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What is a Bose-Einstein 
Condensate?

Macroscopic occupation of the quantum ground 
state at thermal equilibrium

– Bose-Einstein distribution: chemical potential m

– Photons don't have a well defined m
– Photons in a medium with a band gap do have m

P Würfel, J Phys C, 15 3967 (1982) 

f (ϵ)=
1

e(ϵ−μ)/ k BT−1



  

Photons in dye: 
giving light a chemical potential

Optically pump laser dye

– Rhodamine 6G re-emits almost all of 
the light it absorbs

Photons excite an electron in a dye 
molecule

– Effective energy exchange between 
photon and solvent thermal bath

– Photons reach thermal 
equilibrium in picoseconds

Absorption and emission related by 
Kennard-Stepanov
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Thermalisation
~100 fs

Abs(E−E0)=Fluo (E−E0)e
(E−E0)/k BT



  

Photons in a Microcavity

Mirrors trap photons long enough to 
reach thermal equilibrium

Free-spectral range larger than dye 
spectrum width (~1.5 μm-long cavity)

– Only 1 relevant longidutinal mode
– Photon dispersion relation like 

massive particle  

Curved mirror gives transverse modes 
like harmonic oscillator

– Lowest transverse mode is ground state 
for thermal equilibrium



  

Observing the photons

Light leaks through the mirrors

– Cavity finesse ~60 000 for 
nanosecond resonator lifetime

25 mm diameter



  

Thermal photons and BEC

Original work:
Klaers et al, Nature 468 p545 (2010)

– Below threshold: thermal cloud
– Above: occupation of 

lowest energy mode‑



Non-equilibrium behaviour



  

Non-equilibrium model of 
photon BEC

Model due to Kirton and Keeling

– Multi-mode/molecule Jaynes-Cummings 
hamiltonian with phonons

Drive and dissipation

– cavity photon loss, 
pumping, fluorescence                

Approximation: rate equation

Extended to include inhomogeneities

Keeling & Kirton, 
PRA 93, 013829 (2016)



  

Non equilibrium theory explains ‑
multimode behaviour

We have implemented 
Kirton and Keeling’s 
inhomogeneous theory

– Multimode behaviour 
depends on rates of 
absorption vs loss

Decondensation

– A mode goes below 
threshold for increasing 
pump rate



  

Non equilibrium phase diagram‑
HJ Hesten, RN, F Mintert, PRL 120 040601 (2018)

Multimode
Condensate

Condensate: re-absorption faster than cavity loss

Laser: large occupation but not in lowest mode

Many possible multimode phases
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Re-absorption rate / cavity loss rate  

– Similar to gain 
clamping in 
multimode lasers

Concepts applicable 
to other systems

– Multiple boson modes
– Saturable reservoir(s)



Condensation of just
a few photons

BT Walker et al (RN), Nature Physics 14 1173 (2018)



  

BEC with few photons

Threshold photon number (no spin degeneracy)

– Trapping potential depends on 
mirror curvature       

– Previous experiments:
–

We have microfabricated 
mirrors for tiny BEC.            

- Jason Smith group (Oxford)

N th=
π2

6 (k Tℏω )
2

=
nqλ

12 (π k Tℏ c )
2

×RoC

RoC 0.5m⇒N th∼50000

RoC 400μm⇒N th∼40



  

Threshold behaviour for a small 
system

BEC: Basic equilibrium statistical mechanics

Condensation seen in ground-state population  as 
function of total

Smallness when ħw / kT → ∞

– Threshold becomes broad 
and shows small             
population jump                             

f (ϵm∣μ)=
1

e(ϵm−μ)/ k BT−1

ntot=∑m
f (ϵm∣μ)gm

gm=m+1 ; ϵm=ϵ0+m ℏω
2D Harmonic oscillator



  

BEC phase transitions for a 
microscopic system

BEC: saturation of 
excited state populations         ‑

– 7 ± 2 photons at phase 
transition (not macroscopic!)

– Temperature 150-170 K 
(imperfect equilibrium!)

Non-equilibrium model explains 
imperfect saturation

– Based on open-system light-
matter interactions (not totally 
coherent!)



  

Multimode condensation

Thermalisation rate 
controlled by detuning 
from molecular 
resonance

– controls absorption rate
– 5 ps cavity lifetime

BEC (fast thermalisation)

Multimode condensate 
(some re-absorption) Laser (no re-absorption)



  

Schnell, Ketzmerick, Eckardt
PRE 97, 032136 (2018)

General threshold criteria: 
in theory

(Multimode) Condensation can occur in many 
systems

– driven Bose gases, evolutionary games, chemical 
kinetics, traffic jams

– Defined theoretically in the limit of 
infinite particle number

● When a finite fraction of all 
particles go into some modes, 
but not others       

Condensation is a phase transition

– Including laser and BEC

J. Knebel et al (Frey), Nat Comms 6, 6977 (2015)
D. Vorberg et al (Eckardt), PRL 111, 240405 (2013)



  

General threshold criteria: 
in experiments

Experiments need criteria applicable for particle 
finite number

– Equilibrium definitions don’t apply out of equilibrium
– One-mode microlaser criterion (1 photon) unhelpful

More robust criteria

–   (one condensate only)
–        (quasi-eqbm only)
–

● Separates condensed from depleted populations
● Can describe multimode condensation

N total>lim(N tot→∞) {N exc}

ni>N total /2

max (ni)>kT /ϵ

ni>N total
1/α with α∼1/2



Dynamics and Non-stationary 
statistics



  

Critical & non-critical slowing down
HJ Hesten, BT Walker, RN, F Mintert, arXiv:1809.08772 and 1809.08774

New numerical techniques for mean-field 
dynamics, not just steady state

Relaxation after pump rate quench is very slow 
near threshold
– Critical slowing down

Very slow relaxation 
in decondensed phase

– A new non-critical 
slowing down 
phenomenon.



  

Dynamics (ensemble average)

Pulsed pumping, single-photon detection

– <40 ps timing resolution
– Average BEC formation as slow as 1000 ps
– Critical slowing down
– Timescale also depends 

on thermalisation rate      



  

Beyond mean field: dynamics and 
fluctuations in BEC

BEC comes from stimulated scattering but must 
be seeded by spontaneous events

After quench, time for phase transition to occur 
depends on spontaneous events

– Slower close to threshold, with greater timing jitter

Monte Carlo simulation of single-mode system



  

Dynamics of two-time quantum 
correlations: experiments

General 2-time correlation         
g(2)(t

1
,t

2
) shows formation jitter

– Anti-diagonal anti-correlations

Critical slowing down (ensemble 
average) and (one-time) critical 
fluctuations are linked

– Only true close to equilibrium
– Far from equilibrium, dynamics 

& fluctuations both revealed by 
non-stationary stats.



  

Dynamics of two-time quantum 
correlations: theory

Return to master equation

– Coupled rate equations including correlations

– Corrected ensemble-average dynamics, e.g. 

– Zero-delay photon correlations 

2-time photon correlations via quantum regression

– Find expectations & g(2)(t
1
,t

1
), then evolve for        

g(2)(t
1
,t

2
)



  

Conclusions

Rich phase diagram when thermal 
equilibrium breaks down

BEC phase transition extends to 
small numbers

Non-stationary statistics

– Characterise dynamics and 
correlations, far from equilibrium

Next steps

– Semiconductor photon BEC
– Replace cavity with metamaterial



  

The Photon BEC team

Former PhD student: Jakov Marelic (2013-2017) 
Current Collaborators: Aurelien Trichet, Jason Smith (Oxford); Ed Clark 
(Sheffield); Iwan Moreels (Ghent); Robin Kaiser, Stephane Barland, 
Gian Luca Lippi (Nice)‑

Henry Hesten
PhD Student

Theory

Florian Mintert
Faculty
Theory

Ben Walker
PhD Student
Experiment

Rupert Oulton
Faculty

Experiment

João Rodrigues
Post-doc

Experiment

Himadri Dhar
Post-doc
Theory



BONUS MATERIAL



  

2-time correlations: theory



  

2-time correlations: theory



  

2-time correlations: theory



UNUSED SLIDES



Next generation 
nanoparticle 
and chemical 
sensors

• Core technology: open optical 
microcavities

• Spunout from Oxford Uni. Materials Dept. July 2018
• High sensitivity over small sample volumes (≈fL)

• Nanoparticle analysis
• Cavity resonance shift proportional to particle 

polarisability
• Size determined from dynamics

• Chemical analysis
• Absorption spectroscopy
• Sensitivity to just a few 10’s of molecules

• Open microcavity fabrication
• Nanometric topographic control of non-conductive 

materials
• Cavity finesse > 10 000 after coating
• Custom shapes can be suppliedhttp://www.oxfordhighq.com/



  

Inhomogeneous pumping
J. Marelic and R.A. Nyman, PRA 91, 033813 (2015)

Strong dependences with pump-spot size 

– Size at equilibrium function of temperature and 
confinement: observations disagree

– Threshold at equilibrium independent of pump spot: 
observations disagree

– Theory with inhomogeneities explains out data

Below threshold, cloud size 
varies with pump-spot size

Threshold pump power 
varies with pump-spot size



  

Designing trapping potentials 
through mirror shapes

Anisotropic shapes

– For measuring interactions

1D geometries

– Transport, low-D Bose gases

Non-trivial topology

– Mexican-hat potentials and 1D rings

These samples await mirror coating

40 mm



  

Threshold behaviour: 
BEC vs microlaser

BEC: Basic equilibrium statistical mechanics

Condensation seen in ground-state population  

Microlaser

– Fraction b of spontaneous 
emission into cavity       

– Simplified rate-equation model

Smallness: b→1  vs.  ħw / kT → ∞

– Threshold becomes broad and 
shows small population jump

f (ϵm∣μ)=
1

e(ϵm−μ)/ k BT−1
ntot=∑m

f (ϵm∣μ)gm gm=m+1 ; ϵm=ϵ0+m ℏω
2D Harmonic oscillator



  

Coherence

Mach-Zehnder 
interferometer

– Shift images in time 
and space: g(1)(r,r',t t‑ ')

– Spectrometer for data 
acquisition

– Can resolve individual 
cavity modes if needed



  

Coherence of all modes: revivals

Coarse scan delay t for g(1)(t)

Measure g(1)(t) summed over whole spectrum

– Decay time ~ħ / kT = 25 fs
– Revivals with trapping 

period 0.6 ps                 
(1/trap frequency)                       

– Partial revivals show 
misalignment and            
anisotropy                                     

– Fits non-dissipative 
Bose gas theory                         ‑



  

Coherence of ground mode alone

Bi-exponential decay (approx)

Coherence increases with 
photon number n

0

– Above threshold, t
coh

 µ n
0
 

Schawlow Townes limit‑
– Below threshold

● Decoherence from loss and re-
absorption (thermalisation)

Breaks down near multimode 
condensation threshold

n0 ≪ 1
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