

## Driven-dissipative quantum fluids of light

## Marzena Szymańska

KITP, April 2019

# Photonic Platforms: Driven-dissipative Condensates 🖮 UCC



2D Light-matter condensates with drive and decay

Polaritons Photon BEC Circuit QED systems Atoms in cavities

....

### **Driven-dissipative Condensates**



min

2D Light-matter condensates with drive and decay

Can thermal equilibrium be achieved?

Can non-equilibrium but non-trivial phases be engineered?

## Spatial and Temporal Coherence for 2D Condensate 🚠 👘

#### Closed System

Dimensionality: 2D 
$$|g^{(1)}(x, -x)|$$

♦ Modes: linear

 $\diamond$ 

♦ Occupation: thermal

$$|g^{(1)}(x, -x)| = A|2x|^{-\alpha}$$

$$\alpha_{s,t} = k_B T / n_s < 1/4$$





## **Spatial and Temporal Coherence**



## **Spatial and Temporal Coherence - Experiment**



$$\alpha_s = \alpha_t < 1/4$$

Crossover from exponential to algebraic decay of coherence with equilibrium exponents

## Spatial and Temporal Coherence - Theory



[D. Caputo, Nature Materials (2017)]

### **Spatial and Temporal Coherence - Theory**



### **Driven-dissipative Condensates**





2D Light-matter condensates with drive and decay

Can thermal equ VES be achieved?

Can non-equilibrium but non-trivial phases be engineered?

## Fourier Transform of 2D Spatio-Temporal Coherence





#### Theoretical Spectrum from

$$i\hbar\frac{\partial\psi(\mathbf{r},t)}{\partial t} = \left[-\frac{\hbar^2\nabla^2}{2m} + i\frac{\hbar}{2}\left(\frac{\gamma(\mathbf{r})}{1 + \frac{|\psi(\mathbf{r},t)|^2}{n_s}} - \kappa\right) + g|\psi(\mathbf{r},t)|^2 + V(\mathbf{r})\right]\psi(\mathbf{r},t)$$







From Truncated Wigner and Keldysh Field theory

[Ballarini et all. 2019]

## Luminescence Spectrum in Inhomogeneous System 📥 🔤 💽

#### **Theoretical Spectrum**





[Ballarini et all. 2019]

## "Wind" Effect of the Asymmetric Reservoir



Airborne optical measurements of surface gravity wave dispersion

[J. P. Dugan, et al., Journal of Geophysical Research (2001)]

## "Wind" Effect of the Asymmetric Reservoir



Airborne optical measurements of surface gravity wave dispersion

[J. P. Dugan, et al., Journal of Geophysical Research (2001)]

## "Wind" Effect of the Asymmetric Reservoir



â

#### Airborne optical measurements of surface gravity wave dispersion

[J. P. Dugan, et al., Journal of Geophysical Research (2001)]

## Kardar-Parisi-Zhang (KPZ) Theory

Treating phase fluctuations exactly

$$\partial_t \theta = D_x \partial_x^2 \theta + D_y \partial_y^2 \theta + \frac{\lambda_x}{2} (\partial_x \theta)^2 + \frac{\lambda_y}{2} (\partial_y \theta)^2 + \bar{\zeta}(\mathbf{x}, t)$$

At large distances

$$\langle \phi^*(r)\phi(0) \rangle \sim e^{-r^{2\chi}}, \quad \chi \approx 0.37$$

Stretched exponential (faster then algebraic) decay of coherence but superfluidity survives

Incoherently pumped microcavity:

L<sub>1</sub> unrealistically large away from BKT

#### **KPZ** order

killed by vortices exponential decay of correlations

or shows up on too large lengthscales power-law decay of correlations within

system size

**KPZ** non-linearity

## **KPZ – why interesting?**

Solving KPZ equation Martin Hairer, Warwick



#### Universality class for a wide range of non-equilibrium phenomena in 1D





J Maunuksela et al, PRL,1997

To date no experimental realisation of KPZ in 2D



## Playing with Spatial Anisotropy: OPO



$$\hat{H}_{SB} = \int d\mathbf{r} \left[ F(\mathbf{r}, t) \hat{\psi}_{C}^{\dagger}(\mathbf{r}, t) + \text{H.c.} \right]$$
  
+ 
$$\sum_{\mathbf{k}} \sum_{l=X,C} \left\{ \zeta_{\mathbf{k}}^{l} \left[ \hat{\psi}_{l,\mathbf{k}}^{\dagger}(t) \hat{B}_{l,\mathbf{k}} + \text{H.c.} \right] + \omega_{l,\mathbf{k}} \hat{B}_{l,\mathbf{k}}^{\dagger} \hat{B}_{l,\mathbf{k}} \right\}$$

- ♦ Non-thermal occupation
- Signal phase is completely free and idler phase locked to signal via pump

$$2\varphi_p = \varphi_s + \varphi_i$$

Spontaneous U(1) symmetry breaking gapless and diffusive Goldstone mode

## Playing with Spatial Anisotropy: OPO



♦ Time crystal
♦ Vortices: dislocation

- Vortices: dislocations in density wave and time crystal
- After filtering in momentum: usual vortices





## **Tunning Across Universalities with OPO**



## **Tunning Across Universalities with OPO**



## **Flow Properties of Driven Quantum Fluids**

# 

#### What is a superfluid?

#### Defined by flow properties:

- No viscosity
- No transverse response
- Quantised vortices
- Metastable persistent flow



Current-current response function:  $\delta j_i(\boldsymbol{q}) = \chi_{ij}(\boldsymbol{q}) \delta f_j(\boldsymbol{q})$ 

#### Long wavelength limit:

- Transverse direction first: longitudinal response
- Longitudinal direction first: transverse response

#### Superfluid component responds to longitudinal but not transverse perturbations

Superfluid density:

$$o_S = m \lim_{\boldsymbol{q} \to \boldsymbol{0}} \left( \chi_L(\boldsymbol{q}) - \chi_T(\boldsymbol{q}) \right)$$

## **Coherently Driven Polaritons**





#### Nearly dissipationless flow observed



Amo et al. Nature Phys. 5 (2009)

**Increasing Drive** 

## **Coherently Driven Polaritons**

$$\hat{H} = \sum_{\boldsymbol{k}} \epsilon_{\boldsymbol{k}} \hat{a}^{\dagger}_{\boldsymbol{k}} \hat{a}_{\boldsymbol{k}} + \frac{F_p}{\sqrt{2}} (\hat{a}^{\dagger}_{\boldsymbol{0}} + \hat{a}_{\boldsymbol{0}}) + \frac{V}{2} \sum_{\boldsymbol{k}, \boldsymbol{k}', \boldsymbol{q}} \hat{a}^{\dagger}_{\boldsymbol{k}-\boldsymbol{q}} \hat{a}^{\dagger}_{\boldsymbol{k}'+\boldsymbol{q}} \hat{a}_{\boldsymbol{k}} \hat{a}_{\boldsymbol{k}'} + \sum_{\boldsymbol{p}} \omega_{\boldsymbol{p}}^{A} \hat{A}^{\dagger}_{\boldsymbol{p}} \hat{A}_{\boldsymbol{p}} + \sum_{\boldsymbol{k}, \boldsymbol{p}} \zeta_{\boldsymbol{k}, \boldsymbol{p}} (\hat{a}^{\dagger}_{\boldsymbol{k}} \hat{A}_{\boldsymbol{p}} + \hat{A}^{\dagger}_{\boldsymbol{p}} \hat{a}_{\boldsymbol{k}})$$

• Blue detuning  $\Delta = V \left| \psi_0 \right|^2 \to$  Landau criterion fulfilled in real part (c)

## **Coherently Driven Polaritons**

[R. Juggins et al., Nature Comm. 2018]



## **Reconciling with the Experiment**

[R. Juggins et al., Nature Comm. 2018]

#### Detuning and the response function

- Vary pump strength for a given detuning
- Normal response goes to zero when the real spectrum fulfils the Landau criterion



Experiment records the non-fluid rather then superfluid state

## **Reconciling with the Experiment**

[R. Juggins et al., Nature Comm. 2018]

#### Detuning and the response function

- Vary pump strength for a given detuning
- Normal response goes to zero when the real spectrum fulfils the Landau criterion



Rigid light is a strange new state of matter oxygen/Getty

Experiment records the non-fluid rather then superfluid state

### **Driven-dissipative Condensates**





2D Light-matter condensates with drive and decay

Can thermal equiview be achieved? Can non-equilibrium but non-trivial phases be engineered?

## **Perspectives: Building Solids**



Energy of photons spatially modulated



Polaritons in a weak periodic potential

#### Surface acoustic waves





Polaritons in a weak periodic moving potential



## **Building Solids**

# 

#### Micropillars



1D lattices



2D lattices



A. Amo, J. Bloch et al.

#### Honeycomb lattices (like in Graphene)



A. Amo, J. Bloch et al.

## Topological Photons?

#### Building "photonic graphene" – Dirac cones



#### Spin-orbit coupling for photons



polarization-dependent confinement and tunneling of photons between adjacent micropillars



A. Amo, J. Bloch et al.

# New directions – Strong Interactions

**Optimising confinement** 



#### Increasing exciton-exciton interactions

- Dipolar polartions but in lattice potentials
- Exciton Feschbach resonance



Bose-Hubbard Dimer with Non-Local Dissipation

 $\diamond$  <u>Semi-classical regime</u>:





## **Bistable Time-Crystal**



 Non-local dissipation leads to oscillatory solutions – bistable in bistability window

 Frequency of oscillations robust even for finite system and in the presence of perturbations

[Lledo et al. arXiv:1901.04438 (2019)]

## Conclusions



♦ Coherent drive – new quantum state with novel flow properties



 Lattice systems: correlated and topological states



## Acknowledgements

### Group:







A. Zamora

R. Juggins

## In collaboration with:



#### D. Sanvitto D. Ballarini



S. Diehl J. Keeling



P. B. Littlewood









## Funding:



Engineering and Physical Sciences Research Council

