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What i1s a Bose-Einstein
Condensate?

Macroscopic occupation of the quantum ground
state at thermal equilibrium

— Bose-Einstein distribution: chemical potential p

|
f(e)= e kT _ |

- Photons don't have a well defined p

- Photons in a medium with a band gap do have
P Wiirfel, J Phys C, 15 3967 (1982)



Photons in dye:
giving light a chemical potential

Optically pump laser dye

- Rhodamine 6G re-emits almost all of
the light it absorbs

Photons excite an electron in a dye
molecule

Scattering

- Effective energy exchange between
photon and solvent thermal bath *

- Photons reach thermal
equilibrium In picoseconds

0,25-_6'_'__'_ e U——
Absorption and emission related by )
Kennard-Stepanov
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Photons in a Microcavity

Mirrors trap photons long enough to
reach thermal equilibrium

Free-spectral range larger than dye
spectrum width (~1.5 pm-long cavity) v, oo, Pane

mirror

- Only 1 relevant longidutinal mode

- Photon dispersion relation like
massive particle
Pump light

Curved mirror gives transverse modes
like harmonic oscillator
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medium

- Lowest transverse mode Is ground state
for thermal equilibrium



Observing the photons

Light leaks through the mirrors [JoNzs
- Cavity finesse ~60 000 for

nanosecond resonator lifetime l‘k -
Pump [;YTvarr:? \ 25mm diameter
Light OVe \\\ Photoluminescence [ n——
\ Beamsplitter
To
Planar 5, spectrometer
Mirror I

To camera
Spherical Mirror // Objective Lens



Thermal photons and BEC

- Below threshold: thermal cloud

- Above: occupation of
lowest-energy mode
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Original work: Wavelength (nm)
Klaers et al, Nature 468 p545 (2010)




Non-equilibrium behaviour




Non-equilibrium model of
photon BEC

Model due to Kirton and Keeling  Keeling & Kirton,
PRA 93, 013829 (2016)

- Multi-mode/molecule Jaynes-Cummings
hamiltonian With phonons

H = Zwmamam + Z—G‘ + Q(bﬂ) + \/'_g' (b; + b ) + gZ((rm(T:“ + (III(T )

m n, I

Drive and dissipation

rrrrr

— cavity photon loss, [(=5,) I

- ’ al o]+ 3" a,,0;
pumping, fluorescence 2 At e ]}
Approximation: rate equation
MJ: —Kn,, +Nr(_6n1)(nm —|: 1)FI_ F(Sm)nmrl
ot I +1

Extended to include inhomogeneities



Non-equilibrium theory explains
multimode behaviour
We have implemented

Kirton and Keeling’s
iInhomogeneous theory 3z i

- Multimode behaviour g~
depends on rates of . 0:0083[[— Zoom of
. :_,EO.ODBO- f [0,1]
absorption vs loss g
Decondensation g o0
- Amode goes below g;g;g:_/ -~
threshold for increasing 107 10 10" 10°

Pump Rate: I'./ I

pump rate



Non-equilibrium phase diagram
HJ Hesten, RN, F Mintert, PRL 120 040601 (2018)

Condensate: re-absorption faster than cavity loss
Laser: large occupation but not in lowest mode
Many possible multimode phases

. . . _ A ~13

- Similar to gain g | Multimode 11

. . ) 110

clamping in 2, Condensate :

multimode lasers 2 7

- 6

Concepts applicable & 2
to other systems 107 BEC

ncon

- Multiple boson modes

— Saturable reservoir(s) Re-absorption rate / cavity loss rate
>

oo n




Condensation of just
a few photons

BT Walker et al (RN), Nature Physics 14 1173 (2018)




BEC with few photons

Threshold photon number (no spin degeneracy)

5 7 ) qA, /2

N,= KT} _ngh (nkT % RoC -
6 h 0 ].2 h C Iumilggt:érm?ﬁ

- Trapping potential depends on i’,l?;?é‘l/' '\

mirror curvature
- Previous experiments: RoC 0.5m= N, ~50000
— RoC 400um= N, ~40 S e

We have microfabricated
mirrors for tiny BEC.

mirror

- Jason Smith group (Oxford)




Threshold behaviour for a small
system

BEC: Basic equilibrium statistical mechanics

( |M) 1 2D Harmonic oscillator
Cm (€,—w)/ kT
—1 g =m+l ; € =e,+mhw

M =2, f

Condensation seen in ground-state population as
function of total

hw /kgT
103_ — 0.03
0.1
— 0.3
b o] PEAIEEE )
— 10

Smallness when ho / kKT - o

- Threshold becomes broad
and shows small
population jump

Ground-state population ng

10245 < ~ 1 3 3 4
10 10 10 10 10 10 10
Total population n,,



BEC phase transitions for a
Mmicroscopic system

BEC: saturation of
excited-state populations

2w N RO

Bose-Einstein
170 K

= === Non-equilibrium
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- 7 £ 2 photons at phase
transition (not macroscopic!)

- Temperature 150-170 K
(Imperfect equilibrium!)

’f
.....
="

Photon Number in given mode
[
A Y

Non-equilibrium model explains .|
iImperfect saturation

time 7. (ps)

- Based on open-system light- ¢ °, , ¥
matter interactions (not totally -
COh erent!) 0.01 0.1 = Si60 = (da;?: 100

+ —— 556 nm
-== 560 nm

Cohere

Mean ground-state photon number n,



Multimode condensation

Thermalisation rate
controlled by detuning
from molecular
resonance

- controls absorption rate

- 5 ps cavity lifetime

BEC (fast thermalisation)
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General threshold criteria:

in theory

(Multimode) Condensation can occur in many

systems

- driven Bose gases, evolutionary games, chemical

Kinetics, traffic jams
- Defined theoretically in the limit of

- = - J. Knebel et al (Frey), Nat Comms 6, 6977 (2015
infinite particle number § Voe e Eokard, pRL 111, 240405 (2013)

 When a finite fraction of all o
particles go into some modes, )

but not others Lo
Condensation is a phase transition 1’ |

- Including laser and BEC

| T T T ] T
- Schnell, Ketzmerick, Eckardgx:-;
PRE 97, 032136 (2018) o

R NV v (0



General threshold criteria:
In experiments

Experiments need criteria applicable for particle
finite number

Ntotal>lim(Nmt—)oo) {Nexc}
- Equilibrium definitions don’t apply out of equilibrium
- One-mode microlaser criterion (1 photon) unhelpful

100

More robust criteria 3

- n>N,,/2 (ONe condensate only)  :
~ max(n,)>kT/e (qUaSi'equ Only)

— 1/
n>N_ " with a~1/2
Total Number n;,

» Separates condensed from depleted populations
» Can describe multimode condensation

Photon Number




Dynamics and Non-stationary
statistics




Critical & non-critical slowing down

HJ Hesten, BT Walker, RN, F Mintert, arXiv:1809.08772 and 1809.08774

New numerical techniques for mean-field
dynamics, not just steady state

Relaxation after pump rate quench is very slow

near threshold
- Critical slowing down:

Very slow relaxation
In decondensed phase

- A new non-critical
slowing down
phenomenon.
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Dynamics (ensemble average)

Pulsed pumping, single-photon detection
- <40 ps timing resolution
- Average BEC formation as slow as 1000 ps
- Critical slowing down

- Timescale also depends
on thermalisation rate
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Beyond mean field: dynamics and
fluctuations in BEC

BEC comes from stimulated scattering but must
be seeded by spontaneous events

After quench, time for phase transition to occur
depends on spontaneous events

- Slower close to threshold, with greater timing jitter
Monte Carlo simulation of single-mode system

{1 = pumpr rate _—




Dynamics of two-time quantum
correlations: experiments

S

General 2-time correlation ]
g@(t,,t,) shows formation jltter .

= l 3

- Anti-diagonal anti-correlations

20

Critical slowing down (ensemble,
average) and (one-time) critical
fluctuations are linked

— Only true close to equilibrium

- Far from equilibrium, dynamicsjl;‘

& fluctuations both revealed by
non-stationary stats.
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Dynamics of two-time quantum
correlations: theory
Return to master equation

- Coupled rate equations including correlations
on Ome 00 nn 00 mm 00 nm Oxy — <X}/> — <X> <}/>
Jgt | dt ot ot ot
- Corrected ensemble-average dynamics, e.g.
(‘;—? = —kn+T(=0){(n+1)me+opm} —T(){n(N — me)—0cnm}
- Zero-delay photon correlations gt =1+ f’""(;zt;”“)
2-time photon correlations via quantum regression

- Find expectations & g®(t,,t,), then evolve for
g9(t,,t,)



Conclusions

Rich phase diagram when thermal
equilibrium breaks down

BEC phase transition extends to
small numbers

Non-stationary statistics

- Characterise dynamics and
correlations, far from equilibrium

Next steps

- Semiconductor photon BEC
- Replace cavity with metamaterial "] i
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2-time correlations: theory

MASTER EQUATION

The interaction between a single photon mode and the molecules in the cavity result in a Master
equation (ME) given by:

dp

= e —i[H, p] + kL(8)p + Z {ri L(o7 )+ Ty L(o;) +T(8) L(5 o])

M o;)}p, (1)

where, £(K)p = KpKt — % {RTR,[)}. The ME can also be used to derive the rate equations for

the photon number (n = (474)) and the molecular excitation (me = >~ (0 0 )).

8
3 = e T(=8){me+ Z<§*é of o)} = T(8){nN — Z@Ts e i D)
a; = —Tyme—T(=8){me+ Z(gfg oFoT)} 4+ T(8){nN — Z(é‘l‘g =

+ (V) (3)

To obtain a closed solution, one can ignore all correlations between the photon and molecules and
make the first-order (semiclassical) approximation: Y. (374 o 0. ) ~ (818) > (070 ) = nme.



SECOND-ORDER RATE EQUATIONS

on

ot

Ome
ot

—kn+T(=0){(n+1)me+opm} — T(0){n(N — me)—cpnm} (4)

—Iyme =T (=0){(n+ 1)me+0opm} + T(){n(N — me)—onm} + T+(N — me) (5)

where, oy, = (xy) — (x)(y) is the covariance function. The covariance functions here provide the
second-order corrections to the semiclassical rate equations.
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—k(n+20nn) + T(=0){(n+ 1)me + 204nme + onm(2n + 1)}

F(8){n(N — me) + 20py(N — me) — opm(2ne — 1)} (6)
—Iy(me + 20mm) —T(=0){—(n+1)me + 20mm(n + 1) + onm(2me — 1)}
F(O){n(N = me) — 20mmn + Tpm(—2me + 2N — 1)} + T+(N = me — 20mm) (7
—(k+ Ty +T4)onm +T(=6){(n+ 1)(—me + omm) — CnnMe + omn(mMe — n — 2)}
()= = me) - ot TN~ 2] & GomMe— =1 = N (8)

Now, the second-order correlation function, with zero time-delay, can be calculated using the
above set of equations, using the relation:

onn(t) — n(t)

n(t)>? ()

g(t,t) =1+




2-time correlations: theory

TWO-TIME SECOND ORDER CORRELATION FUNCTION

The two-time second-order correlation function is given by,

(87(t1)4T(t2)8(t2)4(t1))
(a7(t1)a(t1)) (a7(t2)a(2))

To solve this we make use of the quantum regression theorem, which allows us to map the
problem to two separate time evolutions. First, we use the second-order rate equation to evolve
the system p from t = 0 to t;. Thus, we obtain the expectation values of n(t), me(t), onn(t),
omm(t), onm(t) and go(t, t), using Eqgs.(4-9). Second, at t = t;, we define a new state

(10)

Ot )=

e (11)

and use the first-order rate equations to solve for the expectation value ((n(t))) and ((me(t))),
from t = t; to to, where ((X)) = Tr[Xp]. So we obtain at time t = t,

((n(t2))) = Tr[a"(t2)3(t2)p] = = g2(t, t2) x (81(R)4(2)).  (12)

The initial values for ({(n(t))) and ((me(t))) at t = t; are known from the first time evolution,

((n(t1))) = g2(t1, t1)n(t1), and ((me(t))) = Zonlt) ;(Zfil)me(tl)‘ (13)
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* Core technology: open optical

microcavities
* Spunout from Oxford Uni. Materials Dept. July 2018

II||.|‘|‘|.|||”“”m"ul“l“hhll“ll
OXFOIRD
HIGHQ

* High sensitivity over small sample volumes (=fL)

* Nanoparticle analysis

* Cavity resonance shift proportional to particle
polarisability

* Size determined from dynamics

* Chemical analysis

N eXt ge ne rat on * Absorption spectroscopy
Nnano pa rt IC | e * Sensitivity to just a few 10’s of molecules
d ch cal * Open microcavity fabrication
an cnemica * Nanometric topographic control of non-conductive
materials
SENSO0rs * Cavity finesse > 10 000 after coating
http://www.oxfordhighq.com/ * Custom shapes can be supplied



Inhomogeneous pumping
J. Marelic and R.A. Nyman, PRA 91, 033813 (2015)

Strong dependences with pump-spot size

Below threshold, cloud size
varies with pump-spot size
’ —t— =

Threshold pump power
varies with pump-spot size
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- Size at equilibrium function of temperature and
confinement: observations disagree
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nreshold at equilibrium independent of pump spot:
pservations disagree

neory with inhomogeneities explains out data



Designing trapping potentials
through mirror shapes
Anisotropic shapes

- For measuring interactions -

1D geometries
- Transport, low-D Bose gases

Non-trivial topology

- Mexican-hat potentials and 1D rings
These samples await mirror coating



Threshold behaviour:
BEC vs microlaser

BEC: Basic equilibrium statistical mechanics

1 . .
fe,u)=—— _ 2D Harmonic oscillator

Condensation seen in ground -state popu ation

Microlaser -
- Fraction B of spontaneous 7,
emission into cavity
- Simplified rate-equation model g B
Smallness: -1 vs. ho/kT - o« p
- Threshold becomes broad and .|

shows small population jump S



Coherence

Mach-Zehnder Light from cavity
1 C del
interferometer iAot e e s
- Shift images In time A N fine (piezo)
and space: gd(r,r',t-t) N\ wdl
Fibre @Spectrometer
- Spectrometer for data Variabe it o
Co (motor) Camera
acquisition

— Can resolve individual 8
cavity modes if needed :

30 31 32 33 34 35
Delay Piezo Voltage/V



Coherence of all modes: revivals

Coarse scan delay t for g'¥(t)

Measure g!(t) summed over whole spectrum

- Decay time ~h/ kT =25 fs

B ?eVIVals Wlth trapplng > | | | — Nonl-dissipé:tivethleory
OenOd 0_6 pS 0.7} ‘ ee®® Sum of lowest 7 modes |-
(1/trap frequency)

- Partial revivals show
misalignment and .
anisotropy oall

- Fits nOn-diSSipative 0'—013 =05 00 05 .1.0 1."; 2.0 2: 3.0
Bose-gas theory PR e

Visibility ¢V
o
=




Coherence of ground mode alone

Bi-exponential decay (approx) .o

Coherence increases with
photon number n,

+ —— 556 nm
-=-=- 560 nm

® 556 nm (data)

- Above threshold, t_, oc n,
A 560 nm (data)

Coherence time 7, (ps)

SC h a.Wl OW‘TOW” eS I i m It 2 Meanoélround-st:;te photgs numb;?:u

- Below threshold — = ;[

» Decoherence from loss and re-
absorption (thermalisation)

Breaks down near multimode
condensation threshold

K+ Nimoto (X))

(=]
o

A~ O

Coherence time 7. (ps)

S tiN

555 560 565 570 575 580
Cut-off Ay (nm)
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