all states by comparing the
measured probabilities to an exponential distribution. Af-

Figure 4. Fidelity: learning a better control model. a
Average fidelity decay versus number of cycles for 5 to 9 qubit
experiments (circles). The fidelity is computed using Eq. 3. The
error per cycle, presented inset, is the slope of the dashed-line
which best fits the data. b Using the fidelity as a cost-function,
we learn optimal parameters for our control model. Here, we take
half of the experimental data and use this to train our model.
The other half of the data is used to verify this new model; the
optimizer does not have access to this data. The corresponding
improvement in fidelity of the verification set provides evidence
that we are indeed learning a better control model.
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if and only if the two distributions are equivalent.

We find that the experimental probabilities closely resem-
ble an exponential distribution after just two cycles. For
longer evolutions, decoherence reduces this overlap. These
results suggests that we can generate very complex dynam-
ics with only two pulses - a surprisingly small number.

In addition to demonstrating an exponential scaling of
complexity, it is necessary to characterize the algorithm fi-
delity. Determining the fidelity requires a means for com-
paring the measured probabilities P
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Fundamental questions in chemistry and physics
may never be answered due to the exponential com-
plexity of the underlying quantum phenomena. A
desire to overcome this challenge has sparked a new
industry of quantum technologies with the promise
that engineered quantum systems can address these
hard problems. A key step towards demonstrating
such a system will be performing a computation
beyond the capabilities of any classical computer,
achieving so-called quantum supremacy. Here, us-
ing 9 superconducting qubits, we demonstrate an
immediate path towards quantum supremacy. By
individually tuning the qubit parameters, we are
able to generate thousands of unique Hamiltonian
evolutions and probe the output probabilities. The
measured probabilities obey a universal distribu-
tion, consistent with uniformly sampling the full
Hilbert-space. As the number of qubits in the algo-
rithm is varied, the system continues to explore the
exponentially growing number of states. Combining
these large datasets with techniques from machine
learning allows us to construct a model which ac-
curately predicts the measured probabilities. We
demonstrate an application of these algorithms by
systematically increasing the disorder and observ-
ing a transition from delocalized states to localized
states. By extending these results to a system of
50 qubits, we hope to address scientific questions
that are beyond the capabilities of any classical com-
puter.

A programmable quantum system consisting of merely 50
to 100 qubits could revolutionize scientific research. While
such a platform is naturally suited to address problems in
quantum chemistry and materials science [1–4], applications
range to fields as far as classical dynamics [5] and computer
science [6–9]. A key milestone on the path towards realizing
these applications will be the demonstration of an algorithm
which exceeds the capabilities of any classical computer -
achieving quantum supremacy [10]. Sampling problems are
an iconic example of algorithms designed specifically for
this purpose [11–14]. A successful demonstration of quan-
tum supremacy would prove that engineered quantum sys-
tems, while still in their infancy, can outperform the most
advanced classical computers.

Consider a system of coupled qubits whose dynamics uni-

formly explore all accessible states over time. The com-
plexity of simulating this evolution on a classical computer
is easy to understand and quantify. Since every state is
equally important, it is not possible to simplify the prob-
lem, using a smaller truncated state-space. The complexity
is then simply given by asking how much classical mem-
ory does it take to store the state-vector. Storing the state
of a 46-qubit system takes nearly a petabyte of memory
and is at the limit of the most powerful computers [14, 15].
Sampling from the output probabilities of such a system
would therefore constitute a clear demonstration of quan-
tum supremacy. Note that this is only an upper bound on
the number of qubits required - other constraints, such as
computation time, may place practical limitations on even
smaller system sizes.

Here, we experimentally illustrate a blueprint for demon-
strating quantum supremacy. We present data character-
izing two basic ingredients required for any supremacy ex-
periment: complexity and fidelity. First, we demonstrate
that the qubits can uniformly explore the Hilbert-space,
providing a direct measure of algorithm complexity. Next,
we compare the measurement results with the expected be-
havior and show that the algorithm can be implemented
with high fidelity. Experiments for probing complexity and
fidelity provide a foundation for demonstrating quantum
supremacy.

The more control a quantum platform offers, the easier

Figure 1. Device: nine-qubit array. Optical micrograph of
the device. Gray regions are aluminum, dark regions are where
the aluminum has been etched away to define features. Colors
have been added to distinguish readout circuitry, qubits, cou-
plers and control wiring.
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it is to embed diverse applications. For this reason, we
have developed superconducting gmon qubits with tunable
frequencies and tunable interactions. A photograph of the
device used in this experiment is shown in Fig. 1. The device
consists of three distinct sections: control (bottom), qubits
(center) and readout (top). A detailed circuit diagram is
provided in the supplementary material.

Each of our gmon qubits can be thought of as a nonlinear
oscillator. The Hamiltonian for the device is given by

H =

9X
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where n̂ is the number operator and â† (â) is the raising
(lowering) operator. The qubit frequency sets the coeffi-
cient �i, the nonlinearity sets ⌘i and the nearest neighbor
coupling sets gi. The two lowest energy levels (|0i and |1i)
form the qubit subspace. The higher energy levels of the
qubits, while only virtually occupied, substantially modify
the dynamics.

In Fig. 2 we outline the experimental procedure and pro-
vide two instances of the raw output data. Panel a shows a
five-qubit example of the pulses used to control the qubits.
First, the system is initialized (red) by placing half of the
qubits in the excited state, e.g. |00101i. The dynamics
result from fixing the qubit frequencies (orange) and simul-
taneously ramping all of the nearest-neighbor interactions
on and then off (green). The shape of the coupling pulse is
chosen to minimize leakage out of the qubit subspace [16].
After the evolution, we simultaneously measure the state
of every qubit. Each measurement results in a single out-
put state, such as |10010i; the experiment is repeated many
times in order to estimate the probability of every possible
output state. We then carry out this procedure for ran-
domly chosen values of the qubit frequencies, the coupler
pulse lengths, and the coupler pulse heights. The probabil-
ities of the various output states are shown in panel b for
two instances of the evolution after 10 coupler pulses (cy-
cles). The height of each bar represent the probability with
which that output state appeared in the experiments.

It is important to note that the Hamiltonian in Eq. 1
conserves the total number of excitations. This means that
because we start in a state with half the qubits excited,
we should also end in a state with half the qubits excited.
However, most experimental errors do not obey this symme-
try, allowing us to identify and remove erroneous outcomes.
While this helps to reduce the impact of errors, it slightly
reduces the size of the Hilbert-space. For N qubits, the
number of states is given by the permutations of N/2 ex-
citations in N qubits and is approximately 2

N/
p
N . As an

example, a 64 qubit system would access roughly 2

61 states
under our protocol.

The measured probabilities, while they appear largely
random, provide significant insight into the quantum dy-
namics. A key feature of these datasets are the rare, taller-
than-average peaks - analogous to the high intensity regions

Figure 2. Protocol: pulse sequence & raw data. a Five
qubit example of the pulse sequences used in these experiments.
First, the qubits are initialized using microwave pulses (red).
Half of the qubits start in the ground state |0i and half start in
the excited state |1i. Next, the qubit frequencies are set using
rectangular pulses (orange). During this time, all the couplings
are simultaneously pulsed (green); each pulse has a randomly
selected duration. Lastly, we measure the state of every qubit.
The measurement is repeated many times in order to estimate
the probability of each output state. b We repeat this pulse
sequence for randomly selected control parameters. For each in-
stance, the qubit frequencies, coupling pulse heights and lengths
are varied. Here, we plot the measured probabilities for two
instances after 10 coupler pulses (cycles). Error bars (±3 stan-
dard deviations) represent the statistical uncertainty from 50,000
samples.

of a laser’s speckle pattern. These highly-likely states serve
as a fingerprint of the underlying evolution and provide a
means for verifying that the desired evolution was properly
generated. The distribution of these probabilities provides
evidence that the dynamics coherently and uniformly ex-
plore the Hilbert-space.

In Fig. 3 we use the measured probabilities to show that
the dynamics uniformly explore the Hilbert-space for ex-
periments ranging from 5 to 9 qubits. We begin by mea-
suring the output probabilities after 5 cycles for between
500 and 5000 unique instances. In order to compare ex-
periments with different number of qubits, the probabili-
ties are weighted by the number of states in the Hilbert-
space. Fig. 3a shows a histogram of the weighted prob-
abilities where we find nearly universal behavior. Small
probabilities (less than 1/N

states

) appear most often and
probabilities as large as 4/N

states

show up with a frequency
of around 1%. In stark contrast to this, we observe a tall
narrow peak centered around 1 for longer evolutions whose
duration is comparable to the coherence time of the qubits.

A quantum system which uniformly explores all states is
expected to have an exponential distribution of weighted
probabilities. The dark solid line in Fig. 3a corre-
sponds to such a distribution and is simply given by

2

ters, and compute a series of key benchmark quanti-
ties to demonstrate classical hardness, including volume
entanglement, signatures of quantum chaos in the form
of distance from a Porter-Thomas distribution, number
fluctuations, inverse participation ratio and expected fi-
delity loss from various sources, both experimental and
in simulation. Extrapolating from these, we provide esti-
mates for expected classical simulation di�culty at larger
system sizes, and show that, under the assumption that
direct Hamiltonian time evolution is the most e�cient
simulation method, the system should become impossible
to accurately simulate with near-term classical hardware
for chains of between 25 and 30 qubit-cavity pairs, de-
pending on protocol details. Finally, we o↵er concluding
remarks, and speculate about other possible applications
of these ideas for quantum simulation.

PROPOSED PROTOCOL

Quantum sampling problems based on unitary evolu-
tion amount to calculating the probabilities Pk of ob-
serving basis state |ki after evolving known initial state
with a potentially time-dependent H (t) up to some time
T . Sampling problems including noise are also based on
computing Pk, which are in this case the diagonal entries
of a density matrix evolving under the Lindblad equation
[22]:
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Here, K / L is the number of Lindblad operators and L
is the system size. For simplicity we assume that H (t)
can vary in time but that the Lindblad operators Oi do
not, though of course they may depend on time as well.
Within this extremely general class of possible simula-
tion problems, the protocol we consider in this work is a
modification of the gmon chain experiment reported in
[10]. We begin with the L-qubit Hamiltonian

HQ (t) = �g (t)
L�1
X

i=1

h

a†iai+1 +H.c.
i

(2)

+
L
X

i=1

"

hia
†
iai �

n
max

X

n=2

�n |nii hni|
#

.

Here, hi are a set of local detunings, the �n are the
qubit nonlinearities and g (t) is a time dependent cou-
pling strength which is ramped up and down, with the
pulse waveform carefully optimized so that the popula-
tion of |2i and |3i states is negligible at the end of each
pulse (though the population of such states mid-pulse
may be significant). In principle each qubit-qubit cou-
pling can be tuned independently from the others, but
we ramp them all up and down with the same profile for

FIG. 1: Basic protocol studied in this work, an extension
of the experiment reported in [10]. As in the original work,
a chain of qubits is initialized in a simple product state in
the z basis, a random set of detunings is applied to the qubits
(circles), the nearest neighbor qubit-qubit exchange couplings
(purple lines) are repeatedly pulsed on and o↵, and then the
detunings are turned o↵ and all qubits are measured in the z
basis. This cycle is repeated many times to generate an out-
put distribution, which is then compared to a classical simula-
tion to calculate fidelity. The key di↵erence in our protocol is
that driven sideband interactions (dashed lines), coupling the
qubits to their readout cavities (boxes), are simultaneously
turned on whenever the qubit-qubit couplers are, significantly
changing the quantum dynamics and implementing a Hamil-
tonian where total photon number is no longer conserved.
The magnitudes of all detunings and sideband interactions
are weak compared to the qubit-qubit coupling terms, ensur-
ing delocalized evolution and sharp resonance conditions in
the qubit-cavity interactions.

simplicity. Each qubit is coupled to a lossy readout cav-
ity; in the default protocol these terms do not appear in
HQ because the cavities are only used for state measure-
ment and do not e↵ect the quantum evolution. We mod-
ify this protocol by including a set of driven qubit-cavity
couplings, which couple each qubit to its lossy readout
cavity via the Hamiltonian
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Here the hCi are a set of resonator detunings (which we
take to zero in this work), � is the qubit-cavity disper-
sive shift and ⌦R

QCi and ⌦B
QCi are the amplitudes of the



BOSE-HUBBARD (GMON) CHAIN
• gmon chain experiment: initialize product 

state, pulse tunable exchange couplers (or bring 
tunable qubits w/ fixed couplings in and out of 
resonance) N times, then measure state

• Notice: each qubit has a CPW resonator for final 
state readout. Otherwise these do not participate 
during evolution.

• Half of the physical quantum degrees 
of freedom are left idle!

• My proposal: drive parametric qubit-cavity 
couplings during evolution to increase complexity

Image credits: Neill et al 2018
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Fundamental questions in chemistry and physics
may never be answered due to the exponential com-
plexity of the underlying quantum phenomena. A
desire to overcome this challenge has sparked a new
industry of quantum technologies with the promise
that engineered quantum systems can address these
hard problems. A key step towards demonstrating
such a system will be performing a computation
beyond the capabilities of any classical computer,
achieving so-called quantum supremacy. Here, us-
ing 9 superconducting qubits, we demonstrate an
immediate path towards quantum supremacy. By
individually tuning the qubit parameters, we are
able to generate thousands of unique Hamiltonian
evolutions and probe the output probabilities. The
measured probabilities obey a universal distribu-
tion, consistent with uniformly sampling the full
Hilbert-space. As the number of qubits in the algo-
rithm is varied, the system continues to explore the
exponentially growing number of states. Combining
these large datasets with techniques from machine
learning allows us to construct a model which ac-
curately predicts the measured probabilities. We
demonstrate an application of these algorithms by
systematically increasing the disorder and observ-
ing a transition from delocalized states to localized
states. By extending these results to a system of
50 qubits, we hope to address scientific questions
that are beyond the capabilities of any classical com-
puter.

A programmable quantum system consisting of merely 50
to 100 qubits could revolutionize scientific research. While
such a platform is naturally suited to address problems in
quantum chemistry and materials science [1–4], applications
range to fields as far as classical dynamics [5] and computer
science [6–9]. A key milestone on the path towards realizing
these applications will be the demonstration of an algorithm
which exceeds the capabilities of any classical computer -
achieving quantum supremacy [10]. Sampling problems are
an iconic example of algorithms designed specifically for
this purpose [11–14]. A successful demonstration of quan-
tum supremacy would prove that engineered quantum sys-
tems, while still in their infancy, can outperform the most
advanced classical computers.

Consider a system of coupled qubits whose dynamics uni-

formly explore all accessible states over time. The com-
plexity of simulating this evolution on a classical computer
is easy to understand and quantify. Since every state is
equally important, it is not possible to simplify the prob-
lem, using a smaller truncated state-space. The complexity
is then simply given by asking how much classical mem-
ory does it take to store the state-vector. Storing the state
of a 46-qubit system takes nearly a petabyte of memory
and is at the limit of the most powerful computers [14, 15].
Sampling from the output probabilities of such a system
would therefore constitute a clear demonstration of quan-
tum supremacy. Note that this is only an upper bound on
the number of qubits required - other constraints, such as
computation time, may place practical limitations on even
smaller system sizes.

Here, we experimentally illustrate a blueprint for demon-
strating quantum supremacy. We present data character-
izing two basic ingredients required for any supremacy ex-
periment: complexity and fidelity. First, we demonstrate
that the qubits can uniformly explore the Hilbert-space,
providing a direct measure of algorithm complexity. Next,
we compare the measurement results with the expected be-
havior and show that the algorithm can be implemented
with high fidelity. Experiments for probing complexity and
fidelity provide a foundation for demonstrating quantum
supremacy.

The more control a quantum platform offers, the easier

Figure 1. Device: nine-qubit array. Optical micrograph of
the device. Gray regions are aluminum, dark regions are where
the aluminum has been etched away to define features. Colors
have been added to distinguish readout circuitry, qubits, cou-
plers and control wiring.
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ters, and compute a series of key benchmark quanti-
ties to demonstrate classical hardness, including volume
entanglement, signatures of quantum chaos in the form
of distance from a Porter-Thomas distribution, number
fluctuations, inverse participation ratio and expected fi-
delity loss from various sources, both experimental and
in simulation. Extrapolating from these, we provide esti-
mates for expected classical simulation di�culty at larger
system sizes, and show that, under the assumption that
direct Hamiltonian time evolution is the most e�cient
simulation method, the system should become impossible
to accurately simulate with near-term classical hardware
for chains of between 25 and 30 qubit-cavity pairs, de-
pending on protocol details. Finally, we o↵er concluding
remarks, and speculate about other possible applications
of these ideas for quantum simulation.

PROPOSED PROTOCOL

Quantum sampling problems based on unitary evolu-
tion amount to calculating the probabilities Pk of ob-
serving basis state |ki after evolving known initial state
with a potentially time-dependent H (t) up to some time
T . Sampling problems including noise are also based on
computing Pk, which are in this case the diagonal entries
of a density matrix evolving under the Lindblad equation
[22]:
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Here, K / L is the number of Lindblad operators and L
is the system size. For simplicity we assume that H (t)
can vary in time but that the Lindblad operators Oi do
not, though of course they may depend on time as well.
Within this extremely general class of possible simula-
tion problems, the protocol we consider in this work is a
modification of the gmon chain experiment reported in
[10]. We begin with the L-qubit Hamiltonian
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Here, hi are a set of local detunings, the �n are the
qubit nonlinearities and g (t) is a time dependent cou-
pling strength which is ramped up and down, with the
pulse waveform carefully optimized so that the popula-
tion of |2i and |3i states is negligible at the end of each
pulse (though the population of such states mid-pulse
may be significant). In principle each qubit-qubit cou-
pling can be tuned independently from the others, but
we ramp them all up and down with the same profile for

Initialize
qubits

Set all
detunings

Pulse all
couplings
N times

Measure all
qubits

FIG. 1: Basic protocol studied in this work, an extension
of the experiment reported in [10]. As in the original work,
a chain of qubits is initialized in a simple product state in
the z basis, a random set of detunings is applied to the qubits
(circles), the nearest neighbor qubit-qubit exchange couplings
(purple lines) are repeatedly pulsed on and o↵, and then the
detunings are turned o↵ and all qubits are measured in the z
basis. This cycle is repeated many times to generate an out-
put distribution, which is then compared to a classical simula-
tion to calculate fidelity. The key di↵erence in our protocol is
that driven sideband interactions (dashed lines), coupling the
qubits to their readout cavities (boxes), are simultaneously
turned on whenever the qubit-qubit couplers are, significantly
changing the quantum dynamics and implementing a Hamil-
tonian where total photon number is no longer conserved.
The magnitudes of all detunings and sideband interactions
are weak compared to the qubit-qubit coupling terms, ensur-
ing delocalized evolution and sharp resonance conditions in
the qubit-cavity interactions.

simplicity. Each qubit is coupled to a lossy readout cav-
ity; in the default protocol these terms do not appear in
HQ because the cavities are only used for state measure-
ment and do not e↵ect the quantum evolution. We mod-
ify this protocol by including a set of driven qubit-cavity
couplings, which couple each qubit to its lossy readout
cavity via the Hamiltonian
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Here the hCi are a set of resonator detunings (which we
take to zero in this work), � is the qubit-cavity disper-
sive shift and ⌦R

QCi and ⌦B
QCi are the amplitudes of the

Idle circuitry



PROPOSED EXPERIMENT
• Proposal: simultaneously with the coupler pulses, 

drive red and/or blue sideband couplings to 
cavities (Murch et al PRL 2012, Strand et al PRB 
2013, Kapit PRA 2015, Li et al PR App. 2018, 
others)

• Total Hamiltonian is:

Image credits: Neill et al 2018
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Fundamental questions in chemistry and physics
may never be answered due to the exponential com-
plexity of the underlying quantum phenomena. A
desire to overcome this challenge has sparked a new
industry of quantum technologies with the promise
that engineered quantum systems can address these
hard problems. A key step towards demonstrating
such a system will be performing a computation
beyond the capabilities of any classical computer,
achieving so-called quantum supremacy. Here, us-
ing 9 superconducting qubits, we demonstrate an
immediate path towards quantum supremacy. By
individually tuning the qubit parameters, we are
able to generate thousands of unique Hamiltonian
evolutions and probe the output probabilities. The
measured probabilities obey a universal distribu-
tion, consistent with uniformly sampling the full
Hilbert-space. As the number of qubits in the algo-
rithm is varied, the system continues to explore the
exponentially growing number of states. Combining
these large datasets with techniques from machine
learning allows us to construct a model which ac-
curately predicts the measured probabilities. We
demonstrate an application of these algorithms by
systematically increasing the disorder and observ-
ing a transition from delocalized states to localized
states. By extending these results to a system of
50 qubits, we hope to address scientific questions
that are beyond the capabilities of any classical com-
puter.

A programmable quantum system consisting of merely 50
to 100 qubits could revolutionize scientific research. While
such a platform is naturally suited to address problems in
quantum chemistry and materials science [1–4], applications
range to fields as far as classical dynamics [5] and computer
science [6–9]. A key milestone on the path towards realizing
these applications will be the demonstration of an algorithm
which exceeds the capabilities of any classical computer -
achieving quantum supremacy [10]. Sampling problems are
an iconic example of algorithms designed specifically for
this purpose [11–14]. A successful demonstration of quan-
tum supremacy would prove that engineered quantum sys-
tems, while still in their infancy, can outperform the most
advanced classical computers.

Consider a system of coupled qubits whose dynamics uni-

formly explore all accessible states over time. The com-
plexity of simulating this evolution on a classical computer
is easy to understand and quantify. Since every state is
equally important, it is not possible to simplify the prob-
lem, using a smaller truncated state-space. The complexity
is then simply given by asking how much classical mem-
ory does it take to store the state-vector. Storing the state
of a 46-qubit system takes nearly a petabyte of memory
and is at the limit of the most powerful computers [14, 15].
Sampling from the output probabilities of such a system
would therefore constitute a clear demonstration of quan-
tum supremacy. Note that this is only an upper bound on
the number of qubits required - other constraints, such as
computation time, may place practical limitations on even
smaller system sizes.

Here, we experimentally illustrate a blueprint for demon-
strating quantum supremacy. We present data character-
izing two basic ingredients required for any supremacy ex-
periment: complexity and fidelity. First, we demonstrate
that the qubits can uniformly explore the Hilbert-space,
providing a direct measure of algorithm complexity. Next,
we compare the measurement results with the expected be-
havior and show that the algorithm can be implemented
with high fidelity. Experiments for probing complexity and
fidelity provide a foundation for demonstrating quantum
supremacy.

The more control a quantum platform offers, the easier

Figure 1. Device: nine-qubit array. Optical micrograph of
the device. Gray regions are aluminum, dark regions are where
the aluminum has been etched away to define features. Colors
have been added to distinguish readout circuitry, qubits, cou-
plers and control wiring.
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ters, and compute a series of key benchmark quanti-
ties to demonstrate classical hardness, including volume
entanglement, signatures of quantum chaos in the form
of distance from a Porter-Thomas distribution, number
fluctuations, inverse participation ratio and expected fi-
delity loss from various sources, both experimental and
in simulation. Extrapolating from these, we provide esti-
mates for expected classical simulation di�culty at larger
system sizes, and show that, under the assumption that
direct Hamiltonian time evolution is the most e�cient
simulation method, the system should become impossible
to accurately simulate with near-term classical hardware
for chains of between 25 and 30 qubit-cavity pairs, de-
pending on protocol details. Finally, we o↵er concluding
remarks, and speculate about other possible applications
of these ideas for quantum simulation.

PROPOSED PROTOCOL

Quantum sampling problems based on unitary evolu-
tion amount to calculating the probabilities Pk of ob-
serving basis state |ki after evolving known initial state
with a potentially time-dependent H (t) up to some time
T . Sampling problems including noise are also based on
computing Pk, which are in this case the diagonal entries
of a density matrix evolving under the Lindblad equation
[22]:
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Here, K / L is the number of Lindblad operators and L
is the system size. For simplicity we assume that H (t)
can vary in time but that the Lindblad operators Oi do
not, though of course they may depend on time as well.
Within this extremely general class of possible simula-
tion problems, the protocol we consider in this work is a
modification of the gmon chain experiment reported in
[10]. We begin with the L-qubit Hamiltonian
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Here, hi are a set of local detunings, the �n are the
qubit nonlinearities and g (t) is a time dependent cou-
pling strength which is ramped up and down, with the
pulse waveform carefully optimized so that the popula-
tion of |2i and |3i states is negligible at the end of each
pulse (though the population of such states mid-pulse
may be significant). In principle each qubit-qubit cou-
pling can be tuned independently from the others, but
we ramp them all up and down with the same profile for

Initialize
qubits

Set all
detunings

Pulse all
couplings
N times

Measure all
qubits

FIG. 1: Basic protocol studied in this work, an extension
of the experiment reported in [10]. As in the original work,
a chain of qubits is initialized in a simple product state in
the z basis, a random set of detunings is applied to the qubits
(circles), the nearest neighbor qubit-qubit exchange couplings
(purple lines) are repeatedly pulsed on and o↵, and then the
detunings are turned o↵ and all qubits are measured in the z
basis. This cycle is repeated many times to generate an out-
put distribution, which is then compared to a classical simula-
tion to calculate fidelity. The key di↵erence in our protocol is
that driven sideband interactions (dashed lines), coupling the
qubits to their readout cavities (boxes), are simultaneously
turned on whenever the qubit-qubit couplers are, significantly
changing the quantum dynamics and implementing a Hamil-
tonian where total photon number is no longer conserved.
The magnitudes of all detunings and sideband interactions
are weak compared to the qubit-qubit coupling terms, ensur-
ing delocalized evolution and sharp resonance conditions in
the qubit-cavity interactions.

simplicity. Each qubit is coupled to a lossy readout cav-
ity; in the default protocol these terms do not appear in
HQ because the cavities are only used for state measure-
ment and do not e↵ect the quantum evolution. We mod-
ify this protocol by including a set of driven qubit-cavity
couplings, which couple each qubit to its lossy readout
cavity via the Hamiltonian

HQC (t) =
L
X

i=1

h

hCia
†
CiaCi +�a†CiaCia

†
iai

i

(3)

+
L
X

i=1

h

⌦R
QCi (t) a

†
Ciai + ⌦B

QCi (t) a
†
Cia

†
i +H.c.

i

.

Here the hCi are a set of resonator detunings (which we
take to zero in this work), � is the qubit-cavity disper-
sive shift and ⌦R

QCi and ⌦B
QCi are the amplitudes of the
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ters, and compute a series of key benchmark quanti-
ties to demonstrate classical hardness, including volume
entanglement, signatures of quantum chaos in the form
of distance from a Porter-Thomas distribution, number
fluctuations, inverse participation ratio and expected fi-
delity loss from various sources, both experimental and
in simulation. Extrapolating from these, we provide esti-
mates for expected classical simulation di�culty at larger
system sizes, and show that, under the assumption that
direct Hamiltonian time evolution is the most e�cient
simulation method, the system should become impossible
to accurately simulate with near-term classical hardware
for chains of between 25 and 30 qubit-cavity pairs, de-
pending on protocol details. Finally, we o↵er concluding
remarks, and speculate about other possible applications
of these ideas for quantum simulation.
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Quantum sampling problems based on unitary evolu-
tion amount to calculating the probabilities Pk of ob-
serving basis state |ki after evolving known initial state
with a potentially time-dependent H (t) up to some time
T . Sampling problems including noise are also based on
computing Pk, which are in this case the diagonal entries
of a density matrix evolving under the Lindblad equation
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Here, K / L is the number of Lindblad operators and L
is the system size. For simplicity we assume that H (t)
can vary in time but that the Lindblad operators Oi do
not, though of course they may depend on time as well.
Within this extremely general class of possible simula-
tion problems, the protocol we consider in this work is a
modification of the gmon chain experiment reported in
[10]. We begin with the L-qubit Hamiltonian
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Here, hi are a set of local detunings, the �n are the
qubit nonlinearities and g (t) is a time dependent cou-
pling strength which is ramped up and down, with the
pulse waveform carefully optimized so that the popula-
tion of |2i and |3i states is negligible at the end of each
pulse (though the population of such states mid-pulse
may be significant). In principle each qubit-qubit cou-
pling can be tuned independently from the others, but
we ramp them all up and down with the same profile for

FIG. 1: Basic protocol studied in this work, an extension
of the experiment reported in [10]. As in the original work,
a chain of qubits is initialized in a simple product state in
the z basis, a random set of detunings is applied to the qubits
(circles), the nearest neighbor qubit-qubit exchange couplings
(purple lines) are repeatedly pulsed on and o↵, and then the
detunings are turned o↵ and all qubits are measured in the z
basis. This cycle is repeated many times to generate an out-
put distribution, which is then compared to a classical simula-
tion to calculate fidelity. The key di↵erence in our protocol is
that driven sideband interactions (dashed lines), coupling the
qubits to their readout cavities (boxes), are simultaneously
turned on whenever the qubit-qubit couplers are, significantly
changing the quantum dynamics and implementing a Hamil-
tonian where total photon number is no longer conserved.
The magnitudes of all detunings and sideband interactions
are weak compared to the qubit-qubit coupling terms, ensur-
ing delocalized evolution and sharp resonance conditions in
the qubit-cavity interactions.

simplicity. Each qubit is coupled to a lossy readout cav-
ity; in the default protocol these terms do not appear in
HQ because the cavities are only used for state measure-
ment and do not e↵ect the quantum evolution. We mod-
ify this protocol by including a set of driven qubit-cavity
couplings, which couple each qubit to its lossy readout
cavity via the Hamiltonian
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Here the hCi are a set of resonator detunings (which we
take to zero in this work), � is the qubit-cavity disper-
sive shift and ⌦R

QCi and ⌦B
QCi are the amplitudes of the
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Here, K / L is the number of Lindblad operators and L
is the system size. For simplicity we assume that H (t)
can vary in time but that the Lindblad operators Oi do
not, though of course they may depend on time as well.
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tion problems, the protocol we consider in this work is a
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Here, hi are a set of local detunings, the �n are the
qubit nonlinearities and g (t) is a time dependent cou-
pling strength which is ramped up and down, with the
pulse waveform carefully optimized so that the popula-
tion of |2i and |3i states is negligible at the end of each
pulse (though the population of such states mid-pulse
may be significant). In principle each qubit-qubit cou-
pling can be tuned independently from the others, but
we ramp them all up and down with the same profile for

FIG. 1: Basic protocol studied in this work, an extension
of the experiment reported in [10]. As in the original work,
a chain of qubits is initialized in a simple product state in
the z basis, a random set of detunings is applied to the qubits
(circles), the nearest neighbor qubit-qubit exchange couplings
(purple lines) are repeatedly pulsed on and o↵, and then the
detunings are turned o↵ and all qubits are measured in the z
basis. This cycle is repeated many times to generate an out-
put distribution, which is then compared to a classical simula-
tion to calculate fidelity. The key di↵erence in our protocol is
that driven sideband interactions (dashed lines), coupling the
qubits to their readout cavities (boxes), are simultaneously
turned on whenever the qubit-qubit couplers are, significantly
changing the quantum dynamics and implementing a Hamil-
tonian where total photon number is no longer conserved.
The magnitudes of all detunings and sideband interactions
are weak compared to the qubit-qubit coupling terms, ensur-
ing delocalized evolution and sharp resonance conditions in
the qubit-cavity interactions.

simplicity. Each qubit is coupled to a lossy readout cav-
ity; in the default protocol these terms do not appear in
HQ because the cavities are only used for state measure-
ment and do not e↵ect the quantum evolution. We mod-
ify this protocol by including a set of driven qubit-cavity
couplings, which couple each qubit to its lossy readout
cavity via the Hamiltonian
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Here the hCi are a set of resonator detunings (which we
take to zero in this work), � is the qubit-cavity disper-
sive shift and ⌦R
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QCi are the amplitudes of the



PROPOSED EXPERIMENT
• Origin of these terms sketched below; green errors are action of qubit-resonator exchange 

coupling, red and blue oscillations in qubit energy or resonator driving. Important: we want 
these terms to be weak compared to coupler g!
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NOISY SAMPLING PROBLEMS
• Obvious concern: cavities are lossy, with 

typical loss rates

• Can include this noise in the definition of the 
sampling problem (assume qubits are noise-
free). Sample diagonals of a density matrix 
evolving as:

• But: photon loss in boson sampling or 
random quantum circuits (see right figure) 
drives problem toward triviality

• Must this always be the case? Image credits: Boixo et al, 
Nat. Phys. 2017
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ters, and compute a series of key benchmark quanti-
ties to demonstrate classical hardness, including volume
entanglement, signatures of quantum chaos in the form
of distance from a Porter-Thomas distribution, number
fluctuations, inverse participation ratio and expected fi-
delity loss from various sources, both experimental and
in simulation. Extrapolating from these, we provide esti-
mates for expected classical simulation di�culty at larger
system sizes, and show that, under the assumption that
direct Hamiltonian time evolution is the most e�cient
simulation method, the system should become impossible
to accurately simulate with near-term classical hardware
for chains of between 25 and 30 qubit-cavity pairs, de-
pending on protocol details. Finally, we o↵er concluding
remarks, and speculate about other possible applications
of these ideas for quantum simulation.

PROPOSED PROTOCOL

Quantum sampling problems based on unitary evolu-
tion amount to calculating the probabilities Pk of ob-
serving basis state |ki after evolving known initial state
with a potentially time-dependent H (t) up to some time
T . Sampling problems including noise are also based on
computing Pk, which are in this case the diagonal entries
of a density matrix evolving under the Lindblad equation
[22]:
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Here, K / L is the number of Lindblad operators and L
is the system size. For simplicity we assume that H (t)
can vary in time but that the Lindblad operators Oi do
not, though of course they may depend on time as well.
Within this extremely general class of possible simula-
tion problems, the protocol we consider in this work is a
modification of the gmon chain experiment reported in
[10]. We begin with the L-qubit Hamiltonian
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Here, hi are a set of local detunings, the �n are the
qubit nonlinearities and g (t) is a time dependent cou-
pling strength which is ramped up and down, with the
pulse waveform carefully optimized so that the popula-
tion of |2i and |3i states is negligible at the end of each
pulse (though the population of such states mid-pulse
may be significant). In principle each qubit-qubit cou-
pling can be tuned independently from the others, but
we ramp them all up and down with the same profile for

FIG. 1: Basic protocol studied in this work, an extension
of the experiment reported in [10]. As in the original work,
a chain of qubits is initialized in a simple product state in
the z basis, a random set of detunings is applied to the qubits
(circles), the nearest neighbor qubit-qubit exchange couplings
(purple lines) are repeatedly pulsed on and o↵, and then the
detunings are turned o↵ and all qubits are measured in the z
basis. This cycle is repeated many times to generate an out-
put distribution, which is then compared to a classical simula-
tion to calculate fidelity. The key di↵erence in our protocol is
that driven sideband interactions (dashed lines), coupling the
qubits to their readout cavities (boxes), are simultaneously
turned on whenever the qubit-qubit couplers are, significantly
changing the quantum dynamics and implementing a Hamil-
tonian where total photon number is no longer conserved.
The magnitudes of all detunings and sideband interactions
are weak compared to the qubit-qubit coupling terms, ensur-
ing delocalized evolution and sharp resonance conditions in
the qubit-cavity interactions.

simplicity. Each qubit is coupled to a lossy readout cav-
ity; in the default protocol these terms do not appear in
HQ because the cavities are only used for state measure-
ment and do not e↵ect the quantum evolution. We mod-
ify this protocol by including a set of driven qubit-cavity
couplings, which couple each qubit to its lossy readout
cavity via the Hamiltonian
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Here the hCi are a set of resonator detunings (which we
take to zero in this work), � is the qubit-cavity disper-
sive shift and ⌦R

QCi and ⌦B
QCi are the amplitudes of the



NOISY SAMPLING PROBLEMS

• Lindblad evolution is capable of universal quantum 
computation (Verstraete et al Nat. Phys. 2009), but this 
construction is artificial

• Realistic local noise is trickier : Hermitian operations (e.g. 
Pauli errors) produce an incoherent walk in Hilbert space, 
uniform photon loss is similarly trivializing

• However, local noise does not mean easy 
simulation! Finite temperature simulation of systems with 
an MC sign problem is exponentially hard; note that noise 
operators for a finite T bath are extremely complex, even if 
they arise from local couplings…

• Guiding principle: added noisy elements must be capable of 
generating quantum correlations Image credits: Boixo et al, 

Nat. Phys. 2017
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ters, and compute a series of key benchmark quanti-
ties to demonstrate classical hardness, including volume
entanglement, signatures of quantum chaos in the form
of distance from a Porter-Thomas distribution, number
fluctuations, inverse participation ratio and expected fi-
delity loss from various sources, both experimental and
in simulation. Extrapolating from these, we provide esti-
mates for expected classical simulation di�culty at larger
system sizes, and show that, under the assumption that
direct Hamiltonian time evolution is the most e�cient
simulation method, the system should become impossible
to accurately simulate with near-term classical hardware
for chains of between 25 and 30 qubit-cavity pairs, de-
pending on protocol details. Finally, we o↵er concluding
remarks, and speculate about other possible applications
of these ideas for quantum simulation.

PROPOSED PROTOCOL

Quantum sampling problems based on unitary evolu-
tion amount to calculating the probabilities Pk of ob-
serving basis state |ki after evolving known initial state
with a potentially time-dependent H (t) up to some time
T . Sampling problems including noise are also based on
computing Pk, which are in this case the diagonal entries
of a density matrix evolving under the Lindblad equation
[22]:

@t⇢ = i [H (t) , ⇢] +
K
X

i=1

✓

Oi⇢O
†
i +

1

2

n

O†
iOi, ⇢

o

◆

(1)

Here, K / L is the number of Lindblad operators and L
is the system size. For simplicity we assume that H (t)
can vary in time but that the Lindblad operators Oi do
not, though of course they may depend on time as well.
Within this extremely general class of possible simula-
tion problems, the protocol we consider in this work is a
modification of the gmon chain experiment reported in
[10]. We begin with the L-qubit Hamiltonian
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Here, hi are a set of local detunings, the �n are the
qubit nonlinearities and g (t) is a time dependent cou-
pling strength which is ramped up and down, with the
pulse waveform carefully optimized so that the popula-
tion of |2i and |3i states is negligible at the end of each
pulse (though the population of such states mid-pulse
may be significant). In principle each qubit-qubit cou-
pling can be tuned independently from the others, but
we ramp them all up and down with the same profile for

FIG. 1: Basic protocol studied in this work, an extension
of the experiment reported in [10]. As in the original work,
a chain of qubits is initialized in a simple product state in
the z basis, a random set of detunings is applied to the qubits
(circles), the nearest neighbor qubit-qubit exchange couplings
(purple lines) are repeatedly pulsed on and o↵, and then the
detunings are turned o↵ and all qubits are measured in the z
basis. This cycle is repeated many times to generate an out-
put distribution, which is then compared to a classical simula-
tion to calculate fidelity. The key di↵erence in our protocol is
that driven sideband interactions (dashed lines), coupling the
qubits to their readout cavities (boxes), are simultaneously
turned on whenever the qubit-qubit couplers are, significantly
changing the quantum dynamics and implementing a Hamil-
tonian where total photon number is no longer conserved.
The magnitudes of all detunings and sideband interactions
are weak compared to the qubit-qubit coupling terms, ensur-
ing delocalized evolution and sharp resonance conditions in
the qubit-cavity interactions.

simplicity. Each qubit is coupled to a lossy readout cav-
ity; in the default protocol these terms do not appear in
HQ because the cavities are only used for state measure-
ment and do not e↵ect the quantum evolution. We mod-
ify this protocol by including a set of driven qubit-cavity
couplings, which couple each qubit to its lossy readout
cavity via the Hamiltonian
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Here the hCi are a set of resonator detunings (which we
take to zero in this work), � is the qubit-cavity disper-
sive shift and ⌦R

QCi and ⌦B
QCi are the amplitudes of the



RESONANT COUPLING TO PROPAGATING MODES
• A way out: restrict loss to a subsystem 

(cavities). Turn on everything simultaneously. 
Make qubit-cavity couplings weak rel. to Q-
Q couplings:

• Resonance condition results: Photon 
addition/loss only significant when changing 
occupation of specific propagating modes

• Subsequent loss measures a highly nonlocal 
operator, with weight over entire lattice. 
Does not (necessarily) decorrelate state!

• See Kapit, Quant. Sci. Tech. 2017 for a review
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(a)

(b)

FIG. 2: Schematic picture of qubit-cavity interactions. In (a),
the qubits (circles) are uncoupled from each other; as a result,
the qubit-cavity drive (blue dashed lines) simply excites that
qubit and its corresponding cavity (boxes), ignoring the state
of the other qubits. A subsequent photon loss from the cavity
thus acts as a local measurement of that qubit. In contrast,
in (b) qubit-qubit exchange couplings (purple solid lines) are
turned on at the same time as the qubit-cavity drive. In the
limit that these couplings are much stronger than the qubit-
cavity drive itself, the qubit-cavity drive can only couple to
propagating modes within a narrow energy range, which have
weight over the entire chain (represented by semi-transparent
blue arrows at each qubit). Photon losses from the cavity
then act as a measurement of a much more complex nonlocal
operation, and do not necessarily disentangle the state. This
property is vital for maximizing the simulation complexity of
our noisy system, and more generally for employing noise to
generate and stabilize nontrivial quantum states [21].

red and blue sideband qubit-cavity drives, respectively.
These can be engineered [23–26] in the gmon architec-
ture of flux tunable transmons qubits with fixed capac-
itive couplings to their cavities through oscillating the
qubit energy near the di↵erence of the qubit and cavity
frequencies (red) or driving the qubit or cavity at fre-
quencies near half the sum of the two frequencies (blue);
see the appendix for details. For the much of this work,
we will consider protocols where only one of ⌦R

QCi and

⌦B
QCi is ever nonzero for each qubit, though this need

not be the case in general. For reasons which will be-
come clear below, we require that all couplings (qubit-
qubit and qubit-cavity) are turned on simultaneously, as
sketched in FIG. 2, rather than sequentially or in discon-
nected groups, as in gate model protocols. After being
initialized in a simple product state (in the z basis), the
couplings are pulsed on and o↵ for a total of C cycles,
at which point the states of all the qubits are measured
in the z basis. This sequence is repeated many times to
generate an output distribution, which is then compared
to a theoretical model to calculate fidelity.

GENERAL CONSIDERATIONS FOR SAMPLING
PROBLEMS WITH NOISE

Before presenting the results of our numerical simu-
lations, it is worth pausing to consider some of the im-
portant di↵erences between noisy sampling problems and
their purely unitary counterparts. In this section, we
will discuss these di↵erences, and argue a number of key
points. First, we will demonstrate the perhaps obvious
point that there exist nontrivial choices of the {Oi} for
which sampling the output distribution of (1) is at least
as di�cult as any unitary problem. Second, we will show
that this is not the case for some of the most obvious
choices, which include empirical models of random qubit
error. Third, we will show that the worst cases of (1)
are at most polynomially harder in total Hilbert space
size than their unitary counterparts, and that realistic
problems are likely to be more di�cult by a factor which
is polynomial in the size of the system and total evolu-
tion time. Following these results, we will outline key
metrics for classical hardness that candidate protocols
should satisfy, and then compute them explicitly in nu-
merical simulations for the noisy sampling problem at the
center of this work.
We begin by first noting that evolution under (1) for

arbitrary {Oi} has at least as much computational power
as unitary quantum evolution, as shown by Verstraete et
al [27], who provided an explicit construction for a set of
Lindblad operators {Oi} capable of universal quantum
computation, even if the unitary Hamiltonian is zero.
Thus, systems evolving under (1) can have at least as
much computational power as unitary gate model quan-
tum computation, and at minimum the worst cases of the
noisy sampling problem should be extremely di�cult to
simulate on classical machines. Further, the operation of
real quantum hardware subject to realistic noise is often
well-approximated by (1), and topological error correc-
tion codes can be modeled through complex Lindblad
operators; schemes to engineer self-correcting quantum
code [28, 29] are examples of such an approach. These
results further suggest that the general sampling problem
of Lindblad evolution should be exponentially di�cult for
classical machines.
However, both these examples are obviously rather

specialized, and in both cases the engineered Lindblad
operators are nonlocal. It is thus reasonable to ask how
Lindblad operators deriving from a realistic noise model
for modern quantum hardware, and in this limit things
are naturally less clear cut. In many cases, the addi-
tion of noise simply makes the problem more trivial, and
noisy elements which cannot create any type of correla-
tions on their own are not good candidates for designing
nontrivial sampling problems. For example, the addition
of depolarizing noise (uncorrelated Pauli errors along x,
y and z applied randomly at equal rates to each qubit) to
random quantum circuits drives the system toward inco-

Image credits: Hacohen-Gourgy et al, 
PRL 2015

A resonator or other lossy object is coupled to the auxiliary qubit and is chosen to be near-resonance with the
2 1ñ l ñ∣ ∣ transition, giving the auxiliary qubit a very fast decay 21G from 2 1ñ l ñ∣ ∣ without significantly
increasing the decay rate from 1 0ñ l ñ∣ ∣ (the asymmetry in decay rates generates the ratcheting effect). If the
energy of the remaining single photon is chosen to be near that of a particle in the Bose–Hubbard chain it can
refill hole states created by photon losses and thus stabilize theMott insulating state of the chain, where all qubits
hold a single photon. Addingmultiple auxiliary qubits could improve performance aswell as potentially stabilize
more complex states. Further, the refilling process these authors describe plays the role ofmore exotic
parametric two-photon driving schemes, and could thus be applicable inmore general cases.

Subsequent work by Lebreuilly et al [73, 74] showed that even better performance can be obtained through a
more complex, frequency-dependent bath. By considering an incoherent pumping schemewith strong
frequency dependence, and inwhich the power spectrumdecaysmuchmore quickly than 1 2w outside the
targeted region of interest, off-resonant excitations can be highly suppressed, allowing formuch faster refilling
rates than those permitted by the effective Lorentzian bath of a single lossy object. Such a construction could be
implemented by coupling each site tomany lossy objects with narrow resonances that span a precisely chosen
frequency range, a structure also studied byKapit et al [75] for error correction in a topological system.

Engineered dissipation can be used to passively generate and stabilize topological states as well. Provided that
the energy levels are well known and the spectrumdoes not include localminima that would frustrate refilling, a
colored bath can stabilize anyonic states of light. One such proposal is thework of Kapit et al, which proposes a
simplemechanism to stabilize abelian and non-abelian fractional quantumHall states [20]. These systems are
excellent passive stabilization candidates due to the fact that the flat single particle band [76, 77] and local
interactions ensure that only a single energy needs to be targeted for refilling. Schemes also exist to stabilize
topological stabilizerHamiltonians such asKitaev’s toric code [78] coupled to ranged interactions; thesemodels
will be discussed in the section on quantum error correction. Further discussion ofmany-bodymodels with
some notes on their stabilization can be found in [79].

Finally, though detailed knowledge of the system’s spectrum is highly desirable, such a requirement is
extremely limiting. Given a desire to probe quantumdynamics of sufficient complexity to be intractable for
classical computer simulation, onewould like to be able to stabilize states without such knowledge, as knowing
the energy levels of a system implies that it is at least partially tractable through analyticmethods or classical
numerics (of course, even exactly solublemodelsmay have prohibitively complex dynamics under the right
conditions). Fortunately, research in that direction is ongoing, exemplified byworks such as that ofHafezi et al
[80], or Shabani andNeven [81], which imagine complex dissipative structures covering awide range of target
energies at exponentially increasing rates, such that a thermal distribution ismimicked in the steady state. A

Figure 4.Experimental demonstration of state stabilization through engineered loss in a 3-qubit Bose–Hubbard chain, reproduced
with permission from [70]. The system is comprised of three transmon qubits and three resonators, and due to its simplicity its entire
spectrum (a) can be easily computed. Armedwith this knowledge, the system can bemade to relax into chosen eigenstates by applying
multiple drive tones (b), (d). For example, in part (b) the system is driven between two single photon states E2ñ∣ and E1ñ∣ by resonantly
driving transition between 0ñ∣ and E2ñ∣ and between E2ñ∣ and an excited state, which then preferentially relaxes to E1ñ∣ by symmetry.
The steady state population of E1ñ∣ is 66%; in absence of dissipation the highest steady state population of E1ñ∣ would be slightly less
than 50% (from continuously driving E0 1ñ l ñ∣ ∣ on resonance). In (d) a similar procedure is used to stabilize a two-photon excited
state F2ñ∣ at higher population thanwould be possible from continuous two-tone driving. These ‘quantum ratchet’ effects are
ubiquitous in the papers discussed in this review.
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PROPOSED EXPERIMENT
• In summary, our protocol is:

• Prepare initial product state in z basis. 
Set qubit detunings.

• Pulse all qubit-qubit and qubit-cavity 
couplers on and off simultaneously, N 
times. QC much weaker than QQ.

• Measure state of all qubits (cavities not 
measured)

• Repeat many times to sample output 
distribution, compare to theoretical model. Image credits: Neill et al 2017

A blueprint for demonstrating quantum supremacy with superconducting qubits
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Fundamental questions in chemistry and physics
may never be answered due to the exponential com-
plexity of the underlying quantum phenomena. A
desire to overcome this challenge has sparked a new
industry of quantum technologies with the promise
that engineered quantum systems can address these
hard problems. A key step towards demonstrating
such a system will be performing a computation
beyond the capabilities of any classical computer,
achieving so-called quantum supremacy. Here, us-
ing 9 superconducting qubits, we demonstrate an
immediate path towards quantum supremacy. By
individually tuning the qubit parameters, we are
able to generate thousands of unique Hamiltonian
evolutions and probe the output probabilities. The
measured probabilities obey a universal distribu-
tion, consistent with uniformly sampling the full
Hilbert-space. As the number of qubits in the algo-
rithm is varied, the system continues to explore the
exponentially growing number of states. Combining
these large datasets with techniques from machine
learning allows us to construct a model which ac-
curately predicts the measured probabilities. We
demonstrate an application of these algorithms by
systematically increasing the disorder and observ-
ing a transition from delocalized states to localized
states. By extending these results to a system of
50 qubits, we hope to address scientific questions
that are beyond the capabilities of any classical com-
puter.

A programmable quantum system consisting of merely 50
to 100 qubits could revolutionize scientific research. While
such a platform is naturally suited to address problems in
quantum chemistry and materials science [1–4], applications
range to fields as far as classical dynamics [5] and computer
science [6–9]. A key milestone on the path towards realizing
these applications will be the demonstration of an algorithm
which exceeds the capabilities of any classical computer -
achieving quantum supremacy [10]. Sampling problems are
an iconic example of algorithms designed specifically for
this purpose [11–14]. A successful demonstration of quan-
tum supremacy would prove that engineered quantum sys-
tems, while still in their infancy, can outperform the most
advanced classical computers.

Consider a system of coupled qubits whose dynamics uni-

formly explore all accessible states over time. The com-
plexity of simulating this evolution on a classical computer
is easy to understand and quantify. Since every state is
equally important, it is not possible to simplify the prob-
lem, using a smaller truncated state-space. The complexity
is then simply given by asking how much classical mem-
ory does it take to store the state-vector. Storing the state
of a 46-qubit system takes nearly a petabyte of memory
and is at the limit of the most powerful computers [14, 15].
Sampling from the output probabilities of such a system
would therefore constitute a clear demonstration of quan-
tum supremacy. Note that this is only an upper bound on
the number of qubits required - other constraints, such as
computation time, may place practical limitations on even
smaller system sizes.

Here, we experimentally illustrate a blueprint for demon-
strating quantum supremacy. We present data character-
izing two basic ingredients required for any supremacy ex-
periment: complexity and fidelity. First, we demonstrate
that the qubits can uniformly explore the Hilbert-space,
providing a direct measure of algorithm complexity. Next,
we compare the measurement results with the expected be-
havior and show that the algorithm can be implemented
with high fidelity. Experiments for probing complexity and
fidelity provide a foundation for demonstrating quantum
supremacy.

The more control a quantum platform offers, the easier

Figure 1. Device: nine-qubit array. Optical micrograph of
the device. Gray regions are aluminum, dark regions are where
the aluminum has been etched away to define features. Colors
have been added to distinguish readout circuitry, qubits, cou-
plers and control wiring.
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ters, and compute a series of key benchmark quanti-
ties to demonstrate classical hardness, including volume
entanglement, signatures of quantum chaos in the form
of distance from a Porter-Thomas distribution, number
fluctuations, inverse participation ratio and expected fi-
delity loss from various sources, both experimental and
in simulation. Extrapolating from these, we provide esti-
mates for expected classical simulation di�culty at larger
system sizes, and show that, under the assumption that
direct Hamiltonian time evolution is the most e�cient
simulation method, the system should become impossible
to accurately simulate with near-term classical hardware
for chains of between 25 and 30 qubit-cavity pairs, de-
pending on protocol details. Finally, we o↵er concluding
remarks, and speculate about other possible applications
of these ideas for quantum simulation.

PROPOSED PROTOCOL

Quantum sampling problems based on unitary evolu-
tion amount to calculating the probabilities Pk of ob-
serving basis state |ki after evolving known initial state
with a potentially time-dependent H (t) up to some time
T . Sampling problems including noise are also based on
computing Pk, which are in this case the diagonal entries
of a density matrix evolving under the Lindblad equation
[22]:
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Here, K / L is the number of Lindblad operators and L
is the system size. For simplicity we assume that H (t)
can vary in time but that the Lindblad operators Oi do
not, though of course they may depend on time as well.
Within this extremely general class of possible simula-
tion problems, the protocol we consider in this work is a
modification of the gmon chain experiment reported in
[10]. We begin with the L-qubit Hamiltonian
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Here, hi are a set of local detunings, the �n are the
qubit nonlinearities and g (t) is a time dependent cou-
pling strength which is ramped up and down, with the
pulse waveform carefully optimized so that the popula-
tion of |2i and |3i states is negligible at the end of each
pulse (though the population of such states mid-pulse
may be significant). In principle each qubit-qubit cou-
pling can be tuned independently from the others, but
we ramp them all up and down with the same profile for

Initialize
qubits

Set all
detunings

Pulse all
couplings
N times

Measure all
qubits

FIG. 1: Basic protocol studied in this work, an extension
of the experiment reported in [10]. As in the original work,
a chain of qubits is initialized in a simple product state in
the z basis, a random set of detunings is applied to the qubits
(circles), the nearest neighbor qubit-qubit exchange couplings
(purple lines) are repeatedly pulsed on and o↵, and then the
detunings are turned o↵ and all qubits are measured in the z
basis. This cycle is repeated many times to generate an out-
put distribution, which is then compared to a classical simula-
tion to calculate fidelity. The key di↵erence in our protocol is
that driven sideband interactions (dashed lines), coupling the
qubits to their readout cavities (boxes), are simultaneously
turned on whenever the qubit-qubit couplers are, significantly
changing the quantum dynamics and implementing a Hamil-
tonian where total photon number is no longer conserved.
The magnitudes of all detunings and sideband interactions
are weak compared to the qubit-qubit coupling terms, ensur-
ing delocalized evolution and sharp resonance conditions in
the qubit-cavity interactions.

simplicity. Each qubit is coupled to a lossy readout cav-
ity; in the default protocol these terms do not appear in
HQ because the cavities are only used for state measure-
ment and do not e↵ect the quantum evolution. We mod-
ify this protocol by including a set of driven qubit-cavity
couplings, which couple each qubit to its lossy readout
cavity via the Hamiltonian

HQC (t) =
L
X

i=1

h

hCia
†
CiaCi +�a†CiaCia

†
iai

i

(3)

+
L
X

i=1

h

⌦R
QCi (t) a

†
Ciai + ⌦B

QCi (t) a
†
Cia

†
i +H.c.

i

.

Here the hCi are a set of resonator detunings (which we
take to zero in this work), � is the qubit-cavity disper-
sive shift and ⌦R

QCi and ⌦B
QCi are the amplitudes of the
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FIG. 5: Distribution of output probabilities for the B (all blue
sidebands) protocol, with L = 9, after three (blue), six (gold),
nine (green) and twelve (red) cycles of evolution, combining
the results of 32 protocol instances for a total of 16384 data
points per curve. Here, N = 2L is the qubit Hilbert space
size, and the plotted quantity is the average probability of a
given configuration having probability p in the final output
distribution (note that the x axis is rescaled by a factor of
N). The black dashed line, e�Np, corresponds to an ideal
Porter-Thomas distribution, the result of fully chaotic quan-
tum evolution. At six cycles the distribution is very close to
P-T, with an average K-L divergence of 0.02 from an ideal
P-T distribution, but for longer evolutions the system pulls
away from it toward a distribution closer to, but clearly dis-
tinct from, incoherent uniform randomness. See the main text
and FIGs. (6,7) for more details.

Output distribution: number fluctuations, distance
from Porter-Thomas and incoherent uniform

randomness

Having thoroughly studied entanglement generation
and loss in our noisy system, we now examine the output
distribution itself. To do so, we use the familiar Kullback-
Leibler divergence [44] to quantify the “distance” be-
tween our observed output distribution and other im-
portant ones:

DKL (⇢A, ⇢B) ⌘
X

i

PAi ln
PAi

PBi
. (5)

In FIG. 6, we plot the K-L divergence of the full output
distribution in the qubit basis from a Porter-Thomas (P-
T) distribution, as a function of the number of cycles of
evolution, averaged over random instances of each proto-
col. The P-T distribution used for comparison is defined
over the full 2L-element qubit Hilbert space, and not a
restricted subspace as in the unitary protocol which con-
serves photon number. Consistent with quantum chaotic
behavior at intermediate times, the output distribution
becomes very close to a P-T distribution between 6 and 9
cycles of evolution (for the simulation parameters chosen,
and as seen in the figure, this is somewhat protocol de-
pendent) before gradually pulling away at longer times.

Note that since the point of “closest approach” varies
from instance to instance the averages plotted here tend
overestimate the minimum distance achieved for a given
instance.
What is rather remarkable about these results is that

cavity photon losses are already significant (see FIG. 8)
by the time a P-T distribution well fits the observed out-
put, with (for L = 9) an average of ⇠ 0.75 photons lost
by 8 cycles for the P protocol, and ⇠ 1 photon lost by 8
cycles for the B and R protocols. As discussed below, this
signature of quantum chaos is not observed when consid-
ering random incoherent processes in the qubits, which
rapidly drives the system toward trivial configurations
and cannot generate new correlations. Viewed alongside
the persistence of entanglement after a photon loss dis-
cussed in the previous section, these results confirm that
photon loss from a resonantly coupled auxiliary system
is qualitatively di↵erent from random qubit error, and
leads to highly nontrivial quantum dynamics.
However, as shown in FIG. 7 there is some “trivial-

izing” e↵ect to the cavity photon loss, in that the ob-
served distribution grows closer to incoherent uniform
randomness (IUR) at long times, consistent with a trivial
final state. Given e↵ort to tailor the protocol to stabilize
nontrivial configurations at long times (see for example
[45, 46]), we would expect this e↵ect to disappear, but
such considerations are beyond the scope of this work.
Importantly, in all three cases (though less pronounced

in the P protocol with balanced red and blue sidebands),
there are clear even-odd e↵ects; odd L cases have higher
values for peak entanglement, number fluctuations, and
average cavity photon population (and thus, loss rates).
The reason for this likely comes from the choice of cav-
ity detuning– in all protocols, the cavity detuning hCi

in Eq. (3) is set to zero for simplicity, though this need
not be the case in general. As remarked earlier, since
⌦QC,max ⌧ gmax, a photon can only be added or re-
moved from the chain if it populates a near-resonant
propagating mode, and when we consider the eigenval-
ues of a single particle hopping on a 1d chain with open
boundary conditions, there is a zero energy mode for odd
L, but not for even L. Thus, while this simplistic picture
is complicated by interactions, disorder, and the qubit-
cavity dispersive shift, it is reasonable to assume that the
odd L chains are on average closer to resonance with the
cavities than the even L chains, and thus interact with
them more strongly. This explains why odd L chains
have larger peak entanglement, fluctuations and cavity
loss rates than even L chains do, though we expect this
e↵ect to diminish as L becomes large.
We also computed the inverse participation ratio

(IPR), and as is to be expected from our previous re-
sults, our protocol explores an O (1) fraction of Hilbert
space, typically reaching half of the maximum value of 2L

between 6 and 10 cycles, depending on protocol details.
Combined with the exponentially growing entanglement
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FIG. 3: Entanglement negativities after Nc cycles of evolution. In the top row, we plot N for (left to right) the B, P
and R protocols, and in the bottom row we plot the same quantity divided by the maximum possible negativity Nmax =
(1/2)

�p
NH � 1

�

, where we used NH = (1 + L) ⇥ 2L as the cavity photon population is kept low by photon loss and the full
cavity Hilbert space is not explored. In this and all subsequent figures, L = 4 is plotted with blue filled circles, L = 5 gold
boxes, L = 6 green diamonds, L = 7 red triangles, L = 8 purple triangles, and L = 9 brown open circles. The results in
this and all subsequent figures are averaged over many random protocol instances. Aside from an even-odd e↵ect where odd
L negativities tend to be larger, N/Nmax remains approximately constant as L increases, showing that the system achieves
volume entanglement at intermediate times, though entanglement does begin to decay after a handful of cycles due to continuous
photon loss from the cavities. While we observe no saturation of N with increasing L, this should occur at some su�ciently
large Lmax (see discussion in text), though we expect Lmax to be large enough that classically simulating the system’s evolution
will be impossible on any near-term classical computer.

the full density matrix, which, assuming a maximum of
2 photons in the cavities, is almost 9 GB for L = 9 and
a bit over 52 GB for L = 10.

Large-L limits on entanglement

A natural objection to the above protocol is that con-
tinuous photon loss from the cavities will ultimately limit
entanglement growth in the chain once L becomes suf-
ficiently large [35–38]. This in turn calls the ultimate
di�culty of the problem into question, since states with
bounded entanglement often have e�cient classical repre-
sentations through matrix product states or similar con-
structions [39]. Further, recent studies in random quan-
tum circuits have shown that continuous (deterministi-
cally applied) measurement limits entanglement growth
to an area-law [40–42], and a similar result here would
call the ultimate classical di�culty into question, if en-
tanglement were to saturate at a small enough L within
reach of classical machines. Rigorously determining this
limit for our protocol given realistic circuit parameters
is an exceptionally di�cult problem we will not attempt
to answer, so instead we will consider two methods for
roughly estimating it, and show that both arguments sug-
gest that this L can easily pushed into ranges beyond the

simulation capacity of any forseeable classical computer.

Inspired by the lower bound calculated in [43], we can
provide a lower bound for the maximum length scale for
correlations as follows. Let us imagine the Lieb-Robinson
velocity for information propagation is v, photon losses
occur at an average rate hncavi�C , where hncavi is the
average photon density in a cavity during the evolution.
Let us further assume a single loss is su�cient to fully
scramble the state, as it does in RQC. Then the maxi-
mum length Lmax is given by the distance information
can propagate before a single loss has occurred anywhere
in the system; since these losses occur at a total rate
L hncavi�C , and the time to entangle one end of the chain
with the other is t = L/v, we find Lmax '

p

v/ hncavi�C .
For the gmon chain, v can be estimated from the in-
verse of the time per iSWAP operation induced by the
qubit-qubit couplers, which is around 3.5 ns assuming
gmax = 2⇡ ⇥ 40MHz, a ramp profile similar to that used
in [10], and that all couplers are turned on simultane-
ously. hncavi is highly protocol dependent but a decent
rough estimate is 0.05-0.1 based on the results detailed
below, and �C = 10MHz is a typical loss rate in a readout
cavity. This places Lmax ⇠ 17� 24; as shown below the
upper end of that scale may push into the limits of what
is possible to simulate on near-term classical supercom-



SIMULATION DETAILS
• Numerically simulate evolution up through 

12 coupler pulse cycles, using full wfn 
evolution with quantum trajectories (see 
Daley 2014 for a review)

• Simulate only blue sidebands, for simplicity 
and experimental relevance— other 
choices to be discussed in paper

• Experimentally realistic parameters (all in 
MHz unless otherwise noted):
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Fundamental questions in chemistry and physics
may never be answered due to the exponential com-
plexity of the underlying quantum phenomena. A
desire to overcome this challenge has sparked a new
industry of quantum technologies with the promise
that engineered quantum systems can address these
hard problems. A key step towards demonstrating
such a system will be performing a computation
beyond the capabilities of any classical computer,
achieving so-called quantum supremacy. Here, us-
ing 9 superconducting qubits, we demonstrate an
immediate path towards quantum supremacy. By
individually tuning the qubit parameters, we are
able to generate thousands of unique Hamiltonian
evolutions and probe the output probabilities. The
measured probabilities obey a universal distribu-
tion, consistent with uniformly sampling the full
Hilbert-space. As the number of qubits in the algo-
rithm is varied, the system continues to explore the
exponentially growing number of states. Combining
these large datasets with techniques from machine
learning allows us to construct a model which ac-
curately predicts the measured probabilities. We
demonstrate an application of these algorithms by
systematically increasing the disorder and observ-
ing a transition from delocalized states to localized
states. By extending these results to a system of
50 qubits, we hope to address scientific questions
that are beyond the capabilities of any classical com-
puter.

A programmable quantum system consisting of merely 50
to 100 qubits could revolutionize scientific research. While
such a platform is naturally suited to address problems in
quantum chemistry and materials science [1–4], applications
range to fields as far as classical dynamics [5] and computer
science [6–9]. A key milestone on the path towards realizing
these applications will be the demonstration of an algorithm
which exceeds the capabilities of any classical computer -
achieving quantum supremacy [10]. Sampling problems are
an iconic example of algorithms designed specifically for
this purpose [11–14]. A successful demonstration of quan-
tum supremacy would prove that engineered quantum sys-
tems, while still in their infancy, can outperform the most
advanced classical computers.

Consider a system of coupled qubits whose dynamics uni-

formly explore all accessible states over time. The com-
plexity of simulating this evolution on a classical computer
is easy to understand and quantify. Since every state is
equally important, it is not possible to simplify the prob-
lem, using a smaller truncated state-space. The complexity
is then simply given by asking how much classical mem-
ory does it take to store the state-vector. Storing the state
of a 46-qubit system takes nearly a petabyte of memory
and is at the limit of the most powerful computers [14, 15].
Sampling from the output probabilities of such a system
would therefore constitute a clear demonstration of quan-
tum supremacy. Note that this is only an upper bound on
the number of qubits required - other constraints, such as
computation time, may place practical limitations on even
smaller system sizes.

Here, we experimentally illustrate a blueprint for demon-
strating quantum supremacy. We present data character-
izing two basic ingredients required for any supremacy ex-
periment: complexity and fidelity. First, we demonstrate
that the qubits can uniformly explore the Hilbert-space,
providing a direct measure of algorithm complexity. Next,
we compare the measurement results with the expected be-
havior and show that the algorithm can be implemented
with high fidelity. Experiments for probing complexity and
fidelity provide a foundation for demonstrating quantum
supremacy.

The more control a quantum platform offers, the easier

Figure 1. Device: nine-qubit array. Optical micrograph of
the device. Gray regions are aluminum, dark regions are where
the aluminum has been etched away to define features. Colors
have been added to distinguish readout circuitry, qubits, cou-
plers and control wiring.
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ters, and compute a series of key benchmark quanti-
ties to demonstrate classical hardness, including volume
entanglement, signatures of quantum chaos in the form
of distance from a Porter-Thomas distribution, number
fluctuations, inverse participation ratio and expected fi-
delity loss from various sources, both experimental and
in simulation. Extrapolating from these, we provide esti-
mates for expected classical simulation di�culty at larger
system sizes, and show that, under the assumption that
direct Hamiltonian time evolution is the most e�cient
simulation method, the system should become impossible
to accurately simulate with near-term classical hardware
for chains of between 25 and 30 qubit-cavity pairs, de-
pending on protocol details. Finally, we o↵er concluding
remarks, and speculate about other possible applications
of these ideas for quantum simulation.

PROPOSED PROTOCOL

Quantum sampling problems based on unitary evolu-
tion amount to calculating the probabilities Pk of ob-
serving basis state |ki after evolving known initial state
with a potentially time-dependent H (t) up to some time
T . Sampling problems including noise are also based on
computing Pk, which are in this case the diagonal entries
of a density matrix evolving under the Lindblad equation
[22]:

@t⇢ = i [H (t) , ⇢] +
K
X

i=1

✓

Oi⇢O
†
i +

1

2

n

O†
iOi, ⇢

o

◆

(1)

Here, K / L is the number of Lindblad operators and L
is the system size. For simplicity we assume that H (t)
can vary in time but that the Lindblad operators Oi do
not, though of course they may depend on time as well.
Within this extremely general class of possible simula-
tion problems, the protocol we consider in this work is a
modification of the gmon chain experiment reported in
[10]. We begin with the L-qubit Hamiltonian

HQ (t) = �g (t)
L�1
X
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h
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+
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Here, hi are a set of local detunings, the �n are the
qubit nonlinearities and g (t) is a time dependent cou-
pling strength which is ramped up and down, with the
pulse waveform carefully optimized so that the popula-
tion of |2i and |3i states is negligible at the end of each
pulse (though the population of such states mid-pulse
may be significant). In principle each qubit-qubit cou-
pling can be tuned independently from the others, but
we ramp them all up and down with the same profile for

Initialize
qubits

Set all
detunings

Pulse all
couplings
N times

Measure all
qubits

FIG. 1: Basic protocol studied in this work, an extension
of the experiment reported in [10]. As in the original work,
a chain of qubits is initialized in a simple product state in
the z basis, a random set of detunings is applied to the qubits
(circles), the nearest neighbor qubit-qubit exchange couplings
(purple lines) are repeatedly pulsed on and o↵, and then the
detunings are turned o↵ and all qubits are measured in the z
basis. This cycle is repeated many times to generate an out-
put distribution, which is then compared to a classical simula-
tion to calculate fidelity. The key di↵erence in our protocol is
that driven sideband interactions (dashed lines), coupling the
qubits to their readout cavities (boxes), are simultaneously
turned on whenever the qubit-qubit couplers are, significantly
changing the quantum dynamics and implementing a Hamil-
tonian where total photon number is no longer conserved.
The magnitudes of all detunings and sideband interactions
are weak compared to the qubit-qubit coupling terms, ensur-
ing delocalized evolution and sharp resonance conditions in
the qubit-cavity interactions.

simplicity. Each qubit is coupled to a lossy readout cav-
ity; in the default protocol these terms do not appear in
HQ because the cavities are only used for state measure-
ment and do not e↵ect the quantum evolution. We mod-
ify this protocol by including a set of driven qubit-cavity
couplings, which couple each qubit to its lossy readout
cavity via the Hamiltonian

HQC (t) =
L
X
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†
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Here the hCi are a set of resonator detunings (which we
take to zero in this work), � is the qubit-cavity disper-
sive shift and ⌦R

QCi and ⌦B
QCi are the amplitudes of the

g
max

= 2⇡ ⇥ 40, � = �2⇡ ⇥ 200, � = 2⇡ ⇥ 5
<latexit sha1_base64="RRUgIVz24eGiumsxBEzKBsVRCVA="></latexit>

h
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= ±2⇡ ⇥ 20, ⌦
QC,max

= 2⇡ ⇥ 3, h
C

= 0
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�C = 10, tcycle 2 {20, 30} ns, Ncycle = 12
<latexit sha1_base64="tDI8kPIIi+eEiS8FbK8o49v0h8E="></latexit>



WHAT WE COMPUTED
• Number fluctuations: extensive scaling 

shows we can extrapolate these results to 
larger L

• IPR: shows that an O(1) fraction of Hilbert 
space is explored

• Output statistics: information scrambling, 
suggests intermediate-time chaotic behavior

• Negativity: demonstrates volume-law 
entanglement scaling

• In sum, these measures suggest an efficient 
classical method is extremely unlikely for this 
problem Image credits: Neill et al 2017
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Fundamental questions in chemistry and physics
may never be answered due to the exponential com-
plexity of the underlying quantum phenomena. A
desire to overcome this challenge has sparked a new
industry of quantum technologies with the promise
that engineered quantum systems can address these
hard problems. A key step towards demonstrating
such a system will be performing a computation
beyond the capabilities of any classical computer,
achieving so-called quantum supremacy. Here, us-
ing 9 superconducting qubits, we demonstrate an
immediate path towards quantum supremacy. By
individually tuning the qubit parameters, we are
able to generate thousands of unique Hamiltonian
evolutions and probe the output probabilities. The
measured probabilities obey a universal distribu-
tion, consistent with uniformly sampling the full
Hilbert-space. As the number of qubits in the algo-
rithm is varied, the system continues to explore the
exponentially growing number of states. Combining
these large datasets with techniques from machine
learning allows us to construct a model which ac-
curately predicts the measured probabilities. We
demonstrate an application of these algorithms by
systematically increasing the disorder and observ-
ing a transition from delocalized states to localized
states. By extending these results to a system of
50 qubits, we hope to address scientific questions
that are beyond the capabilities of any classical com-
puter.

A programmable quantum system consisting of merely 50
to 100 qubits could revolutionize scientific research. While
such a platform is naturally suited to address problems in
quantum chemistry and materials science [1–4], applications
range to fields as far as classical dynamics [5] and computer
science [6–9]. A key milestone on the path towards realizing
these applications will be the demonstration of an algorithm
which exceeds the capabilities of any classical computer -
achieving quantum supremacy [10]. Sampling problems are
an iconic example of algorithms designed specifically for
this purpose [11–14]. A successful demonstration of quan-
tum supremacy would prove that engineered quantum sys-
tems, while still in their infancy, can outperform the most
advanced classical computers.

Consider a system of coupled qubits whose dynamics uni-

formly explore all accessible states over time. The com-
plexity of simulating this evolution on a classical computer
is easy to understand and quantify. Since every state is
equally important, it is not possible to simplify the prob-
lem, using a smaller truncated state-space. The complexity
is then simply given by asking how much classical mem-
ory does it take to store the state-vector. Storing the state
of a 46-qubit system takes nearly a petabyte of memory
and is at the limit of the most powerful computers [14, 15].
Sampling from the output probabilities of such a system
would therefore constitute a clear demonstration of quan-
tum supremacy. Note that this is only an upper bound on
the number of qubits required - other constraints, such as
computation time, may place practical limitations on even
smaller system sizes.

Here, we experimentally illustrate a blueprint for demon-
strating quantum supremacy. We present data character-
izing two basic ingredients required for any supremacy ex-
periment: complexity and fidelity. First, we demonstrate
that the qubits can uniformly explore the Hilbert-space,
providing a direct measure of algorithm complexity. Next,
we compare the measurement results with the expected be-
havior and show that the algorithm can be implemented
with high fidelity. Experiments for probing complexity and
fidelity provide a foundation for demonstrating quantum
supremacy.

The more control a quantum platform offers, the easier

Figure 1. Device: nine-qubit array. Optical micrograph of
the device. Gray regions are aluminum, dark regions are where
the aluminum has been etched away to define features. Colors
have been added to distinguish readout circuitry, qubits, cou-
plers and control wiring.
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ters, and compute a series of key benchmark quanti-
ties to demonstrate classical hardness, including volume
entanglement, signatures of quantum chaos in the form
of distance from a Porter-Thomas distribution, number
fluctuations, inverse participation ratio and expected fi-
delity loss from various sources, both experimental and
in simulation. Extrapolating from these, we provide esti-
mates for expected classical simulation di�culty at larger
system sizes, and show that, under the assumption that
direct Hamiltonian time evolution is the most e�cient
simulation method, the system should become impossible
to accurately simulate with near-term classical hardware
for chains of between 25 and 30 qubit-cavity pairs, de-
pending on protocol details. Finally, we o↵er concluding
remarks, and speculate about other possible applications
of these ideas for quantum simulation.

PROPOSED PROTOCOL

Quantum sampling problems based on unitary evolu-
tion amount to calculating the probabilities Pk of ob-
serving basis state |ki after evolving known initial state
with a potentially time-dependent H (t) up to some time
T . Sampling problems including noise are also based on
computing Pk, which are in this case the diagonal entries
of a density matrix evolving under the Lindblad equation
[22]:
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Here, K / L is the number of Lindblad operators and L
is the system size. For simplicity we assume that H (t)
can vary in time but that the Lindblad operators Oi do
not, though of course they may depend on time as well.
Within this extremely general class of possible simula-
tion problems, the protocol we consider in this work is a
modification of the gmon chain experiment reported in
[10]. We begin with the L-qubit Hamiltonian
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Here, hi are a set of local detunings, the �n are the
qubit nonlinearities and g (t) is a time dependent cou-
pling strength which is ramped up and down, with the
pulse waveform carefully optimized so that the popula-
tion of |2i and |3i states is negligible at the end of each
pulse (though the population of such states mid-pulse
may be significant). In principle each qubit-qubit cou-
pling can be tuned independently from the others, but
we ramp them all up and down with the same profile for

Initialize
qubits

Set all
detunings

Pulse all
couplings
N times

Measure all
qubits

FIG. 1: Basic protocol studied in this work, an extension
of the experiment reported in [10]. As in the original work,
a chain of qubits is initialized in a simple product state in
the z basis, a random set of detunings is applied to the qubits
(circles), the nearest neighbor qubit-qubit exchange couplings
(purple lines) are repeatedly pulsed on and o↵, and then the
detunings are turned o↵ and all qubits are measured in the z
basis. This cycle is repeated many times to generate an out-
put distribution, which is then compared to a classical simula-
tion to calculate fidelity. The key di↵erence in our protocol is
that driven sideband interactions (dashed lines), coupling the
qubits to their readout cavities (boxes), are simultaneously
turned on whenever the qubit-qubit couplers are, significantly
changing the quantum dynamics and implementing a Hamil-
tonian where total photon number is no longer conserved.
The magnitudes of all detunings and sideband interactions
are weak compared to the qubit-qubit coupling terms, ensur-
ing delocalized evolution and sharp resonance conditions in
the qubit-cavity interactions.

simplicity. Each qubit is coupled to a lossy readout cav-
ity; in the default protocol these terms do not appear in
HQ because the cavities are only used for state measure-
ment and do not e↵ect the quantum evolution. We mod-
ify this protocol by including a set of driven qubit-cavity
couplings, which couple each qubit to its lossy readout
cavity via the Hamiltonian

HQC (t) =
L
X

i=1

h

hCia
†
CiaCi +�a†CiaCia

†
iai

i

(3)

+
L
X

i=1

h

⌦R
QCi (t) a

†
Ciai + ⌦B

QCi (t) a
†
Cia

†
i +H.c.

i

.

Here the hCi are a set of resonator detunings (which we
take to zero in this work), � is the qubit-cavity disper-
sive shift and ⌦R

QCi and ⌦B
QCi are the amplitudes of the



OUTPUT DISTRIBUTION: NUMBER FLUCTUATIONS 
AND CAVITY PHOTON LOSS

• Initialize the system with L/2 -1 photons, rounded 
down, in Neel-like state

• Top to bottom (averages): # photons added to 
qubits, # photons (total) in cavities, # photons lost 
from cavities (cumulative)

• All increase extensively, though with 
noticeable even-odd effects

• Hypothesis: even-odd effect primarily due to 
existence of zero energy hopping mode for odd L

• Key: L=4 (blue), 5 (gold), 6 (green), 
7(red), 8 (purple), 9 (brown), 10 (light 
blue), 11 (yellow)
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OUTPUT DISTRIBUTION: INVERSE PARTICIPATION 
RATIO AND OUTPUT HEAVINESS

• System explores O(1) fraction of qubit Hilbert space!

• Right: inverse participation ratio, output heaviness, and 
example probability distribution for L=9 for Nc=3 (blue) 
cycles, 6 (gold), 9 (green), and12 (red)

• In 2016, Aaronson and Chen proposed “Heavy Output” 
as a quantum hardness criteria; likely exponentially hard 
to sample a quantum distribution (from an RQC) and 
produce outputs with greater than median probability 
more than 2/3 of the time. For a P-T dist approximately 
85% of outputs satisfy this. Satisfied for all studied cases 
here as well.

• Key: L=4 (blue), 5 (gold), 6 (green), 7(red), 8 
(purple), 9 (brown), 10 (light blue), 11 
(yellow)

9

2 4 6 8
Np

0.001

0.010

0.100

1

Pr(Np)

FIG. 5: Distribution of output probabilities for the B (all blue
sidebands) protocol, with L = 9, after three (blue), six (gold),
nine (green) and twelve (red) cycles of evolution, combining
the results of 32 protocol instances for a total of 16384 data
points per curve. Here, N = 2L is the qubit Hilbert space
size, and the plotted quantity is the average probability of a
given configuration having probability p in the final output
distribution (note that the x axis is rescaled by a factor of
N). The black dashed line, e�Np, corresponds to an ideal
Porter-Thomas distribution, the result of fully chaotic quan-
tum evolution. At six cycles the distribution is very close to
P-T, with an average K-L divergence of 0.02 from an ideal
P-T distribution, but for longer evolutions the system pulls
away from it toward a distribution closer to, but clearly dis-
tinct from, incoherent uniform randomness. See the main text
and FIGs. (6,7) for more details.

Output distribution: number fluctuations, distance
from Porter-Thomas and incoherent uniform

randomness

Having thoroughly studied entanglement generation
and loss in our noisy system, we now examine the output
distribution itself. To do so, we use the familiar Kullback-
Leibler divergence [44] to quantify the “distance” be-
tween our observed output distribution and other im-
portant ones:

DKL (⇢A, ⇢B) ⌘
X

i

PAi ln
PAi

PBi
. (5)

In FIG. 6, we plot the K-L divergence of the full output
distribution in the qubit basis from a Porter-Thomas (P-
T) distribution, as a function of the number of cycles of
evolution, averaged over random instances of each proto-
col. The P-T distribution used for comparison is defined
over the full 2L-element qubit Hilbert space, and not a
restricted subspace as in the unitary protocol which con-
serves photon number. Consistent with quantum chaotic
behavior at intermediate times, the output distribution
becomes very close to a P-T distribution between 6 and 9
cycles of evolution (for the simulation parameters chosen,
and as seen in the figure, this is somewhat protocol de-
pendent) before gradually pulling away at longer times.

Note that since the point of “closest approach” varies
from instance to instance the averages plotted here tend
overestimate the minimum distance achieved for a given
instance.
What is rather remarkable about these results is that

cavity photon losses are already significant (see FIG. 8)
by the time a P-T distribution well fits the observed out-
put, with (for L = 9) an average of ⇠ 0.75 photons lost
by 8 cycles for the P protocol, and ⇠ 1 photon lost by 8
cycles for the B and R protocols. As discussed below, this
signature of quantum chaos is not observed when consid-
ering random incoherent processes in the qubits, which
rapidly drives the system toward trivial configurations
and cannot generate new correlations. Viewed alongside
the persistence of entanglement after a photon loss dis-
cussed in the previous section, these results confirm that
photon loss from a resonantly coupled auxiliary system
is qualitatively di↵erent from random qubit error, and
leads to highly nontrivial quantum dynamics.
However, as shown in FIG. 7 there is some “trivial-

izing” e↵ect to the cavity photon loss, in that the ob-
served distribution grows closer to incoherent uniform
randomness (IUR) at long times, consistent with a trivial
final state. Given e↵ort to tailor the protocol to stabilize
nontrivial configurations at long times (see for example
[45, 46]), we would expect this e↵ect to disappear, but
such considerations are beyond the scope of this work.
Importantly, in all three cases (though less pronounced

in the P protocol with balanced red and blue sidebands),
there are clear even-odd e↵ects; odd L cases have higher
values for peak entanglement, number fluctuations, and
average cavity photon population (and thus, loss rates).
The reason for this likely comes from the choice of cav-
ity detuning– in all protocols, the cavity detuning hCi

in Eq. (3) is set to zero for simplicity, though this need
not be the case in general. As remarked earlier, since
⌦QC,max ⌧ gmax, a photon can only be added or re-
moved from the chain if it populates a near-resonant
propagating mode, and when we consider the eigenval-
ues of a single particle hopping on a 1d chain with open
boundary conditions, there is a zero energy mode for odd
L, but not for even L. Thus, while this simplistic picture
is complicated by interactions, disorder, and the qubit-
cavity dispersive shift, it is reasonable to assume that the
odd L chains are on average closer to resonance with the
cavities than the even L chains, and thus interact with
them more strongly. This explains why odd L chains
have larger peak entanglement, fluctuations and cavity
loss rates than even L chains do, though we expect this
e↵ect to diminish as L becomes large.
We also computed the inverse participation ratio

(IPR), and as is to be expected from our previous re-
sults, our protocol explores an O (1) fraction of Hilbert
space, typically reaching half of the maximum value of 2L

between 6 and 10 cycles, depending on protocol details.
Combined with the exponentially growing entanglement

●

●
●

● ● ● ● ● ● ● ● ●

■

■ ■
■ ■

■ ■ ■ ■ ■ ■ ■

◆

◆
◆

◆
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

▲

▲

▲
▲

▲
▲

▲
▲

▲
▲ ▲ ▲

▼

▼

▼
▼

▼
▼

▼
▼ ▼ ▼ ▼ ▼

○

○

○
○

○
○

○
○

○ ○ ○ ○

□

□

□
□

□
□

□ □
□ □ □ □

◇

◇

◇

◇

◇
◇

◇
◇ ◇ ◇ ◇ ◇

2 4 6 8 10 12
Nc

0.1

0.2

0.5

IPR × 2-L

●
●

●
●

● ●
● ● ● ● ● ●

■
■ ■ ■

■ ■ ■ ■ ■ ■ ■ ■

◆
◆

◆
◆

◆
◆

◆ ◆ ◆ ◆ ◆ ◆

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲ ▲ ▲

▼
▼

▼
▼

▼
▼

▼
▼

▼ ▼
▼ ▼

○
○

○
○

○
○

○
○

○
○

○ ○

□
□

□
□

□
□

□
□

□ □ □ □

◇ ◇
◇

◇
◇

◇
◇

◇
◇

◇ ◇ ◇

2 4 6 8 10 12
Nc0.6

0.7

0.8

0.9

1.0
Fheavy



OUTPUT DISTRIBUTION: SCRAMBLING
• Evidence of intermediate-time quantum chaotic behavior, 

with a likely trivial final state at very long times

• System comes very close to an exponential (Porter-
Thomas) distribution over full qubit Hilbert space before 
slowly moving away from it. Note: cavity photon loss is 
O(1) by the time this point is reached!

• Not well-approximated by incoherent uniform 
randomness, or a reweighted version (poisson distributed 
random photon addition)

• Right: K-L divergence from Porter-Thomas, IUR, and 
reweighed IUR

• Key: L=4 (blue), 5 (gold), 6 (green), 7(red), 8 
(purple), 9 (brown), 10 (light blue), 11 
(yellow)
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BENCHMARKS: VOLUME ENTANGLEMENT
• Open quantum system: standard Von Neumann EE does not 

capture entanglement

• Instead, we measure the negativity (Vidal and Werner PRA 
2002):

• As with VNEE, bipartition system into subsystems A and B

• Here,         is the partial transpose of joint density matrix w.r.t 
system A. Negative EVs in matrix norm iff system is entangled. 
Nonzero negativity sufficient condition for entanglement.

• Unlike VNEE, equally well defined for pure states and mixed 
states

• For a maximally entangled state, the maximum negativity of a 
perfect bipartition is exp. large:

N =
1

2

�����⇢TA
����� 1

�
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BENCHMARKS: VOLUME ENTANGLEMENT
• Bipartition system into subsystems A and B, where A includes all the cavities and 

somewhat less than half the qubits

• Respects truncated cavity Hilbert space and fact that photon density in cavities is 
low; aim for approx. equal Hilbert space size in each partition

• Note: very expensive to compute. For 9 qubits and up to two cavity photons (or 
11 qubits, 1 cav. photon), computing negativity takes ~ 30 GB RAM.

• Can also compute subsystem negativity: negativity of the qubit reduced 
density matrix (bipartitioned) w/ cavities traced out.

A

B

Resonators

Qubits



VOLUME ENTANGLEMENT POST-LOSS
• Trajectory method has another 

advantage: can bin trajectories to 
check entanglement with total 
cavity photon loss # fixed

• So we bin simulations to require 
exactly 1 photon has been lost by 
the end of 12 cycles

• For RQC, this gives garbage: 
incoherent uniform randomness, 
zero entanglement (when 
averaged over error position/time)

Image from Boixo et al, 
Nature Phys. 2018



NEGATIVITY: FULL SYSTEM
• Left: negativity of the full system (log scale), both unaltered and divided by its maximum possible value 

(assume cavity Hilbert space dimension L+1). Right: same things constructed only from trajectories 
where one photon has been lost by the end of 12 cycles. Volume entangled in both cases (w/ even-odd 
effects), should persist to computationally intractable L.
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NEGATIVITY: QUBIT SUBSYSTEM
• Now, the negativity of the qubit subsystem, with cavities traced out. Obviously smaller, but still volume-

scaling. Proves that cavity photon loss reduces entanglement but does not fully 
disentangle state. Values achieved at 6 cycles are approx. 1/2 negativity measured in unitarily evolving, 
closed-system protocol (smaller due to entanglement with cavities acting as measurement when traced out).
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FIDELITY LOSS FROM QUBIT ERROR
• Define fidelity using the K-L divergence as in 

previous works:

• Here,          is a trivial classical distribution 
generated by reweighting incoherent uniform 
randomness by total particle # (assume Poisson 
distributed # fluctuations).

• Considered both phase noise and photon loss. 
In both default protocol & modified noisy ones, 
single photon loss sends      to zero. However in 
default protocol, this can be post-selected out.

• Effect of phase noise is more subtle.
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FIDELITY LOSS FROM QUBIT ERROR
• Unlike random circuits, in both unitary and lossy 

protocols, a single phase error does not send      to 
zero.

• However, it does appear to decay exponentially in the 
# of phase errors.

• Figures: top is 1 or 2 Z errors (by end of 12 cycles, 
averaged over position and time) in unitary (no 
cavities) protocol, middle is 1 Z error in noisy protocol, 
bottom is 2 Z errors in noisy protocol

• Reasons for this are not entirely clear, though I have 
some hypotheses— talk to me afterwards if interested.

• Key: L=4 (blue), 5 (gold), 6 (green), 7(red), 
8 (purple), 9 (brown)
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DIFFICULTY ESTIMATES



DIFFICULTY ESTIMATES
• Assumption: direct Schrodinger evolution w/ 

trajectory averaging is the most efficient 
simulation method

• Volume entanglement: matrix product state 
representation is extremely inefficient, with 
runtime scaling:

• Very “deep” circuit: for parameters studied, 6-8 
cycles equiv to depth 42-56 in RQC. Methods 
which scale exp. in tree width will fail here.

• This does not rule out other methods which 
would scale better, but I’m not aware of any.
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DIFFICULTY ESTIMATES
• In direct Schrodinger evolution, substantial savings 

are possible by truncating basis (see Neill et al 
Science 2018 for estimates this draws from).

• Cap max # of double/triple occupancies in 
transmons

• Can throw out configurations which are far in total 
photon # from initial state

• Finally, cavities are lossy- exclude double occupancies 
in cavities, and cap max # of total cavity photons. 
Empirically a maximum of ~ L/6 photons seems 
sufficient (for these parameters, rounded to nearest 
int; this is protocol dependent). Right: fidelity loss 
from truncating from 2 max cavity photons to 1

3

(a)

(b)

FIG. 2: Schematic picture of qubit-cavity interactions. In (a),
the qubits (circles) are uncoupled from each other; as a result,
the qubit-cavity drive (blue dashed lines) simply excites that
qubit and its corresponding cavity (boxes), ignoring the state
of the other qubits. A subsequent photon loss from the cavity
thus acts as a local measurement of that qubit. In contrast,
in (b) qubit-qubit exchange couplings (purple solid lines) are
turned on at the same time as the qubit-cavity drive. In the
limit that these couplings are much stronger than the qubit-
cavity drive itself, the qubit-cavity drive can only couple to
propagating modes within a narrow energy range, which have
weight over the entire chain (represented by semi-transparent
blue arrows at each qubit). Photon losses from the cavity
then act as a measurement of a much more complex nonlocal
operation, and do not necessarily disentangle the state. This
property is vital for maximizing the simulation complexity of
our noisy system, and more generally for employing noise to
generate and stabilize nontrivial quantum states [21].

red and blue sideband qubit-cavity drives, respectively.
These can be engineered [23–26] in the gmon architec-
ture of flux tunable transmons qubits with fixed capac-
itive couplings to their cavities through oscillating the
qubit energy near the di↵erence of the qubit and cavity
frequencies (red) or driving the qubit or cavity at fre-
quencies near half the sum of the two frequencies (blue);
see the appendix for details. For the much of this work,
we will consider protocols where only one of ⌦R

QCi and

⌦B
QCi is ever nonzero for each qubit, though this need

not be the case in general. For reasons which will be-
come clear below, we require that all couplings (qubit-
qubit and qubit-cavity) are turned on simultaneously, as
sketched in FIG. 2, rather than sequentially or in discon-
nected groups, as in gate model protocols. After being
initialized in a simple product state (in the z basis), the
couplings are pulsed on and o↵ for a total of C cycles,
at which point the states of all the qubits are measured
in the z basis. This sequence is repeated many times to
generate an output distribution, which is then compared
to a theoretical model to calculate fidelity.

GENERAL CONSIDERATIONS FOR SAMPLING
PROBLEMS WITH NOISE

Before presenting the results of our numerical simu-
lations, it is worth pausing to consider some of the im-
portant di↵erences between noisy sampling problems and
their purely unitary counterparts. In this section, we
will discuss these di↵erences, and argue a number of key
points. First, we will demonstrate the perhaps obvious
point that there exist nontrivial choices of the {Oi} for
which sampling the output distribution of (1) is at least
as di�cult as any unitary problem. Second, we will show
that this is not the case for some of the most obvious
choices, which include empirical models of random qubit
error. Third, we will show that the worst cases of (1)
are at most polynomially harder in total Hilbert space
size than their unitary counterparts, and that realistic
problems are likely to be more di�cult by a factor which
is polynomial in the size of the system and total evolu-
tion time. Following these results, we will outline key
metrics for classical hardness that candidate protocols
should satisfy, and then compute them explicitly in nu-
merical simulations for the noisy sampling problem at the
center of this work.
We begin by first noting that evolution under (1) for

arbitrary {Oi} has at least as much computational power
as unitary quantum evolution, as shown by Verstraete et
al [27], who provided an explicit construction for a set of
Lindblad operators {Oi} capable of universal quantum
computation, even if the unitary Hamiltonian is zero.
Thus, systems evolving under (1) can have at least as
much computational power as unitary gate model quan-
tum computation, and at minimum the worst cases of the
noisy sampling problem should be extremely di�cult to
simulate on classical machines. Further, the operation of
real quantum hardware subject to realistic noise is often
well-approximated by (1), and topological error correc-
tion codes can be modeled through complex Lindblad
operators; schemes to engineer self-correcting quantum
code [28, 29] are examples of such an approach. These
results further suggest that the general sampling problem
of Lindblad evolution should be exponentially di�cult for
classical machines.
However, both these examples are obviously rather

specialized, and in both cases the engineered Lindblad
operators are nonlocal. It is thus reasonable to ask how
Lindblad operators deriving from a realistic noise model
for modern quantum hardware, and in this limit things
are naturally less clear cut. In many cases, the addi-
tion of noise simply makes the problem more trivial, and
noisy elements which cannot create any type of correla-
tions on their own are not good candidates for designing
nontrivial sampling problems. For example, the addition
of depolarizing noise (uncorrelated Pauli errors along x,
y and z applied randomly at equal rates to each qubit) to
random quantum circuits drives the system toward inco-
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DIFFICULTY: MEMORY COSTS (FULL WFN)
• Estimated memory costs (GB) for having to keep either {2,1} or {3,2} doublons/

triplons, and up to                           resonator photons (rounded to nearest int.)

• Exascale reached by L=30 in most cases.
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DIFFICULTY ESTIMATES: RUNTIME
• Runtime per-trajectory (assume RK4 

timestep           ), for a total of      
cycles, scales as:

• Emprically, # of trajectories for a KL 
div <0.01 is                  . Error scales 
linearly in        .

• To get               , a few dozen 
trajectories likely needed at edge of 
tractability. Potentially significant!
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DIFFICULTY ESTIMATES: PROJECTED FIDELITY
• Projected fidelities in the supremacy regime are 

potentially much higher than RQCs

• Rough estimate from Google: SPAM error is ~ 
0.03/qubit, and in the 9-qubit chain experiment, 
phase/control error was ~0.004 per qubit per 
cycle.

• For a 27 qubit grid w/ 6-8 cycles, using these 
values we find:

• Dominated by SPAM error (which largely can’t be 
post-selected out). Order of magnitude higher 
than typical RQC targets, though this is a very 
rough estimate.
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CONCLUSIONS
• Noisy sampling problems are good potential candidates for demonstrating a quantum advantage in current 

hardware: classically much harder, but “quantum-easier” due to smaller system sizes

• Key idea: resonantly couple lossy subsystem to propagating modes in continuous delocalized evolution

• No complexity-theoretic proof, but: satisfies all hardness criteria computed so far for 
unitary gmon chain; Volume-law entanglement should persist to classically intractable sizes

• Assuming no hidden simplifications, simulation likely becomes intractable in the high 20s of qubit-cavity 
pairs 

• Could be adapted to other setups! “Supremacy” capable circuits (which would be too small for such a claim in 
other protocols) may already be in fridges as we speak…

• Thanks to the Google team, for support and many fascinating discussions: Sergio Boixo, Yu Chen, John Martinis, 
Charles Neill, Pedram Roushan and Vadim Smelyanskiy



OPEN QUESTIONS
• Does an efficient classical method exist for sampling the output of an evolving delocalized 

system with colored noise? A general approach for all systems almost certainly does not 
exist, but are there special cases where the solution can be found? If so, what are they, and 
why?

• Given realistic qubit noise, can we simulate thermal states of matter using superconducting 
circuits with engineered dissipation? Proposals to do this exist (Hafezi et al, Shabani and 
Neven, both 2015) but it’s not entirely clear how they respond to loss/dephasing.

• Engineered noise can passively correct errors, prepare/stabilize quantum states, make 
sampling problems harder, and more. Can noise, in analog quantum computing models, 
provide a quantum speedup in solving classical problems? 



LOSSY SYSTEMS ADDENDUM
• Objection! Lossy systems have bounded correlations; max length scale is 

set by Lieb-Robinson info velocity and incoherent “error” rate (Poulin 2010; 
Barthel and Kliesch 2012; Huang and Guo 2017; Zhang, Huang and Chen 
2018; others).

• Bounded entanglement suggests problem could be asymptotically 
“easy” (would permit an MPS description linear in system size, if 
exponential in correlation length)

• However, for realistic parameters, this length scale can still be too large for 
any conceivable classical computer to simulate. Increases with decreasing 
noise.

• What is this length scale?



LOSSY SYSTEMS ADDENDUM
• Worst case: consider an L-site chain, where info propagates 

at velocity v. Assume uncorrelated, Markovian errors occur at a 
rate      at each site. The time to entangle one end of the chain 
with the other is               (factor of 2 from meeting in the 
middle).

• The average # of errors in this time is 

• Intuition from gate model: assume single error totally 
disentangles the state

• Avg. one error or less gives 
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LOSSY SYSTEMS ADDENDUM
• Worst case: uncorrelated error, single error disentangles state, 

ballistic info transport (see bound in Zhang/Huang/Chen 2018):

• For gmons with resonator noise? iSWAP time ~ 7ns, so v ~ 141 
MHz. Error rate is

• For protocols considered here,

• Suggests

• This may actually be enough for a supremacy claim!
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LOSSY SYSTEMS ADDENDUM
• Worst case: uncorrelated error, single error 

disentangles state, ballistic info transport:

• However: Uncorrelated errors and single error 
disentanglement are bad assumptions here! Correlations 
could have much longer range

• Key idea: qubit-resonator coupling must be turned on 
simultaneously with qubit-qubit couplers
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RANGE OF ENTANGLING QUBIT-RESONATOR 
OPERATION

• Fundamental to this scheme: from the point of view 
of the qubit chain, interaction with resonators is highly nonlocal

• Simplified picture: ignore interactions and disorder. 
Consider interaction with a single resonator at site k; total 
Hamiltonian is:

• Resonance condition: photon can only be added/
removed from qubits if total energy change < 

• Assume throughout this talk 

H = HQubits (t) + ⌦ (t)
h
a†kaRk + a†Rkak

i
+�Rka

†
RkaRk

min {⌦,�R}

�R = 10MHz



RANGE OF ENTANGLING QUBIT-RESONATOR 
OPERATION

• A photon only has a significant chance of being transferred to the resonator if

•  

• If this is satisfied, resonator is only coupled to a propagating mode, with 
approximately equal weight over entire lattice

• Subsequent resonator photon loss is measuring a highly nonlocal operator! 
Will not immediately disentangle system.

• Limited by mode splitting, approx.              for a 1d chain, near center of band

• For                                       , we get

H = HQubits (t) + ⌦ (t)
h
a†kaRk + a†Rkak
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