Partial Thermalizations Allow for Optimal Thermodynamic Processes

Elisa Bäumer
Quantum Information Theory Group ETH Zürich

Joint work with...

Martí Perarnau
(MPQ Garching)

Philipp Kammerlander (ETH Zürich)

Henrik Wilming
(ETH Zürich)

Renato Renner
(ETH Zürich)

Szilard Engine

Szilard Engine

Szilard Engine

Szilard Engine

Szilard Engine

Szilard Engine

Szilard Engine

Szilard Engine

Resolution of the paradox

Resolution of the paradox

- Landauer's Principle: Erasure of one bit of information costs at least work $W=k_{B} T \log 2$

Resolution of the paradox

- Landauer's Principle: Erasure of one bit of information costs at least work $W=k_{B} T \log 2$
- „Erasure": Reset of information, i.e., an unknown bit is reset to a known value, e.g., „0" \rightarrow after erasure, we have full information about the bit

Resolution of the paradox

- Landauer's Principle: Erasure of one bit of information costs at least work $W=k_{B} T \log 2$
- „Erasure": Reset of information, i.e., an unknown bit is reset to a known value, e.g., „0" \Rightarrow after erasure, we have full information about the bit
- Which unknown bit? Matter of viewpoint!

Resolution of the paradox

- Landauer's Principle: Erasure of one bit of information costs at least work $W=k_{B} T \log 2$
- „Erasure": Reset of information, i.e., an unknown bit is reset to a known value, e.g., „0" \Rightarrow after erasure, we have full information about the bit
- Which unknown bit? Matter of viewpoint!
* Demon's view: could describe box, but not changes to itself

Resolution of the paradox

- Landauer's Principle: Erasure of one bit of information costs at least work $W=k_{B} T \log 2$
- „Erasure": Reset of information, i.e., an unknown bit is reset to a known value, e.g., „0" \Rightarrow after erasure, we have full information about the bit
- Which unknown bit? Matter of viewpoint!
* Demon's view: could describe box, but not changes to itself
- since the measurement would act on box and demon together, it could not be described in this view

Resolution of the paradox

- Landauer's Principle: Erasure of one bit of information costs at least work $W=k_{B} T \log 2$
- „Erasure": Reset of information, i.e., an unknown bit is reset to a known value, e.g., "O" \Rightarrow after erasure, we have full information about the bit
- Which unknown bit? Matter of viewpoint!
* Demon's view: could describe box, but not changes to itself
- since the measurement would act on box and demon together, it could not be described in this view
* Box and demon viewed together from the outside: whole cycle can be described \rightarrow here the demon's bit is unknown

Szilard Engine (view from outside)

Szilard Engine (view from outside)

$$
\rho_{B D}^{(i)}=\frac{1}{2}\left(| 0 \rangle \langle 0 | _ { B } + | 1 \rangle \langle 1 | _ { B }) \otimes | i \rangle \left\langle\left.i\right|_{D}\right.\right.
$$

Szilard Engine (view from outside)

Szilard Engine (view from outside)

$$
\begin{gathered}
\text { measurement } \\
\rho_{B D}^{(i)}=\frac{1}{2}\left(| 0 \rangle \langle 0 | _ { B } + | 1 \rangle \langle 1 | _ { B }) \otimes | i \rangle \left\langle\left.i\right|_{D}=\frac{1}{2}\left(|00\rangle\left\langle\left. 00\right|_{B D}+\mid 11\right\rangle\left\langle\left. 11\right|_{B D}\right)\right.\right.\right. \\
\rho_{B D}^{\prime}=\frac{1}{2}\left(| 0 \rangle \langle 0 | _ { B } + | 1 \rangle \langle 1 | _ { B }) \otimes \frac { 1 } { 2 } \left(|0\rangle\left\langle\left. 0\right|_{D}+\mid 1\right\rangle\left\langle\left. 1\right|_{D}\right)\right.\right.
\end{gathered}
$$

Szilard Engine (view from outside)

Motivation

Motivation

- Using one bit of information we can extract work $\langle W\rangle=k_{B} T \log 2$ from a heat bath. This requires that at each point in time the system is in thermal equilibrium.

Motivation

- Using one bit of information we can extract work $\langle W\rangle=k_{B} T \log 2$ from a heat bath. This requires that at each point in time the system is in thermal equilibrium.
- What if thermalization is not complete?

$$
\rho \longrightarrow \alpha \rho+(1-\alpha) \tau
$$

Motivation

- Using one bit of information we can extract work $\langle W\rangle=k_{B} T \log 2$ from a heat bath. This requires that at each point in time the system is in thermal equilibrium.
- What if thermalization is not complete?

$$
\rho \longrightarrow \alpha \rho+(1-\alpha) \tau
$$

* α may arise due to finite-time interactions with the bath, or in collisional models due to imperfect unitaries

Motivation

- Using one bit of information we can extract work $\langle W\rangle=k_{B} T \log 2$ from a heat bath. This requires that at each point in time the system is in thermal equilibrium.
- What if thermalization is not complete?

$$
\rho \longrightarrow \alpha \rho+(1-\alpha) \tau
$$

* α may arise due to finite-time interactions with the bath, or in collisional models due to imperfect unitaries
- Goal: Test the robustness of a work extraction protocol for an error model as general as possible

Motivation

- Using one bit of information we can extract work $\langle W\rangle=k_{B} T \log 2$ from a heat bath. This requires that at each point in time the system is in thermal equilibrium.
- What if thermalization is not complete?

$$
\rho \longrightarrow \alpha \rho+(1-\alpha) \tau
$$

* α may arise due to finite-time interactions with the bath, or in collisional models due to imperfect unitaries
- Goal: Test the robustness of a work extraction protocol for an error model as general as possible
- Main result: Optimal isothermal processes are possible for any $\alpha<1$

Framework 1: Collisional Model

Framework 1: Collisional Model

- 3 systems:

Framework 1: Collisional Model

- 3 systems:
* System S of one information qubit

Framework 1: Collisional Model

- 3 systems:
* System S of one information qubit

* Thermal bath B at fixed temperature $T: N$ thermal states (free resource) with different Hamiltonians $H_{B}^{(k)}, k=0, \ldots, N \quad \imath_{T}$

Framework 1: Collisional Model

- 3 systems:
* System S of one information qubit

* Thermal bath B at fixed temperature $T: N$ thermal states (free resource) with different Hamiltonians $H_{B}^{(k)}, k=0, \ldots, N \quad \underbrace{}_{T}$
* Work storage system W

Framework 1: Collisional Model

- 3 systems:
* System S of one information qubit

* Thermal bath B at fixed temperature $T: N$ thermal states (free resource) with different Hamiltonians $H_{B}^{(k)}, k=0, \ldots, N \quad \overbrace{T}$
* Work storage system W
- Using the information of the system qubit, we apply N thermal operations to convert heat from the coupled thermal bath B into work stored in system W:

In the $k^{t h}$ interaction step the energy-conserving unitary $U_{\text {SBW }}^{(k)}$ acts on S, W and the $k^{t h}$ bath qubit

Error Model

Error Model

- System still interacts successively with each bath qubit and always on all three systems, S, B and W, but in an uncontrolled way, i.e., for a random time and without isolation

Error Model

- System still interacts successively with each bath qubit and always on all three systems, S, B and W, but in an uncontrolled way, i.e., for a random time and without isolation
\Rightarrow arbitrary thermal operations restricted on the relevant degenerate subspace

Error Model

- System still interacts successively with each bath qubit and always on all three systems, S, B and W, but in an uncontrolled way, i.e., for a random time and without isolation
\Rightarrow arbitrary thermal operations restricted on the relevant degenerate subspace
- All errors of this form yield the same noise model, describing the reduced state of the system as

$$
\rho_{S}^{(k)}=\alpha_{k} \rho_{S}^{(k-1)}+\left(1-\alpha_{k}\right) \tau_{B}^{(k)}
$$

Error Model

- System still interacts successively with each bath qubit and always on all three systems, S, B and W, but in an uncontrolled way, i.e., for a random time and without isolation
\Rightarrow arbitrary thermal operations restricted on the relevant degenerate subspace
- All errors of this form yield the same noise model, describing the reduced state of the system as

$$
\rho_{S}^{(k)}=\alpha_{k} \rho_{S}^{(k-1)}+\left(1-\alpha_{k}\right) \tau_{B}^{(k)}
$$

\Rightarrow Partial thermalization, where the degree of thermalization is quantified by α :

- For $\alpha=0$: standard case of full thermalization
- For $\alpha=1$: no interaction between $\mathrm{S}, \mathrm{B}, \mathrm{W}$

Results

Results

$$
\begin{aligned}
& \langle W\rangle=\Delta F-\gamma-\varepsilon \\
& * \gamma=\mathcal{O}\left(\frac{1}{N}\right): \text { Error due to finite number of steps } \\
& * \varepsilon=\mathcal{O}\left(\frac{1}{N} \frac{\alpha}{1-\alpha}\right): \text { Error due to noise quantified by } \alpha
\end{aligned}
$$

Results

$\langle W\rangle=\Delta F-\gamma-\varepsilon$

* $\gamma=\mathcal{O}\left(\frac{1}{N}\right)$: Error due to finite number of steps
* $\varepsilon=\mathcal{O}\left(\frac{1}{N} \frac{\alpha}{1-\alpha}\right)$: Error due to noise quantified by α
\Rightarrow Optimal isothermal processes can be constructed for any $\alpha<1$ with sufficiently many steps

Results

$\langle W\rangle=\Delta F-\gamma-\varepsilon$

* $\gamma=\mathcal{O}\left(\frac{1}{N}\right)$: Error due to finite number of steps
* $\varepsilon=\mathcal{O}\left(\frac{1}{N} \frac{\alpha}{1-\alpha}\right)$: Error due to noise quantified by α
\Rightarrow Optimal isothermal processes can be constructed for any $\alpha<1$ with sufficiently many steps
- We can trade the number of steps N for precision

Results

$\langle W\rangle=\Delta F-\gamma-\varepsilon$

* $\gamma=\mathcal{O}\left(\frac{1}{N}\right)$: Error due to finite number of steps
* $\varepsilon=\mathcal{O}\left(\frac{1}{N} \frac{\alpha}{1-\alpha}\right)$: Error due to noise quantified by α
\Rightarrow Optimal isothermal processes can be constructed for any $\alpha<1$ with sufficiently many steps
- We can trade the number of steps N for precision
- Proof can be extended to qudits

Results

- Determined an almost tight upper bound for a specific example

error as a function of N for $\alpha=1 / 2$ and of α for
$N=1000$, respectively, with $k_{B} T \log 2=1, p_{k}=k / 2 N$

Results

- Characterized the work fluctuations which decrease for large N

histrograms showing the fluctuations for $N=100, N=200, N=500$ and $N=1000$

Framework 2: Quenches \& equilibrations

Framework 2: Quenches \& equilibrations

- Work is extracted during N quenches of the system Hamiltonian, each followed by some interaction with a thermal bath at temperature T

Framework 2:
 Quenches \& equilibrations

- Work is extracted during N quenches of the system Hamiltonian, each followed by some interaction with a thermal bath at temperature T
- As experimentally the interaction time is finite, the system will only get partially thermalized and its state is again of the form

$$
\rho^{(k)}=\alpha_{k} \rho^{(k-1)}+\left(1-\alpha_{k}\right) \tau^{(k)}
$$

where α depends on the interaction time and strength

Framework 2:

 Quenches \& equilibrations

 Quenches \& equilibrations}

- Work is extracted during N quenches of the system Hamiltonian, each followed by some interaction with a thermal bath at temperature T
- As experimentally the interaction time is finite, the system will only get partially thermalized and its state is again of the form

$$
\rho^{(k)}=\alpha_{k} \rho^{(k-1)}+\left(1-\alpha_{k}\right) \tau^{(k)}
$$

where α depends on the interaction time and strength

- Again, the extracted work is given by

$$
\langle W\rangle=\Delta F-\mathcal{O}\left(\frac{1}{N}\right)
$$

Extension: Qudits

Extension: Qudits

- Evolution described by N Gibbs preserving maps G_{k} :

$$
G_{k}\left(\tau^{(k)}\right)=\tau^{(k)}
$$

$$
\left\|G_{k}(\rho)-\tau^{(k)}\right\|_{1} \leq \alpha_{k}\left\|\rho-\tau^{(k)}\right\|_{1} \quad\left(\alpha_{k}<1\right)
$$

with

$$
\left\|\tau^{(k)}-\tau^{(k-1)}\right\|_{1}=\mathcal{O}\left(\frac{1}{N}\right)
$$

Extension: Qudits

- Evolution described by N Gibbs preserving maps G_{k} :

$$
G_{k}\left(\tau^{(k)}\right)=\tau^{(k)}
$$

$$
\left\|G_{k}(\rho)-\tau^{(k)}\right\|_{1} \leq \alpha_{k}\left\|\rho-\tau^{(k)}\right\|_{1} \quad\left(\alpha_{k}<1\right)
$$

with

$$
\left\|\tau^{(k)}-\tau^{(k-1)}\right\|_{1}=\mathcal{O}\left(\frac{1}{N}\right)
$$

- Again, the extracted work is given by

$$
\langle W\rangle=\Delta F-\mathcal{O}\left(\frac{1}{N}\right)
$$

Summary

Summary

- A large class of errors act essentially as a partial thermalization

Summary

- A large class of errors act essentially as a partial thermalization
- Transformations that bring us closer to the thermal state can still lead to optimal isothermal processes

Summary

- A large class of errors act essentially as a partial thermalization
- Transformations that bring us closer to the thermal state can still lead to optimal isothermal processes
- Big freedom in distribution of bath qubits / Hamiltonians

Summary

- A large class of errors act essentially as a partial thermalization
- Transformations that bring us closer to the thermal state can still lead to optimal isothermal processes
- Big freedom in distribution of bath qubits / Hamiltonians
- Simplifies experimental implementation of optimal processes e.g. for small engines

Summary

- A large class of errors act essentially as a partial thermalization
- Transformations that bring us closer to the thermal state can still lead to optimal isothermal processes
- Big freedom in distribution of bath qubits / Hamiltonians
\Rightarrow Simplifies experimental implementation of optimal processes e.g. for small engines
\Rightarrow Optimal processes are much more common than previously expected in small quantum systems

