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Spinor Bose gases

@ Spinor Bose-Einstein Condensates
(BECs): atoms in all magnetic
sublevels of a single hyperfine
ground state (e.g., F' = 1 of 3’Rb)
condensed

@ Ensembles of integer-spin particles

@ Vast array of phenomena possible
related to magnetism, superfluidity,
many-body quantum dynamics, ...
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Spinor Bose gases

@ Small, tightly confined condensates
= all atoms have same spatial wave function
= single mode approximation

Collisional spin dynamics described by

A

=5 . J= (jx, Jy, J.) = total spin vector

A = collisional spin interaction energy per particle integrated
over condensate
Law, Pu & Bigelow, Phys. Rev. Lett. 81, 5257 (1998)

@ Spinor dynamical rate c = 2N A ~ 10 Hz
for N ~ 40,000 8’Rb atoms
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Spinor Bose gases

@ Add a magpnetic field

H= )\jg+pjz+q]%

o linear Zeeman shift oc p
e quadratic Zeeman shift o< ¢ (population Ny in m = 0)

@ Rich phase diagram & phenomena as a function of ¢/c

@ Studies of

coherent spin-mixing oscillations and instabilities

dynamics of systems near quantum phase transitions
symmetry breaking in closed quantum systems

generation of correlated quantum spin states (of practical use
for metrology)
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Our motivation

@ Can we use interactions in cavity QED to emulate and
possibly extend this physics?

@ If so, this could give us access to the rich physics of spinor
BECs, without the actual need for BEC, but also with more

flexibility and new possibilities for manipulation and
measurement.
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Spinor Dicke Model: Set Up

@ Ensemble of tightly-confined atoms inside an optical cavity

@ Lasers & cavity mode drive Raman transitions between mp
states

e Cavity mode mediates long-range interactions between atoms

5Py

Zhigiang et al., Optica 4, 424 (2017)
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Spinor Dicke Model: Theory

@ Atoms in F' =1 hyperfine
level

e Cavity/laser fields detuned
from atomic resonance

o Effective atom-cavity model
with spin-1 atoms
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Spinor Dicke Model: Theory

@ Atoms in F' =1 hyperfine
level

e Cavity/laser fields detuned
from atomic resonance

o Effective atom-cavity model
with spin-1 atoms

H = waTa + wod, + Wquz = (5q/2N)szaTa + h(sz - ny)
+)‘—‘ (aJ+ + aTJ_) + A+ (aTJ+ + aJ—)
V2N V2N
o 1 i€y T
+\/ﬁsz (a =+ a) + mQyz (a a)

Note: Qi; = S0, SIS 4 50t —(4/3)8;, {i,j} € {w,y, 2}
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Spinor Dicke Model: Theory

o Cavity/laser fields
very far detuned from
atomic resonance

o Effective Dicke or
Tavis-Cummings model with
spin-1 (or spin-F) atoms

H = wa'a+woJ, + \;\2_7\7 (aJ+ + aTJ_> + \;\;W <aTJ+ + aJ_> J

2 3A’ 12A
1 1 /92 Q2
wo = wz — 5(w- —wy) + o (A - 5)
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Demonstration: Nonequilibrium phase transition in a
spin-1 Dicke model

5Py

Zhigiang et al., Optica 4, 424 (2017)
(CQT Singapore)
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Side Note: Nonlinear semiclassical dynamics in the
unbalanced, open Dicke model

@ Evidence of oscillatory phase in experiment
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Side Note: Nonlinear semiclassical dynamics in the
unbalanced, open Dicke model

@ Evidence of oscillatory phase in experiment

@ Detailed analysis of semiclassical dynamics reveals much,
much more ...
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Side Note: Nonlinear semiclassical dynamics in the
unbalanced, open Dicke model

Master equation model:

p=—ilH, p] + k (2apa’ — alap — pa'a)
H =wafa+woJ, + j‘ﬁ (aJy +alJ) + \;\i (alJy +aJ_)

2N
: _ {a) _ W) )
Define o= NoTR 8= SN YT oN

Nonlinear semiclassical equations of motion

&= —(k+iw)a —iA_f — iX;B*
B = —iwof + LA_ay + 2idpa’y
Y =ir_ ("B —aB’) +iry (aB — o’ B7)
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Side Note: Nonlinear semiclassical dynamics in the
unbalanced, open Dicke model
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FIG. 3. Two parameter bifurcation diagram describing the
superradiant phase transition, A— and A+. The red curves
(SN) outline the locations of the saddle-node bifurcations and
the blue curve (P) outlines the locations of the pitchfork bi-
furcations. Degenerate pitchfork-saddle-node bifurcations are
shown as black dots and labelled PSN. The vertical dashed
lines indicate the slices of the parameter plane that produce
Fig. 2, above and below, respectively. Other parameters are
setat k =w=wp = 1.
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FIG. 8. Oscillatory phase diagram in two parameters. Lo-
cations of Hopf bifurcations are given by the black solid and
dashed curves (H). The region bounded by the two curves
details the oscillatory phase. Here £ = w = )
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FIG. 16. Phase diagram with homoclinic bifurcation curves.
Depicted are curves of saddle-node bifurcations (SN), pitch-
fork bifurcations (P), Hopf bifurcations (H), period-doubling

FIC. 8. Oscillatory phase diagram in two Lo-
cations of Hopf bifurcations are given by the black solid and
dashed curves (H). The region bounded by the two curves
details the oscillatory phase. Here & = w = wp = 1.

bifurcations (PD), and Shil'nikov-type homoclinic bifurca-
tions (Hom). These bifurcations divide the parameter plane
(A=, \-) into regions Ry, i=1,--- 7.
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Dispersive limit of the spin-1 Dicke mode

@ Now consider the dispersive limit in which the Raman
transitions are themselves off-resonant, i.e., w > wp, A+
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Dispersive limit of the spin-1 Dicke mode

@ Now consider the dispersive limit in which the Raman
transitions are themselves off-resonant, i.e., w > wp, A+

@ Adiabatically eliminate the cavity mode to yield the reduced
master equation

K

where D[O]p = 20p0T — OT0p — pOtO and
N w2 =22)7 .
"= {“O - WM} :

e [+ AR+ O = A2

2N (w? + K2)
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Dispersive limit of the spin-1 Dicke mode

@ Set A =0 and A_ = X then

b= —illl,p + —DlJ_Ip

2N
where A
= whJ. + 5% (J2 +.J2)
with
A wA? K
/ = _ A = - F = ——A
Wo w0+2N7 w2+/€27 w
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Simulation of spinor physics

T A
p=—ill,p] + 5=DlJ]p , = wplz + 5 (02 + )
A e K
w6:w0+2N, A:_w2+/<a2’ F:_ZA
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Simulation of spinor physics

r A A
p=—ilH,p pl+ 55 Pl-p = wh o (J2-|-J2)
A aye
l=wo+oey, A=——2 _ T=-Z2p
“o w0+2N’ w2 + g2’ w

e Emulates spinor dynamics for conserved J, and I'/A < 1
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Simulation of spinor physics

r 2 A
p=—ilB, A+ 5Dl lp,  H=uwhet (24 52)
A e
0= 2 A=A  p= By
“o w0+2N’ w? + k2’ w

e Emulates spinor dynamics for conserved J, and I'/A < 1

@ Ferromagnetic or anti-ferromagnetic interactions chosen by
sign of w (Raman detuning)
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Simulation of spinor physics

r s A
p=—illpl + DU, H = bt (24 J2)
A w2
I: B — A:—i F:——A
“o WO+2N’ w2 + k2’ w

e Emulates spinor dynamics for conserved J, and I'/A < 1

@ Ferromagnetic or anti-ferromagnetic interactions chosen by
sign of w (Raman detuning)

@ Artificial quadratic Zeeman shift possible with, e.g.,
additional, weak m-polarised laser
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Simulation of spinor physics

r 2 A
p=—illpl + DU, H = bt (24 J2)
A e K
I: —_— A:—i F:——A
“o w0+2N’ w2 + k2’ w
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r 2 A
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A e K
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Simulation of spinor physics

r 2 A
p=—illpl + DU, H = bt (24 J2)
A e K
I: —_— A:—i F:——A
“o w0+2N’ w2 + k2’ w

e Emulates spinor dynamics for conserved J, and I'/A < 1

@ Ferromagnetic or anti-ferromagnetic interactions chosen by
sign of w (Raman detuning)

@ Artificial quadratic Zeeman shift possible with, e.g.,
additional, weak m-polarised laser

@ Spin-1,2,3,4, ... possible (5’Rb, 85Rb, 133Cs, ...)
e Dissipation-driven dynamics (reservoir engineering) possible
forT'> A (or A =0)
e Cavity output — “window” on dynamics, or
measurement-induced state preparation
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Simulation of spinor physics

@ Dynamical rate set by Raman transition rates, light shifts and
detunings
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Simulation of spinor physics

@ Dynamical rate set by Raman transition rates, light shifts and
detunings

o Potentially orders of magnitude faster (than actual BECs):
{g,k,7v}/(27) = {10,0.2,6} MHz, N = 10* atoms
A/ (2m) ~ 200 kHz, w/(27) ~ 4 MHz
— A/(2m) ~ 10 kHz, T'/A =0.05
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Simulation of spinor physics

@ Dynamical rate set by Raman transition rates, light shifts and
detunings

o Potentially orders of magnitude faster (than actual BECs):

{g,%,7}/(27) = {10,0.2,6} MHz, N = 10* atoms
A/ (2m) ~ 200 kHz, w/(27) ~ 4 MHz
— A/(2m) ~ 10 kHz, T'/A =0.05

@ Note: Minimise effects of atomic spontaneous emission with
large single-atom cooperativity C' = 2¢2/(k7y)

S. Masson, M. Barrett, SP, Phys. Rev. Lett. 119, 213601 (2017)
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Spin-nematic squeezing

Spin-1 system:

p = —i[H, p] + —D[J—]p . H= oo (24 T))

with initial atomic state |0, N, 0)
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Spin-nematic squeezing

Spin-1 system:

a__ g r . A 2 2
p=—ilH,p]+ WD[J—]P , H=o5(0+ Jy)

with initial atomic state |0, IV, 0)
Bosonic mode representation: J_ = ﬁ(agal + aT_lao)

H ~ agaga_1a+1 + ailallaoao

¥ N TN
@ &) @

Scott Parkins, DWC, Auckland Cavity QED engineering of spinor dynamics: 3 April 2019



Spin-nematic squeezing

Spin-1 system:

r A
)= —3|H — _D[J_ H=_"" 2 2
with initial atomic state |0, IV, 0)
Bosonic mode representation: J_ = \@(agal + aT_lao)

H ~ azr)a(T)a_1a+1 + ailallaoao

N TN
@ @
Spin-nematic squeezing — redistribution of quantum noise in the

subspace {Sg, Qyz, Qz: — Qyy}: quantify with

([A(cos 0 J, + sinf Qy.)]?)
<sz - ny>/2
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€2 vs time and phase for I'/A = 0.05

N =120 N — o0
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At At
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Spin-nematic squeezing

Best £2 vs N

4 X X T=0.0
R o + 4 T=0.02A ||
X xXQ O O T'=0.05A
-8 X Yo
= ¥ 0 5
5 -10 ¥ 7o
g X ;: + O
W-12 T o |
v . X 4+ Yy
_ X + 7 2 —0.67
14 X ; (gw)Opt ~ N
-16
-18
10t 102

S. Masson, M. Barrett, SP, Phys. Rev. Lett. 119, 213601 (2017)
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Note:
Recent demonstration of cavity-mediated “pair creation” process

TN TN

@ @

Davis et al., Phys. Rev. Lett. 122, 010405 (2019)
(Schleier-Smith group, Stanford)
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Many-Body Entanglement via Photon Counting

@ N spin-1 atoms

N

e Initial atomic state |mp = 0>®N = ZCJ|J, 0)

0.040
0.035 ))(?&%
2 -
sl X % le,|? for N = 1000
X X
0025 X >><(
H X X
®0.020{ X >>(<
2 x X
€ 0.015 %
X
00101,
0.005
0.000
0 25 50 75 100 125 150 175

o |cs|? centred around J ~ /N
o All states |S,0) with S < N are entangled

Scott Parkins, DWC, Auckland

J=0
(uncertain total spin length)
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Many-Body Entanglement via Photon Counting

Evolution with effective Tavis-Cummings model (A4 = 0):

p=—i[H,p|+kr (2(1/)(1T —alap — pa%) , H=MX_ (aJ+ + aTJ_>

N N
ZCJ’J7O>®‘O>C3V—>ZCJ‘J7_J>®’0>CE1V®’J>OIHS J
J=0 J=0

where
|J)out = J-photon output pulse from the cavity

@ ldeal photon counting measurement projects spin state onto
particular entangled state |J, —J)
(probability of J = N negligible for N > 1)
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Many-Body Entanglement via Photon Counting

e Can quantify metrological sensitivity of a quantum state by
quantum Fisher information F.

@ Variance of measured phase 6 imprinted by a classical
parameter is bounded by (A§)? > F~1.

@ Optimal classical state: 7 ~ N
Heisenberg limit: F ~ N?

e For pure states, the QFI over a generator G is F = 4(AG)2.
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Many-Body Entanglement via Photon Counting

Can quantify metrological sensitivity of a quantum state by
quantum Fisher information F.

@ Variance of measured phase 6 imprinted by a classical
parameter is bounded by (A§)? > F~1.

Optimal classical state: 7 ~ N
Heisenberg limit: F ~ N?

e For pure states, the QFI over a generator G is F = 4(AG)2.

We consider G = Q.0 — Qyy (o<l ja—y +al ja4)

Average QFI of a single run (detection efficiency 7):

N
Fom1 = _|esPF(|J,—J)) ~ N?
J=0

Scott Parkins, DWC, Auckland Cavity QED engineering of spinor dynamics: 3 April 2019



Many-Body Entanglement via Photon Counting

@ Imperfect detection efficiency: e.g., ]:'nzg_g, ~ N6
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Many-Body Entanglement via Photon Counting

@ Imperfect detection efficiency: e.g., ]:'nzg_g, ~ N6
@ But, switch laser polarisation to give anti-Tavis-Cummings
model (A_ =0, A4 # 0), then
|J> _J> X |0>cav — |J, +J> ® |0>cav X |2<]>out
@ Sequence of TC and anti-TC interactions — sequence of

photon counting measurements — narrowing of distribution in
J — recovery of Heisenberg scaling

1.0 nitial

> 1

1

> 2

0.8 > 5
¢ 10
- 25

e
EY

Population

Stuart Masson, SP, Phys. Rev. Lett. 122, 103601 (2019)
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Multiphoton Pulses from a Single Spin-F Atom

@ One spin-F atom coupled to a nanocavity ...

a [ c o
: posy M0
| o
A
43 :
£ 10
b - \
Yz N\ ,‘ H
2um of

g2 2m-1 GHz

Tiecke et al, Nature 508, 242 (2014)

@ ... or to a fibre Fabry-Pérot microcavity

- R

G. Barontini et al., Science 349, 1317 (2015)
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Multiphoton Pulses from a Single Atom

Single-atom effective Tavis-Cummings model (A = 0):

p=—i[H,p|+ kK (2apaT —alap — paTa) , H=MX_ (aJ+ + ahL)

|, +J) @ [0)cay — |, —J) @ |0)cav ® |2 Yout J

-2 -1 0 1 2
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Multiphoton Pulses from a Single Atom

—— full model

w
o

N
n

~
o

Output Photon Flux in #/us
5 &

2[(a18)dt=3.952 S\

o
o

-~~~ effective model
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o
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o

01 02 03

04 05 06 07
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Caspar Groiseau, Stuart Masson,
Alex Elliott, SP, in preparation
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e J =2 = 4-photon
“superradiant” pulse

@ Initial superposition state:

L2 & 0o
—12,-2)®

@ Homodyne tomography

=30 -15 00 15 30 30 -15 00 13
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Coupled-cavities quantum electrodynamics: observation of
dressed states of atoms with delocalised photons

Experiment at Waseda University, Tokyo

Cavity 1 Connecting fiber Cavity 2
r 4 L . r . 1
Mirror 1 Mirror 2 Mirror 3 Mirror 4
Probe input l 91 -, Atoms 1 l l 92 . Atoms 2 l Probe output
— =ttt T M- —
a, f— b — a
by U2
Ly Ly Lo

Shinya Kato, Nikolett Német, Kohei Senga, Shota Mizukami, Xinhe Huang,
SP, Takao Aoki, Nat. Commun. 10, 1038 (2019)
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Weak driving: coupled oscillators
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Weak field transmission spectra

Atoms separated by > 1 metre

strongly coupled via

fibre-dark normal mode ...

Scott Parkins, DWC, Auckland
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Counts/us

or via cavity-dark normal
mode
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