Topological Defects in the Topological Insulator

Ashvin Vishwanath UC Berkeley

arXiv:0810.5121

Frank YI ZHANG

YING RAN

Exotic Band Topology

Quantum Hall States

'Topological' band Insulators (quantum spin hall)

HELICAL

- Superconducting analogs
 - p+ip Superconductors
 - B-phase of He₃

Unconventional Surface/Edge states.

"The edge is the window into the bulk" – X.G. Wen

Broken Symmetry + Exotic Band Topology

• Superconducting order parameter: $|\Psi_0|e^{i\varphi}$

- Crystalline Solid also broken symmetry phase.
 - Analog in topological insulators? YES

Mode

- Dislocations host counter-propagating 1D modes. Like the edge of 2D QSH Insulator - Helical Metal.
- Protected against disorder scattering ideal quantum wire inside a bulk solid.

Topological Band Insulators

Fu, Kane & Mele PRL 07 Moore & Balents PRB 07 Roy, cond-mat 06

- 3-D Topological Insulator
 - Classified by 4 Z₂ Invariants ($v_0 = 0.1; v_1, v_2, v_3$)
 - $v_0 = 0,1$ weak and strong Top. Ins.
 - (ν_1, ν_2, ν_3) with respect to Reciprocal vectors $(\mathbf{G}_1, \mathbf{G}_2, \mathbf{G}_3)$ defines a time reversal invariant mon

$$\mathbf{M}_{v} = (v_1 \mathbf{G}_1 + v_2 \mathbf{G}_2 + v_3 \mathbf{G}_3)/2$$

- Odd number of Dirac modes on Surface Brillouin Zone.
- M_v Fixes location of Dirac nodes in 2D surface BZ
- WEAK Topological Insulator
 - Connected to decoupled layers of 2D QSHE stacked along $\mathbf{M}_{\scriptscriptstyle
 u}$

Line Defects in a Crystal

Dislocations:

Defined by location $\mathbf{R}(\sigma)$ and 'strength' \mathbf{B} .

B – Burgers Vector, must stay constant along the length and is quantized to lattice vectors. (Like vorticity)

Visualizing Dislocations

- Volterra Process:
 - Cut with an imaginary plane, that ends on the dislocation line $\mathbf{R}(\sigma)$
 - Move all atoms on one side of the plane by the Burgers vector B
 - Add/remove atoms if required.

SCREW DISLOCATION: t // B

EDGE DISLOCATION: t [⊥] B

Dislocations in Solids

- Always present $\mathbf{n_d} \approx 10^{10} \mathbf{to} 10^{12} \mathbf{m^{-2}}$
- Control mechanical properties eg. Plastic Flow
- Crystal Growth aided by screw dislocations.

Dislocation in a Topological Insulator

• 1D Helical Metal occurs in a dislocation $\{\mathbf{R}(\sigma), \mathbf{B}\}$ embedded in a topological insulator $\{v_0 = 0, 1; \mathbf{M}_v\}$ iff: $\mathbf{B} \cdot \mathbf{M}_v = \pi \pmod{2\pi}$

1D Modes are topologically protected:

- •Cannot be gapped if Time Reversal Symmetry + bulk gap are present.
- Not localized by disorder
- •Half of a regular quantum wire.
- Not all Top. Ins. have dislocation Helical modes. $y_0 = 1; \mathbf{M}_v = 0$
- Modes occur for both Weak and Strong Top.Ins.

Illustration – Diamond Lattice Top. Ins.

$$H = t \sum_{\langle ij \rangle} c^{\dagger}_{i\sigma} c_{j\sigma} + i \frac{\lambda_{SO}}{8a^2} \sum_{\langle \langle ik \rangle \rangle} c^{\dagger}_{i\sigma} (\vec{d}^1_{ik} \times \vec{d}^2_{ik}) \cdot \vec{\sigma}_{\sigma\sigma'} c_{k\sigma'}$$

$$v_0 = 1; \mathbf{M}_v = \frac{\pi}{2}(1,1,1)$$

- Introduce a screw dislocation: B=(1,1,0).
 - Easily introduced in tight binding. Momentum dependent phase factor for cut bonds.

Results: Screw Dislocation in Diamond Lattice Top. Ins.

 Insert a pair of screw dislocations (36x36x18 periodic BC). Momentum along the dislocations is a good quantum number.

 Two propagating modes per dislocation.
 `Helical metal'.

Proof for Weak Top. Ins.

- Weak Top.Ins. Adiabatically connected to a stack of decoupled 2D Top.Ins.,
 - stacking along \mathbf{M}_{ν}
 - Different proof for Strong TI

Cut Surface – only one of the helical mode pairs is shown.

Glued Surface – Dislocation must carry helical modes

Proof For General Top. Ins. 1

- Screw dislocation **if** surface Dirac node is at momentum $\mathbf{m}_{Dirac} \cdot \mathbf{B} = \pi$ then (-1) phase acquired on crossing the dislocation.
- In the weak surface connection limit => Dirac equation that changes mass term sign.

$$H = (p_1\sigma_1 + p_2\sigma_2)\mu_z + m(x_2)\mu_x \qquad m(x_2 > 0) = -m$$
$$m(x_2 < 0) = +m$$

Proof For General Top. Ins. 2

$$H = (p_1 \sigma_1 + p_2 \sigma_2) \mu_z + m(x_2) \mu_x$$

$$m(x_2 > 0) = -m$$

$$m(x_2 < 0) = +m$$

- Pair of zero modes at $p_1=0$. $\psi(x_2) = \psi_0 e^{-\int_0^x |m(x')| dx'}$
- Propagating 1D helical modes for general p₁.
- Location of Surface Dirac Node controlled by

$$\mathbf{m}_{\mathbf{Dirac}} \cdot \mathbf{B} = \pi$$

$$\downarrow \downarrow$$

$$\mathbf{M}_{\nu} \cdot \mathbf{B} = \pi \pmod{2\pi}$$

3D Topological Band Insulators

Experimental Candidate Bi_{0.9}Sb_{0.1}

D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava and M. Z. Hasan, Nature (08) in press

Bulk Dirac points at L project to M in surface Brillouin Zone

$$\nu_0 = 1; \mathbf{M}_{\nu} = (1,1,1)$$

Experimental Signatures

 Resistivity: dislocation contribution could dominate over surface conduction.

 Scanning Tunneling Microscopy: Can determine atomic defect structure and Local Density of States (LDOS). 1D modes – finite DOS. Dirac point – vanishing density of states.

Experimental Signatures - STM

 Diamond lattice strong Top.Ins. for demonstration. Edge dislocations.

Edge dislocation on (-1,-1,1) Surface.

B=(1,1,0) OR **B**=(-1,0,1).

•Integrated LDOS in [-0.1,0.1].

 $\mathbf{B} \cdot \mathbf{M}_{\nu} = \pi$

Edge disloc.

Effect of Disorder

- Very Strong Disorder dislocations proliferate;
 no meaning to M_v
- Moderate disorder dilute dislocation density.
 Can still characterize using gapless modes in dislocations and define M_ν. Weak insulators can be defined even with disorder.

 but Surface states localized.
- However, if unit cell is doubled with wave-vector \mathbf{M}_{ν} effective $\mathbf{M}_{\nu}=0$ Now, elementary dislocations are forbidden. (different from disorder)

Conclusions

 3D topological Band Insulator has protected helical mode in those dislocations that satisfy

$$\mathbf{B} \cdot \mathbf{M}_{\nu} = \pi \pmod{2\pi}$$

 Indicates weak topological insulator stable to disorder if dislocations do not proliferate.

Future Directions

- Applications quantum computing?
- Interaction effects Luttinger liquid physics?
- Derivation from 'field theory'?