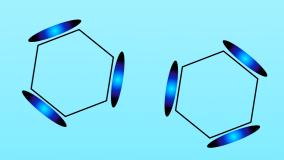
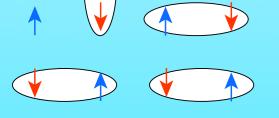
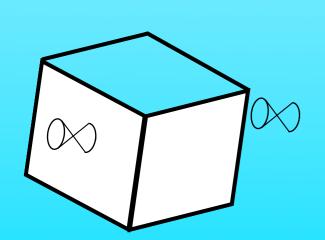


Bulk-Edge correspondence and Fractionalization

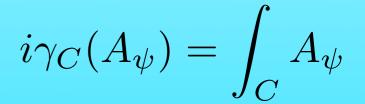
As a topological (spin) insulator with strong interaction







Y. Hatsugai
Institute of Physics
Univ. of Tsukuba
JAPAN



- $\mathbf{z} \quad \mathbb{Z}_2$ Berry phase for a topological order parameter
 - Fractionalization for the Bulk in 1D & 2D
- Entanglement Entropy to detect edge states
 - (effective) Description by the Edges:
 - ≈ Fractionalization at the Edges in 1D

deconfined spinons in 2D & 3D ??

- Time Reversal operators with interaction
- \bowtie Global to Local : super-selection rule $\Theta^2=1, \text{ or } -1$ Let us consider

Gapped spin liquid as a topological insulator with strong interaction

Quantum Liquids without Symmetry Breaking

- Quantum Liquids in Low Dimensional Quantum Systems
 - Low Dimensionality, Quantum Fluctuations
 - No Symmetry Breaking

Topological Order

No Local Order Parameter

- X.G.Wen
- Various Phases & Quantum Phase Transitions
- Gapped Quantum Liquids in Condensed Matter
 - Integer & Fractional Quantum Hall States
 - Dimer Models of Fermions and Spins
 - Integer spin chains
 - ★ Valence bond solid (VBS) states
 - Half filled Kondo Lattice

How to understand gapped quantum liquids?

classically featureless: need geometrical phase

Bulk

classically featureless: need geometrical phase

1-st Chern number for QHE TKNN

Bulk

classically featureless: need geometrical phase

1-st Chern number for QHE TKNN

Edge

low energy localized modes in the gap

Bulk

classically featureless: need geometrical phase

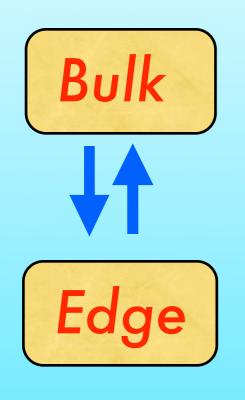
1-st Chern number for QHE TKNN

Edge

low energy localized modes in the gap

edge states for QHE

Laughlin, Halperin, YH



classically featureless: need geometrical phase

1-st Chern number for QHE TKNN

low energy localized modes in the gap

edge states for QHE

Laughlin, Halperin, YH

Bulk-Edge correspondence

Common property of topological ordered states

classically featureless: need geometrical phase

1-st Chern number for QHE TKNN

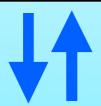
low energy localized modes in the gap edge states for QHE

Laughlin, Halperin, YH

Bulk-Edge correspondence

Common property of topological ordered states

classically featureless: need geometrical phase



1-st Chern number for QHE TKNN

low energy localized modes in the gap edge states for QHE

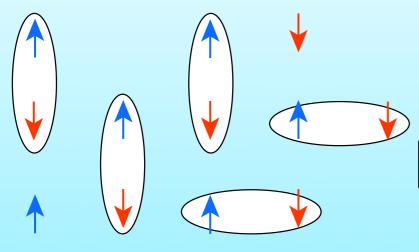
Laughlin, Halperin, YH

As for quantum spins

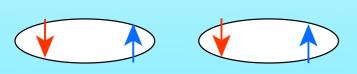
- Entanglement Entropy to detect edge states (generic Kennedy triplets)

Quantum Liquid (Example 1)

The RVB state by Anderson



Singlet
$$Pair_{12}\rangle = \frac{1}{\sqrt{2}}(|\uparrow_1\downarrow_2\rangle - |\downarrow_1\uparrow_2\rangle)$$



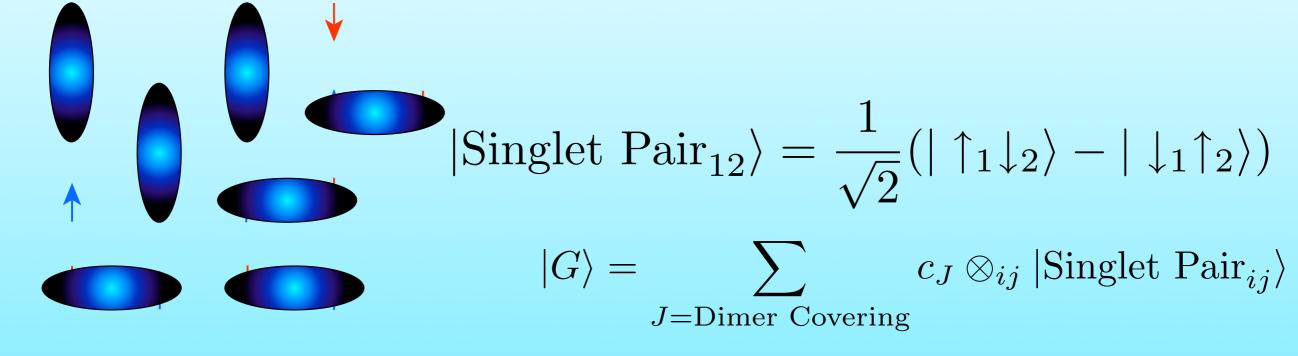
$$|G\rangle = \sum_{J=\text{Dimer Covering}} c_J \otimes_{ij} |\text{Singlet Pair}_{ij}\rangle$$

small magnets

Local Singlet Pairs : (Basic Objects)

Quantum Liquid (Example 1)

The RVB state by Anderson

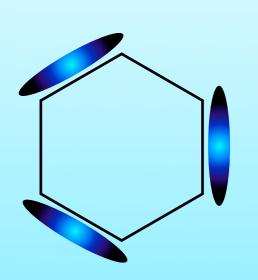


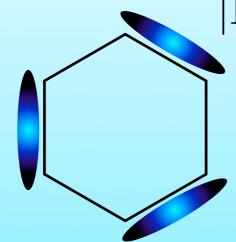
Spins disappear as a Singlet pair

Local Singlet Pairs : (Basic Objects)

Quantum Liquid (Example 2)

The RVB state by Pauling





$$|\text{Bond}_{12}\rangle = \frac{1}{\sqrt{2}}(|1\rangle + |2\rangle) = \frac{1}{\sqrt{2}}(c_1^{\dagger} + c_2^{\dagger})|0\rangle$$

$$|G\rangle = \sum_{J=\text{Dimer Covering}} c_J \otimes_{ij} |\text{Bond}_{ij}\rangle$$

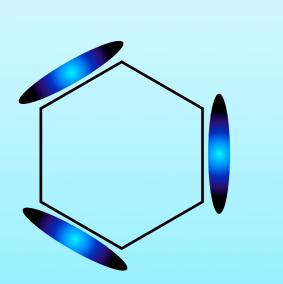
Do Not use the Fermi Sea

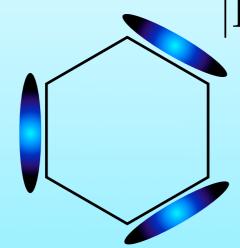
localized charge at site A

Local Covalent Bonds : (Basic Objects)

Quantum Liquid (Example 2)

The RVB state by Pauling





$$|\text{Bond}_{12}\rangle = \frac{1}{\sqrt{2}}(|1\rangle + |2\rangle) = \frac{1}{\sqrt{2}}(c_1^{\dagger} + c_2^{\dagger})|0\rangle$$

$$|G\rangle = \sum_{J=\text{Dimer Covering}} c_J \otimes_{ij} |\text{Bond}_{ij}\rangle$$

Do Not use the Fermi Sea

Delocalized charge as a covalent bond

Local Covalent Bonds : (Basic Objects)

Quantum Interference for the Classification

- "Classical" Observables
 - $ightharpoonup ext{Charge density, Spin density,...} \qquad \mathcal{O} = n_{\uparrow} \pm n_{\downarrow}, \cdots \ \langle \mathcal{O} \rangle_{G} = \langle G | \mathcal{O} | G \rangle = \langle G' | \mathcal{O} | G' \rangle = \langle \mathcal{O} \rangle_{G'} \ | G' \rangle = | G \rangle e^{i\phi}$
- "Quantum" Observables!
 - **☆** Quantum Interferences:

$$\langle G_1|G_2\rangle = \langle G_1'|G_2'\rangle e^{i(\phi_1 - \phi_2)}$$

Probability Ampliture (overlap)

$$|G_i\rangle = |G_i'\rangle e^{i\phi_i}$$

- Aharonov-Bohm Effects

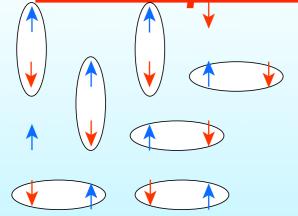
$$\langle G|G+dG\rangle=1+\langle G|dG\rangle$$

$$A = \langle G | dG \rangle$$
 :Berry Connection

$$i\gamma = \int A$$
 :Berry Phase

Use Quantum Interferences To Classify Quantum Liquids

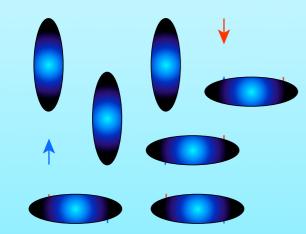
Examples: RVB state by Anderson



|Singlet Pair₁₂
$$\rangle = \frac{1}{\sqrt{2}} (|\uparrow_1\downarrow_2\rangle - |\downarrow_1\uparrow_2\rangle)$$

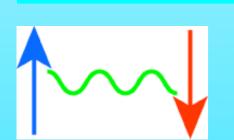
$$|G\rangle = \sum_{J=\text{Dimer Covering}} c_J \otimes_{ij} |\text{Singlet Pair}_{ij}\rangle$$

No Long Range Order in Spin-Spin Correlation



Local Singlet Pair is a Basic Object

How to Characterize the Local Singlet Pair?



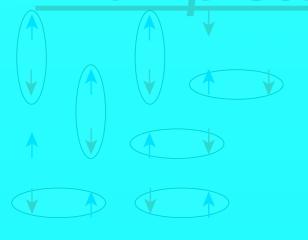
$$|G\rangle = \frac{1}{\sqrt{2}}(|\uparrow_i\downarrow_j\rangle - |\downarrow_i\uparrow_j\rangle)$$

 $|G\rangle = \frac{1}{\sqrt{2}}(|\uparrow_i\downarrow_j\rangle - |\downarrow_i\uparrow_j\rangle)$ Use Berry Phase to characterize the Singlet!

Singlet does not carries spin but does Berry phase

 $\gamma_{\text{singlet pair}} = \pi_{\mod 2\pi}$

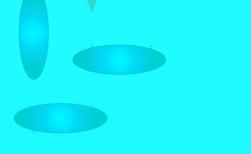
Examples: RVB state by Anderson



|Singlet Pair₁₂
$$\rangle = \frac{1}{\sqrt{2}}(|\uparrow_1\downarrow_2\rangle - |\downarrow_1\uparrow_2\rangle)$$

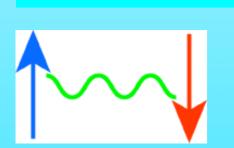
$$|G\rangle = \sum_{J=\text{Dimer Covering}} c_J \otimes_{ij} |\text{Singlet Pair}_{ij}\rangle$$

No Long Range Order in Spin-Spin Correlation



Local Singlet Pair is a Basic Object

How to Characterize the Local Singlet Pair?



$$|G\rangle = \frac{1}{\sqrt{2}}(|\uparrow_i\downarrow_j\rangle - |\downarrow_i\uparrow_j\rangle)$$

 $|G\rangle = \frac{1}{\sqrt{2}}(|\uparrow_i\downarrow_j\rangle - |\downarrow_i\uparrow_j\rangle)$ Use Berry Phase to characterize the Singlet!

Singlet does not carries spin but does Berry phase

 $\gamma_{\text{singlet pair}} = \pi_{\text{mod } 2\pi}$

Z₂ Berry phases for gapped quantum spins

generic Heisenberg Models (with frustration)

$$H = \sum_{ij} J_{ij} \boldsymbol{S}_i \cdot \boldsymbol{S}_j$$

Time Reversal Invariant

$$\Theta_N S_i \Theta_N^{-1} = -S_i$$

 $[H, \Theta_N] = 0$

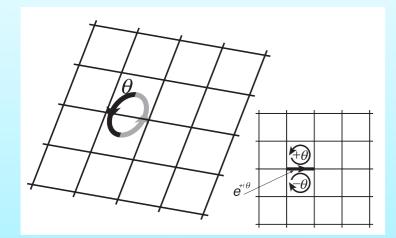
$$\Theta_N = (i\sigma_y^1) \otimes (i\sigma_y^2) \cdots (i\sigma_y^N) K$$

$$\Theta_N^2 = (-)^N$$

Mostly N: even $\Theta_N^2=1$ (probability 1/2 in HgTe)

Z₂ Berry phases for gapped quantum spins

Define a many body hamiltonian by local twist as a parameter



$$H(x = e^{i\theta})$$

$$C = \{x = e^{i\theta} | \theta : 0 \to 2\pi\}$$
 U(1)

$$S_i \cdot S_j \rightarrow \frac{1}{2} (e^{-i\theta} S_{i+} S_{j-} + e^{+i\theta} S_{i-} S_{j+}) + S_{iz} S_{jz}$$
 Only link $\langle ij \rangle$

Calculate the Berry Phases using the Entire Many Spin Wavefunction numerically

Z₂ quantization

Require excitation Gap!

$$\gamma_C = \int_C A_\psi = \int_C \langle \psi | d\psi
angle = \left\{ egin{array}{c} 0 \ \pi \end{array} : \mod 2\pi \end{array} \right. \quad {\sf Z}_2$$

<u>Time Reversal (Anti-Unitary) Invariance</u>

Berry Connection and Gauge Transformation

 \nearrow Parameter Dependent Hamiltonian H(x) $\psi(x) = E(x) \psi(x)$

$$H(x) | \psi(x) = E(x) \psi(x)$$

$$H(x)|\psi(x)\rangle = E(x)|\psi(x)\rangle, \langle \psi(x)|\psi(x)\rangle = 1.$$

(Abelian)

$$|\psi(x)
angle \hspace{0.1 cm} = \hspace{0.1 cm} |\psi'(x)
angle e^{i\Omega(x)}$$
 Gauge Transformation

$$A_{\psi} = A'_{\psi} + id\Omega = A'_{\psi} + i\frac{d\Omega}{dx}dx$$

Berry phases are not well-defined without

$$\gamma_C(A_\psi) = \gamma_C(A_{\psi'}) + \int_C d\Omega$$
 specifying the gauge $2\pi \times (\text{integer})$ if $e^{i\Omega}$ is single valued

ightharpoonup Well Defined up to mod 2π

$$\gamma_C(A_{\psi}) \equiv \gamma_C(A_{\psi'}) \mod 2\pi$$

Anti-Unitary Operator and Berry Phases

Anti-Unitary Operator (Time Reversal, Particle-Hole)

$$\Theta = KU_{\Theta}, \quad egin{array}{ll} K: & ext{Complex conjugate} \\ U_{\Theta}: & ext{Unitary} & ext{(parameter independent)} \end{array}$$

$$U_{\Theta}: \ U_{\Theta}: \ \mathrm{Unitary}$$

$$|\Psi\rangle = \sum_{J} C_{J} |J\rangle \qquad \sum_{J} C_{J}^{*} C_{J} = \langle \Psi | \Psi \rangle = 1$$

$$|\Psi^{\Theta}\rangle = \Theta |\Psi\rangle = \sum_{J} C_{J}^{*} |J^{\Theta}\rangle, \quad |J^{\Theta}\rangle = \Theta |J\rangle$$

Berry Phases and Anti-Unitary Operation

$$A^{\Psi} = \langle \Psi | d\Psi \rangle = \sum_{J} C_J^* dC_J \qquad \sum_{J} dC_J^* C_J + \sum_{J} C_J^* dC_J = 0$$

$$A^{\Theta\Psi} = \langle \Psi^{\Theta} | d\Psi^{\Theta} \rangle = \sum_{J} C_{J} dC_{J}^{*} = -A^{\Psi}$$

$$\gamma_C(A^{\Theta\Psi}) = -\gamma_C(A^{\Psi})$$

Anti-Unitary Invariant State and Z₂ Berry Phase

 \triangle Anti-Unitary Symmetry $[H(x), \Theta] = 0$

$$[H(x),\Theta] = 0$$

$$^{f lpha}$$
 Invariant State $^{\exists} arphi, \quad |\Psi^{\Theta}
angle = \Theta |\Psi
angle = |\Psi
angle e^{iarphi}$

🖈 ex. Unique Eigen State

$$\simeq |\Psi
angle$$

Gauge **Equivalent(Different** Gauge)

To be compatible with the ambiguity, the Berry Phases have to be quantized as

$$\gamma_C(A^{\Psi}) = \begin{cases} 0 \\ \pi \end{cases} \mod 2\pi$$

 \mathbb{Z}_2 Berry phase

$$\gamma_C(A^{\Psi}) = -\gamma_C(A^{\Theta\Psi}) \equiv -\gamma_C(A^{\Psi}), \mod 2\pi$$

Numerical Evaluation of the Berry Phases (incl. non-Abelian)

(1) Discretize the periodic parameter space

$$x_0, x_1, \cdots, x_N = x_0$$

$$x_0 = e^{i\theta_n}$$

$$\theta_0 = 0, \ \theta_N = 2\pi$$

$$\theta_0 = 0, \ \theta_N = 0$$

(2) Obtain eigen vectors $H(x_n)|\psi_n^i\rangle = E^i(x_n)|\psi_n^i\rangle$

$$H(x_n)|\psi_n^i\rangle = E^i(x_n)|\psi_n^i\rangle$$

(3) Define Berry connection in a discretized form

$$A_n = \operatorname{Im} \log \langle \psi_n | \psi_{n+1} \rangle$$

non-Abelian $A_n = \operatorname{Im} \log \det D_n$, $\{D_n\}_{ij} = \langle \psi_n^i | \psi_{n+1}^j \rangle$

(4) Evaluate the Berry phase

$$\gamma = \sum_{n=0}^{N-1} A_n = \operatorname{Im} \log \langle \psi_0 | \psi_1 \rangle \langle \psi_1 | \psi \rangle \cdots$$
 (= $\operatorname{Im} \log \det D_1 D_2 \cdots D_n$)

Independent of the choice of the phase $|\psi_n
angle o |\psi_n
angle' e^{i\Omega_n}$

$$|\psi_n\rangle \to |\psi_n\rangle' e^{i\Omega_n}$$

Gauge invariant

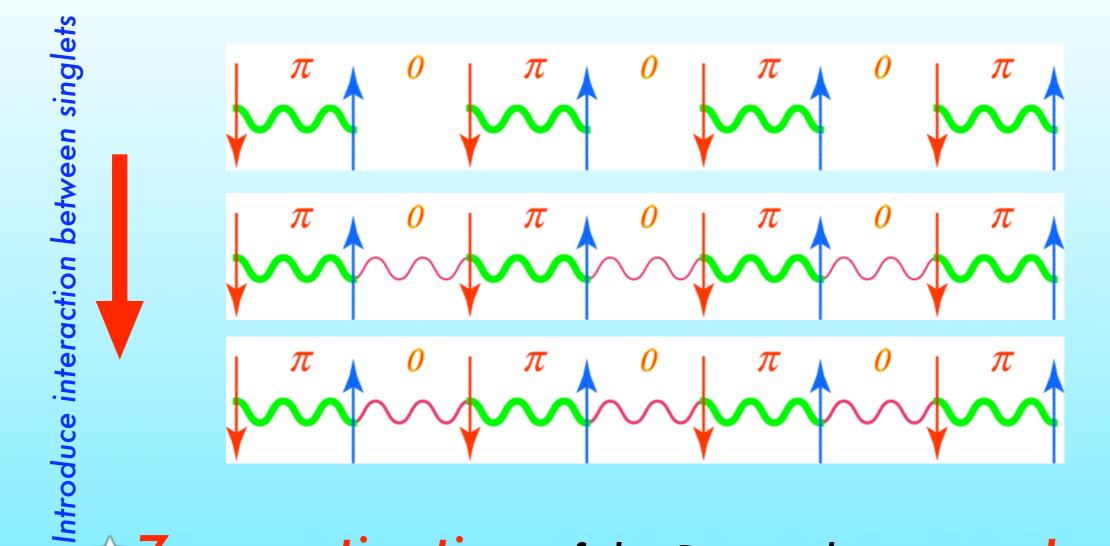
after the discretization Convenient for Numerics

Luscher '82 (Lattice Gauge Theory)

King-Smith & Vanderbilt '93 (polarization in solids)

T. Fukui, H. Suzuki & YH '05 (Chern numbers)

Adiabatic Continuation & the Quantization



Z₂-quantization of the Berry phases protects from continuous change

Adiabatic Continuation in a gapped system

Renormalization Group in a gapless system

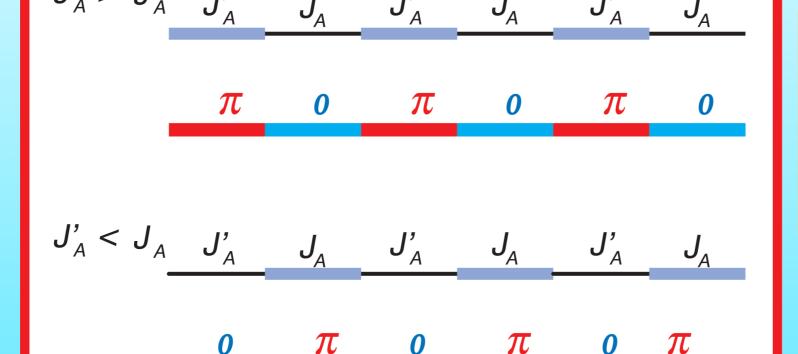
Local Order Parameters of Singlet Pairs

□ 1D AF-AF, AF-F Dimers

Y.H., J. Phys. Soc. Jpn. 75 123601 (2006)

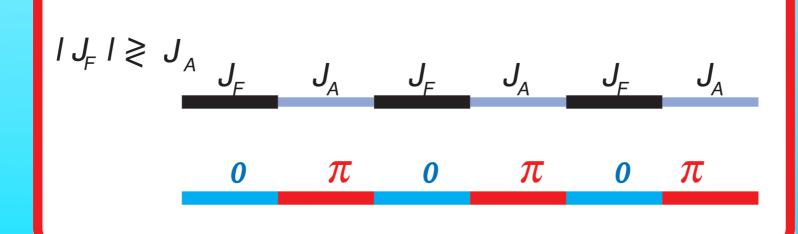
Strong Coupling Limit of the AF Dimer link is a gapped unique ground state.

AF-AF



F-AF

Hida



AF-AF case

Strong bonds

: π bonds

F-AF case

AF bonds

: π bonds

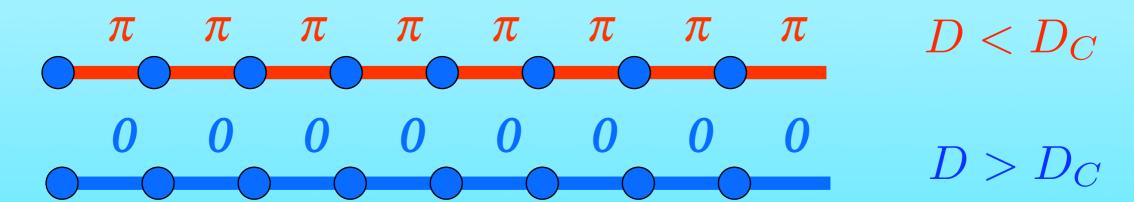
Local Order Parameters of the Haldane Phase

Heisenberg Spin Chains with integer S

- No Symmetry Breaking by the Local Order Parameter
- "String Order": Non-Local Order Parameter!

$$S=1$$
 $(S_i)^2 = S(S+1), S=1$

$$H=J\sum_{\langle ij \rangle} {m S}_i\cdot {m S}_j + D\sum_i (S_i^z)^2$$
 Y.H., J. Phys. Soc. Jpn. 75 $\,$ 123601 (2006)



Describe the Quantum Phase Transition locally

c.f. S=1/2, 1D dimers, 2D with Frustrations, Ladders t-J with Spin gap

T.Hirano, H.Katsura &YH, Phys.Rev.B77 094431'08

* S=1,2 dimerized Heisenberg model

$$H = \sum_{i=1}^{N/2} (J_1 \boldsymbol{S}_{2i} \cdot \boldsymbol{S}_{2i+1} + J_2 \boldsymbol{S}_{2i+1} \cdot \boldsymbol{S}_{2i+2}) \quad J_1 = \cos \theta, J_2 = \sin \theta$$

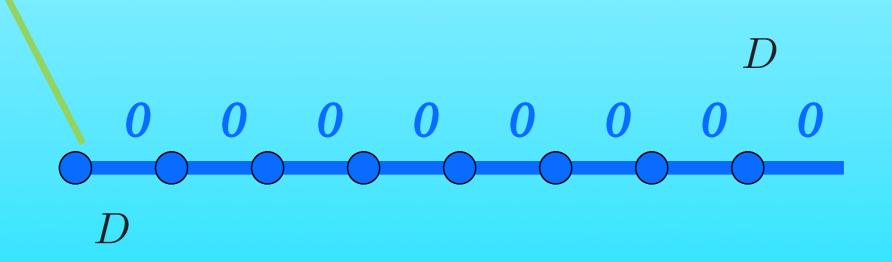
$$S = 1 \ N = 14$$

$$S = 2 \ N = 10$$

$$(2,0) \qquad (1,1) \qquad (0,2) \qquad (4,0) \qquad (3,1) \qquad (2,2) \qquad (1,3) \qquad (0,4)$$

$$\theta_{c1} \quad \pi/4 \qquad \pi/2 \qquad 0 \qquad \theta_{c2} \qquad \theta_{c3} \quad \pi/4 \qquad \pi/2$$

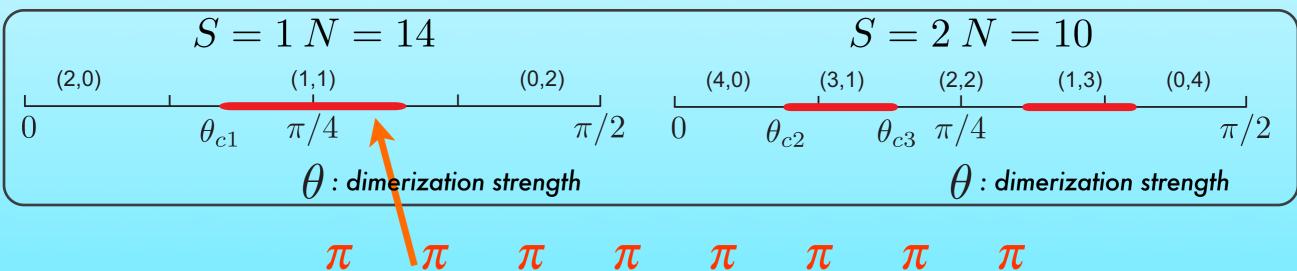
$$\theta : \text{dimerization strength}$$



T.Hirano, H.Katsura &YH, Phys.Rev.B77 094431'08

* S=1,2 dimerized Heisenberg model

$$H = \sum_{i=1}^{N/2} (J_1 \boldsymbol{S}_{2i} \cdot \boldsymbol{S}_{2i+1} + J_2 \boldsymbol{S}_{2i+1} \cdot \boldsymbol{S}_{2i+2}) \quad J_1 = \cos \theta, J_2 = \sin \theta$$



T.Hirano, H.Katsura &YH, Phys.Rev.B77 094431'08

* S=1,2 dimerized Heisenberg model

$$H = \sum_{i=1}^{N/2} (J_1 \boldsymbol{S}_{2i} \cdot \boldsymbol{S}_{2i+1} + J_2 \boldsymbol{S}_{2i+1} \cdot \boldsymbol{S}_{2i+2}) \quad J_1 = \cos \theta, J_2 = \sin \theta$$

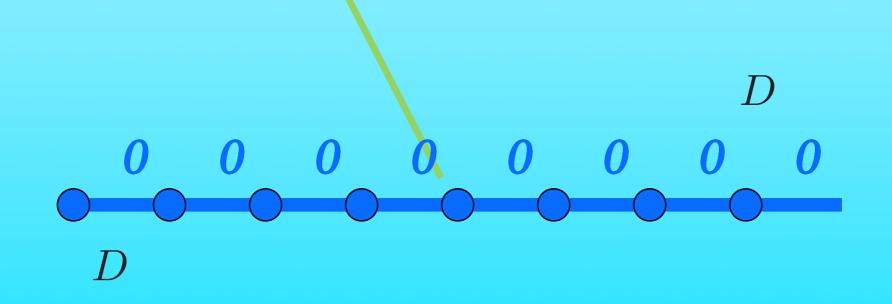
$$S = 1 \ N = 14$$

$$S = 2 \ N = 10$$

$$(2,0) \qquad \qquad (1,1) \qquad \qquad (0,2) \qquad \qquad (4,0) \qquad (3,1) \qquad (2,2) \qquad (1,3) \qquad (0,4)$$

$$\theta_{c1} \quad \pi/4 \qquad \qquad \pi/2 \qquad 0 \qquad \theta_{c2} \qquad \theta_{c3} \quad \pi/4 \qquad \qquad \pi/2$$

$$\theta : \text{dimerization strength} \qquad \qquad \theta : \text{dimerization strength}$$



T.Hirano, H.Katsura &YH, Phys.Rev.B77 094431'08

* S=1,2 dimerized Heisenberg model

$$H = \sum_{i=1}^{N/2} (J_1 \boldsymbol{S}_{2i} \cdot \boldsymbol{S}_{2i+1} + J_2 \boldsymbol{S}_{2i+1} \cdot \boldsymbol{S}_{2i+2}) \quad J_1 = \cos \theta, J_2 = \sin \theta$$

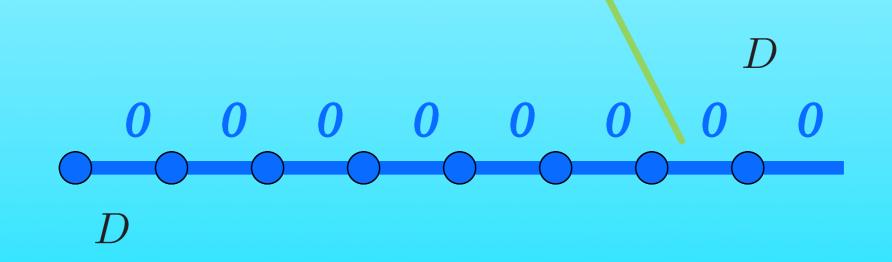
$$S = 1 \ N = 14$$

$$S = 2 \ N = 10$$

$$(2,0) \qquad \qquad (1,1) \qquad \qquad (0,2) \qquad \qquad (4,0) \qquad (3,1) \qquad (2,2) \qquad (1,3) \qquad (0,4)$$

$$\theta_{c1} \quad \pi/4 \qquad \qquad \pi/2 \qquad 0 \qquad \theta_{c2} \qquad \theta_{c3} \quad \pi/4 \qquad \qquad \pi/2$$

$$\theta : \text{dimerization strength}$$



T.Hirano, H.Katsura &YH, Phys.Rev.B77 094431'08

* S=1,2 dimerized Heisenberg model

$$H = \sum_{i=1}^{N/2} (J_1 \boldsymbol{S}_{2i} \cdot \boldsymbol{S}_{2i+1} + J_2 \boldsymbol{S}_{2i+1} \cdot \boldsymbol{S}_{2i+2}) \quad J_1 = \cos \theta, J_2 = \sin \theta$$

$$S=1\ N=14 \qquad \qquad S=2\ N=10$$

T.Hirano, H.Katsura &YH, Phys.Rev.B77 094431'08

* S=1,2 dimerized Heisenberg model

$$H = \sum_{i=1}^{N/2} (J_1 \boldsymbol{S}_{2i} \cdot \boldsymbol{S}_{2i+1} + J_2 \boldsymbol{S}_{2i+1} \cdot \boldsymbol{S}_{2i+2}) \quad J_1 = \cos \theta, J_2 = \sin \theta$$

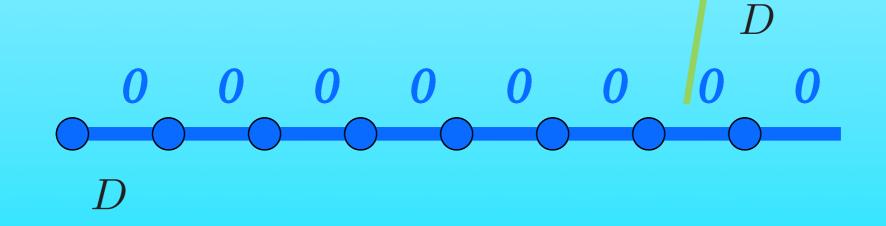
$$S = 1 \ N = 14$$

$$S = 2 \ N = 10$$

$$(2,0) \qquad (1,1) \qquad (0,2) \qquad (4,0) \qquad (3,1) \qquad (2,2) \qquad (1,3) \qquad (0,4)$$

$$\theta_{c1} \qquad \pi/4 \qquad \pi/2 \qquad 0 \qquad \theta_{c2} \qquad \theta_{c3} \qquad \pi/4 \qquad \pi/2$$

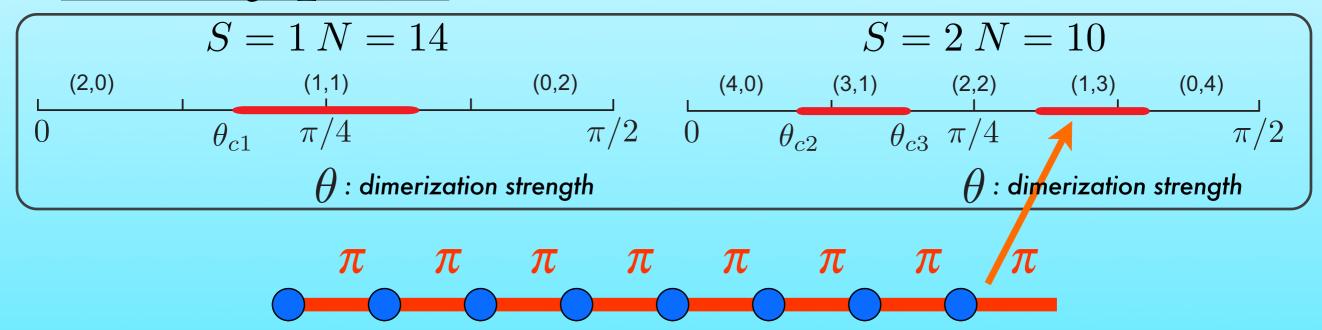
$$\theta : \text{dimerization strength}$$



T.Hirano, H.Katsura &YH, Phys.Rev.B77 094431'08

* S=1,2 dimerized Heisenberg model

$$H = \sum_{i=1}^{N/2} (J_1 \boldsymbol{S}_{2i} \cdot \boldsymbol{S}_{2i+1} + J_2 \boldsymbol{S}_{2i+1} \cdot \boldsymbol{S}_{2i+2}) \quad J_1 = \cos \theta, J_2 = \sin \theta$$



T.Hirano, H.Katsura &YH, Phys.Rev.B77 094431'08

* S=1,2 dimerized Heisenberg model

$$H = \sum_{i=1}^{N/2} (J_1 \boldsymbol{S}_{2i} \cdot \boldsymbol{S}_{2i+1} + J_2 \boldsymbol{S}_{2i+1} \cdot \boldsymbol{S}_{2i+2}) \quad J_1 = \cos \theta, J_2 = \sin \theta$$

$$S = 1 \ N = 14$$

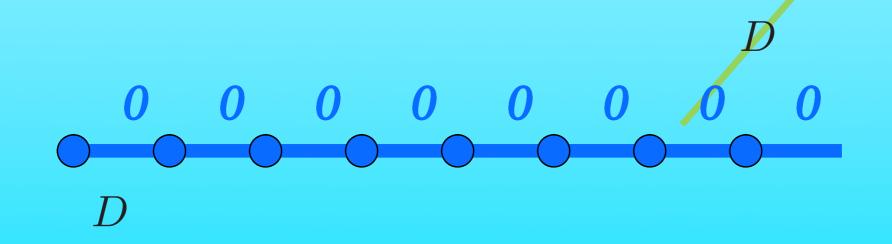
$$S = 2 \ N = 10$$

$$\theta_{c1} \ \pi/4 \ \pi/2 \ \theta : \text{dimerization strength}$$

$$S = 2 \ N = 10$$

$$\theta_{c2} \ \pi/4 \ \pi/2 \ \theta : \text{dimerization strength}$$

$$\theta : \text{dimerization strength}$$



T.Hirano, H.Katsura &YH, Phys.Rev.B77 094431'08

* S=1,2 dimerized Heisenberg model

$$H = \sum_{i=1}^{N/2} (J_1 \boldsymbol{S}_{2i} \cdot \boldsymbol{S}_{2i+1} + J_2 \boldsymbol{S}_{2i+1} \cdot \boldsymbol{S}_{2i+2}) \quad J_1 = \cos \theta, J_2 = \sin \theta$$

Z₂Berry phase

$$S = 1 \ N = 14$$

$$S = 2 \ N = 10$$

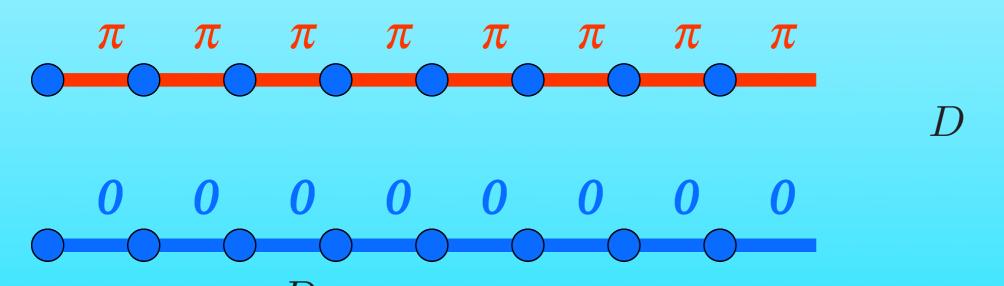
$$\theta_{c1} \quad \pi/4 \qquad \pi/2 \qquad 0 \qquad \theta_{c2} \quad \theta_{c3} \quad \pi/4 \qquad \pi/2$$

$$\theta: \text{dimerization strength}$$

$$S = 2 \ N = 10$$

$$\theta_{c2} \quad \theta_{c3} \quad \pi/4 \qquad \pi/2$$

$$\theta: \text{dimerization strength}$$



Topological Quantum Phase Transitions with translation invariance

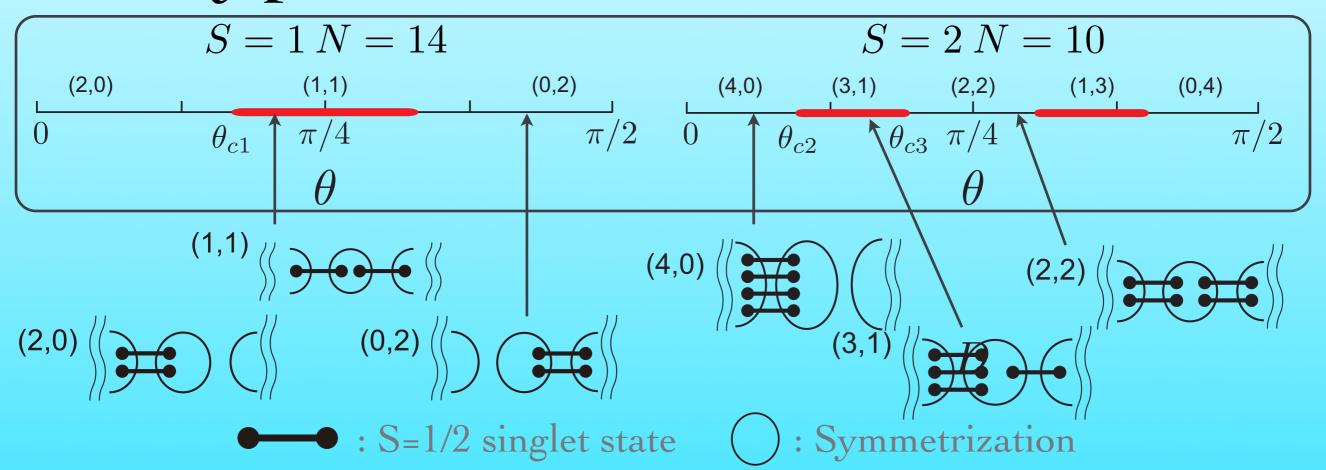
Topological Classification of Gapped Spin Chains

T.Hirano, H.Katsura &YH, Phys.Rev.B77 094431'08

* S=1,2 dimerized Heisenberg model

$$H = \sum_{i=1}^{N/2} (J_1 \boldsymbol{S}_{2i} \cdot \boldsymbol{S}_{2i+1} + J_2 \boldsymbol{S}_{2i+1} \cdot \boldsymbol{S}_{2i+2}) \quad J_1 = \cos \theta, J_2 = \sin \theta$$

Berry phase



Reconstruction of valence bonds!

Topological Classification of Gapped Spin Chains (cont.)

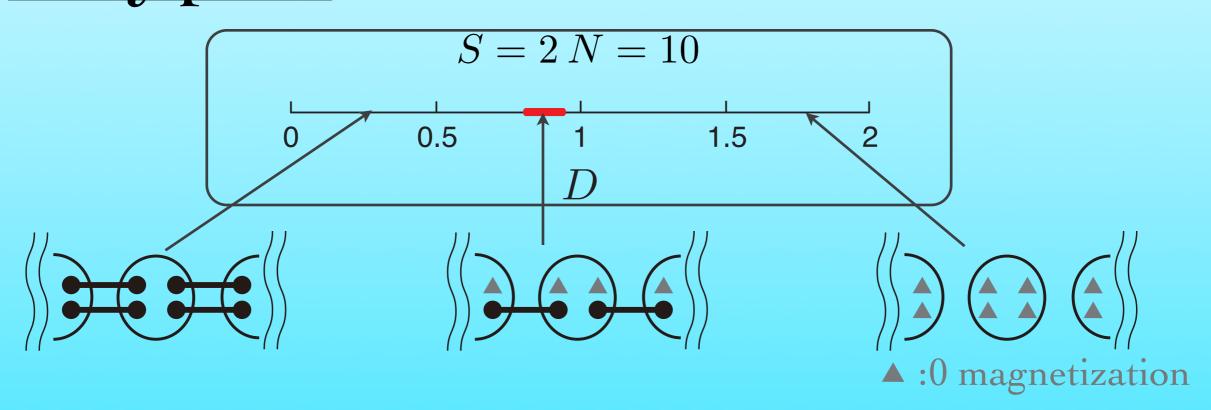
T.Hirano, H.Katsura &YH, Phys.Rev.B77 094431'08

* S=2 Heisenberg model with D-term

$$H = \sum_{i=1}^{N} \left[J \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{i+1} + D \left(S_{i}^{z} \right)^{2} \right]$$

Berry phase

Red line denotes the non trivial Berry phase



Reconstruction of valence bonds!

Topological Classification of Generic AKLT (VBS) models

T.Hirano, H.Katsura &YH, Phys.Rev.B77 094431'08

Twist the link of the generic AKLT model

$$H(\{\phi_{i,i+1}\}) = \sum_{i=1}^{N} \sum_{J=B_{i,i+1}}^{2B_{i,i+1}} A_{J} P_{i,i+1}^{J} [\phi_{i,i+1}]$$

$$|\{\phi_{i,j}\}\rangle = \prod_{\langle ij\rangle} \left(e^{i\phi_{ij}/2} a_{i}^{\dagger} b_{j}^{\dagger} - e^{-i\phi_{ij}/2} b_{i}^{\dagger} a_{j}^{\dagger}\right)^{B_{ij}} |\text{vac}\rangle$$

Berry phase on a link (ij) $\gamma_{ij} = B_{ij}\pi \, \operatorname{mod} \, 2\pi$

S=1/2

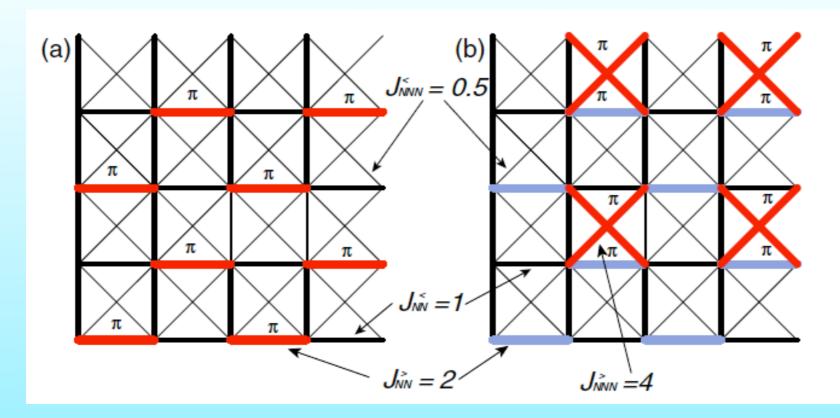
The Berry phase counts the number of the valence bonds!

S=1/2 objects are fundamental in S=1&2 spin chains

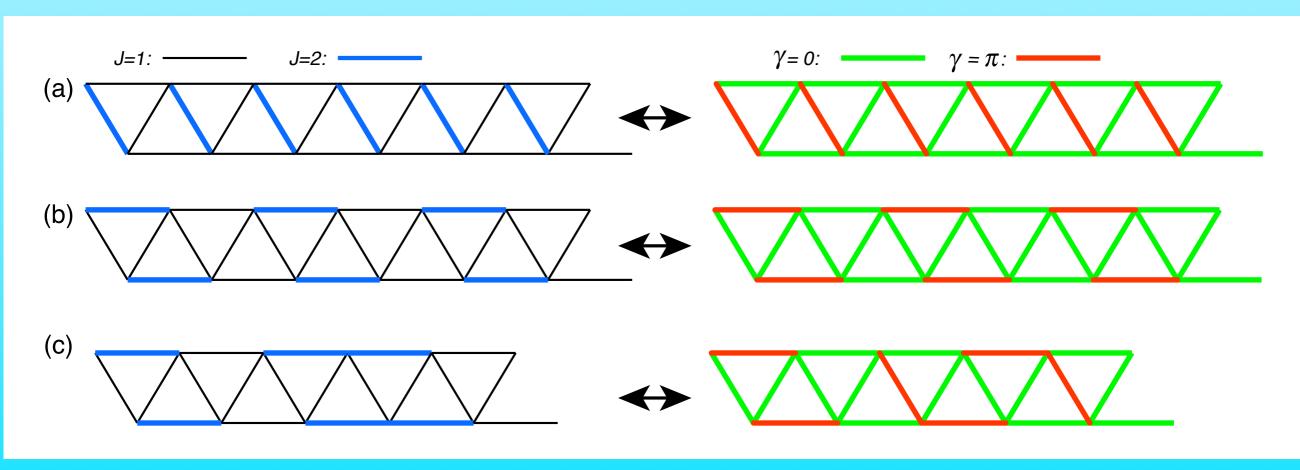
FRACTIONALIZATION

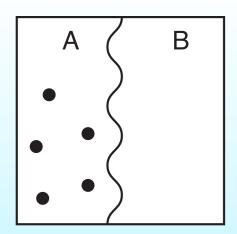
Contribute to the Entanglement Entropy as of Edge states

2D, Ladders (S=1/2), t-J (spin gapped)



Y.H., J. Phys. Soc. Jpn. 75 123601 (2006), J. Phys. Cond. Matt.19, 145209 (2007)





Entanglement Entropy to detect edge states direct calculation of spectrum with bondaries

Entanglement Entropy

Mixed State From Entanglement

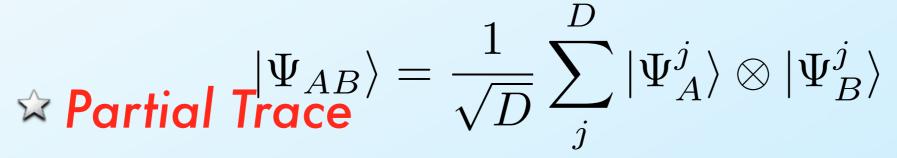
Direct Product State

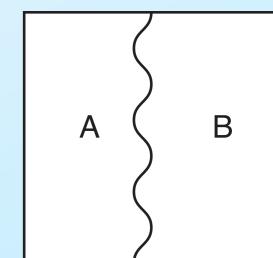
$$|\Psi_{AB}\rangle = |\Psi_A\rangle \otimes |\Psi_B\rangle$$

$$System = A \oplus B$$

Entangled State

$$State = \sum \Psi_A \otimes \Psi_B$$





$$ho_{AB} = |\Psi_{AB}
angle \langle \Psi_{AB}|$$
 Pure State $D=1$ $D=1$

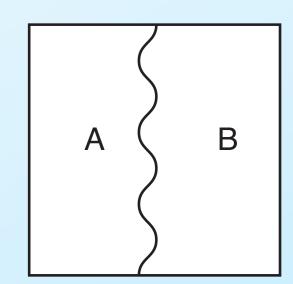
$$\rho_{AB} = \frac{1}{D} \sum_{jk}^{D} |\Psi_A^j\rangle \langle \Psi_A^k| \otimes |\Psi_B^j\rangle \langle \Psi_B^k|$$

How much the State is Entangled between A & B?

Entanglement Entropy: $|S_A = -\langle \log \rho_A \rangle = \log D$

$$S_A = -\langle \log \rho_A \rangle = \log D$$

E.E. & Edge states (Gapped) (of spins, fermions...)



- Partial Trace induces effective edge states
 - Requirement: Finite Energy Gap for the Bulk
- The effective edge states contribute to the E.E.
 - Let us assume that the edge states has degrees of freedom DE

Entanglement Entropy > (# edge states) Log D_E

S. Ryu & YH, Phys. Rev. B73, 245115 (2006) (Fermions)

EE of the Generic VBS States (S=1,2,3,...)

H. Katsura, T.Hirano & YH, Phys. Rev. B76, 012401 (2007) T.Hirano & YH, J. Phys. Soc. Jpn. 76, 113601 (2007)

$$H_{VBS} = \sum_{i=1}^{N} ec{S}_i \cdot ec{S}_{i+1} + lpha H_{ ext{extra}}^S, \quad ec{S}_i^2 = S(S+1)$$

$$\vec{S}_{i+1} + \alpha H_{\text{extra}}^{S}, \quad \vec{S}_{i}^{2} = S(S+1)$$

$$H_{\text{extra}}^{S=1} = \sum_{i} \frac{1}{3} (\vec{S}_{i} \cdot \vec{S}_{i+1})^{2}$$

$$|VBS\rangle = \prod_{j=0}^{L} (a_j^{\dagger} b_{j+1}^{\dagger} - b_j^{\dagger} a_{j+1}^{\dagger})^S |vac\rangle$$

$$\mathcal{S}_L = -\langle \log \rho \rangle_{\rho} \to 2 \log(S+1), \quad (L \to \infty)$$

Boundary Spins: S/2

S	EE	Effective Boundary spins	Degrees of Freedom
	2 Log 2	S _{eff} =1/2	2 ² =4
2	2 Log 3	S _{eff} =I	3 ² =9
S	2 Log (S+1)	S _{eff} =S/2	(S+I) ²

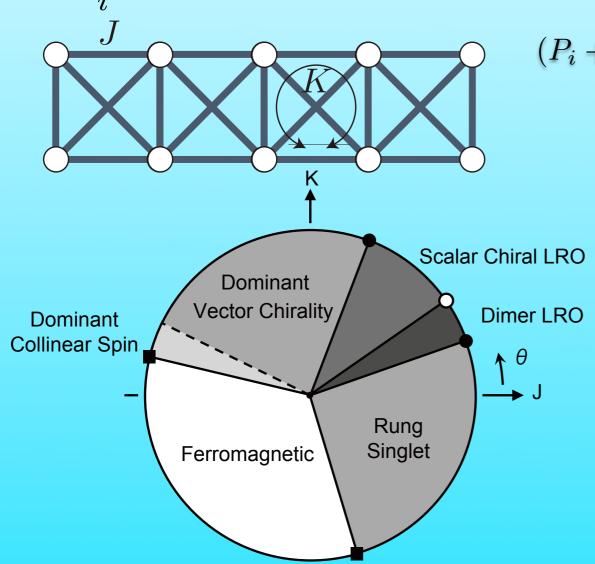
Fractionalization : Emergent as edge states

(Quantum Resources for abits)

Another Models

Spin ladder model with four-spin cyclic exchange

$$\mathcal{H} = \sum_{i} \{ J_{r} S_{1,i} \cdot S_{2,i} + J_{l} (S_{1,i} \cdot S_{1,i+1} + S_{2,i} \cdot S_{2,i+1}) + K(P_{i} + P_{i}^{-1}) \}$$



$$(P_{i} + P_{i}^{-1}) = S_{1,i} \cdot S_{2,i} + S_{1,i+1} \cdot S_{2,i+1} + S_{1,i} \cdot S_{1,i+1}$$
 $+ S_{2,i} \cdot S_{2,i+1} + S_{1,i} \cdot S_{2,i+1} + S_{2,i} \cdot S_{1,i+1}$
 $+ 4(S_{1,i} \cdot S_{2,i})(S_{1,i+1} \cdot S_{2,i+1})$
 $+ 4(S_{1,i} \cdot S_{1,i+1})(S_{2,i} \cdot S_{2,i+1})$
 $- 4(S_{1,i} \cdot S_{2,i+1})(S_{2,i} \cdot S_{1,i+1}).$

We set parameters as

$$\begin{cases} J = J_r = J_l = \cos \theta \\ K = \sin \theta \end{cases}$$

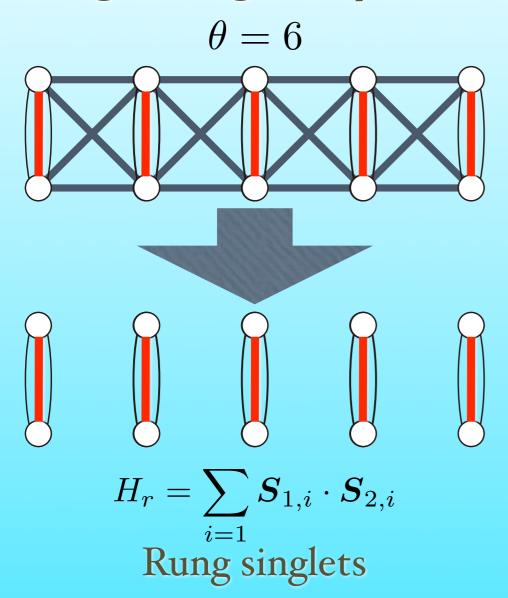
Self dual at the point of J = 2K

T. Hikihara, T. Momoi and X. Hu (2003)

A. Lauchli, G. Schmid and M. Troyer (2003)

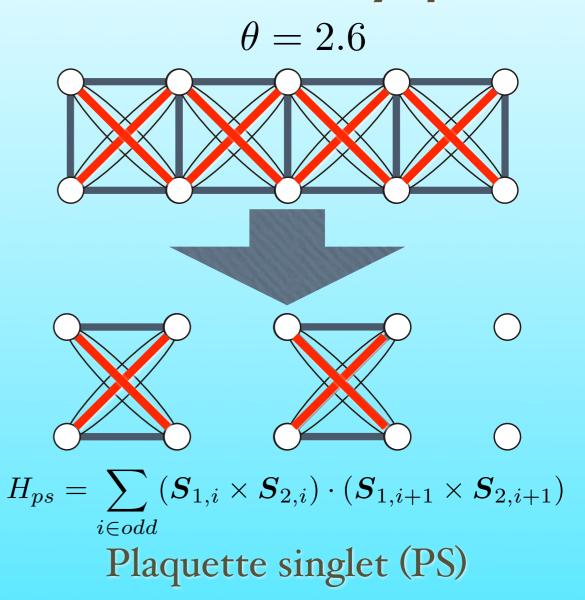
Adiabatic deformation

Rung singlet phase



I. Maruyama, T. Hirano, YH, arXiv:0806.4416

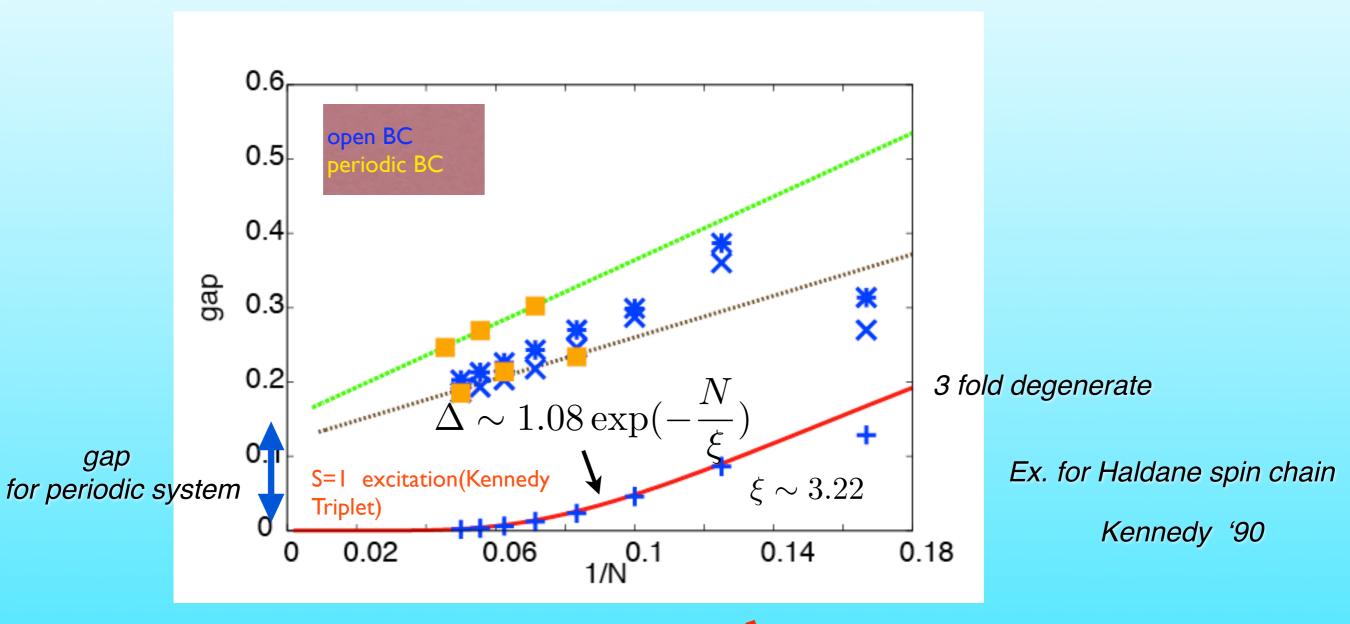
Vector chirality phase

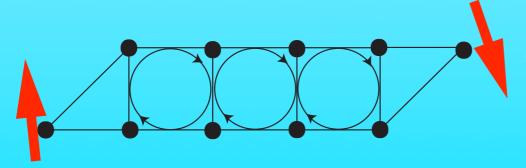


Berry phase remains the same Topologically equivalence

Energy spectrum with boundaries (diagonal)

M. Arikawa, S. Tanaya, I. Maruyama, YH, unpublished





Interaction between effective boundary spins

$$H_{eff} = \Delta S_R \cdot S_L$$

Bulk-Edge correspondence for spins

$$\Theta_N^2 = 1$$

$$\Theta_N^2 = 1$$
 $\Theta_N = (i\sigma_y^1) \otimes (i\sigma_y^2) \cdots (i\sigma_y^N) K$

K: complex conjugate

Bulk: Z₂ Berry phases

Edge: Entanglement Entropy & low energy states in the gap

S=1/2 is always fundamental (electron spin)

$$\Theta_{edges} = \Theta_L \otimes \Theta_R \quad \Theta_L^{2} = -1$$

$$\Theta_R^2 = -1$$

$$\Theta_L^2 = -1$$

Global TR Θ_N Local (edge) TR Θ_L , Θ_R

Bulk-Edge correspondence for spins

$$\Theta_N^2 = 1$$

$$\Theta_N^2 = 1$$
 $\Theta_N = (i\sigma_y^1) \otimes (i\sigma_y^2) \cdots (i\sigma_y^N) K$

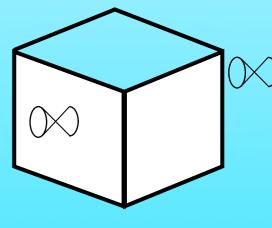
Bulk: Z₂ Berry phases

Edge: Entanglement Entropy & low energy states in the gap K: complex conjugate

S=1/2 is always fundamental (electron spin)

$$\Theta_{edges} = \Theta_L \otimes \Theta_R \qquad \Theta_L^{2} = -1$$

$$\Theta_R^2 = -1$$



Global TR Θ_N Local (edge) TR Θ_L , Θ_R

Thank you