Quantum heat engine operating between thermal and spin reservoirs

André R. R. Carvalho

Centre for Quantum Dynamics
Griffith University - Australia

Overview

- Classical Heat Engines
- Maxwell's Demon, Landauer's erasure, and engines
- The spin heat engine (SHE)
- Proposal for quantum dot (QD) implementation*

\author{

* J. S. S. T. Wright, T. Gould, A. R. R. Carvalho, S. Bedkihal, and J. A. Vaccaro Phys. Rev. A 97, 052104 (2018)
}

Classical heat engine

Heat Engine

Classical Heat Engine

Carnot cycle:
Isothermal Expansion
Heated gas does work on system

Isothermal- Heat Absorption

Classical Heat Engine

Carnot cycle:
Adiabatic Expansion Expanding gas cools and does work

Entropy S
Adiabatic- Thermal Isolation

Classical Heat Engine

Carnot cycle:
Isothermal compression Work done on system, heat ejected

Entropy S

Isothermal - heat expulsion

Classical Heat Engine

Carnot cycle:
Isothermal compression Work done on system, heat ejected

Entropy S
Adiabatic - thermal isolation

Carnot Cycle

Requires Hot and Cold Reservoirs

Max Efficiency $\eta_{\text {eff }}=1-T_{\text {cold }} / T_{\text {hot }}$ Want Hot side hotter, Cold side Colder

Enter the Demon...

Maxwell's Proposal (1871)
Collect Hot particles Extracts $\Delta \mathrm{Q}$
Reduces Entropy Violates $2^{\text {nd }}$ Law

Exorcising the Demon...

Landauer Erasure (1961) - erasure of information requires energy expenditure Bennett Proposal (1982)
Erasure cost > $\Delta \mathrm{Q}$
No violation -

Taming the Demon...

Information erasure without an energy cost

Using quantum correlations
del Rio et al., Nature (2011)
Alicki et al., Open Systems \& Information Dynamics (2004) $+.$.

Using other conserved quantities
J. A. Vaccaro and S. M. Barnett,

Asian Conference on
Quantum Information Science (2006)
J. Vaccaro \& S. Barnett, Proc. Royal Soc. (2011)
N. Yunger Halpern et al., Nat Comm. (2016)
+...

Beware: blatant self promotion!
See also "Information Erasure"
Chapter in "Thermodynamics in the quantum Regime - Recent Progress and Outlook"

Spin heat engine (SHE) - conceptual model

Spin Heat Engine

A heat engine based on a generalised statistical mechanics

E. T. Jaynes

Department of Physics, Stanford University, Stanford, California
(Received September 4, 1956; revised manuscript received March 4, 1957)

It is clear that any quantity which can be interchanged between two systems in such a way that the total amount is conserved, may be used in place of energy in arguments of the above type, and the fundamental symmetry of the theory with respect to such quantities is preserved. Thus, we may define a "volume bath," "particle bath," "momentum bath," etc., and the probability distribution which gives the most unbiased representation of our knowledge of the state of a system is obtained by the same mathematical procedure whether the available information consists of a measurement of $\left\langle f_{k}\right\rangle$ or its statistically conjugate quantity λ_{k}.

An optical SHE with quantum dots

Working fluid: electron in a quantum dot

Nuclei around the QD work as the spin reservoir

An optical SHE with quantum dots

Reset (erasure) stage: Hyperfine interaction between electron and nuclei

Heat extraction

(from thermal phonon energy)

Work output (in the form of coherent light)

Modelling laser interaction and phonon reservoir

QD-phonon-laser interaction

$$
\begin{aligned}
& \hat{H}_{\mathrm{ep}}=\hbar \Omega_{\mu}\left(\hat{\sigma}_{\mu}^{+}+\hat{\sigma}_{\mu}^{-}\right)+|X\rangle\langle X|\left[\hbar \Delta_{\mu}+\sum_{k} \hbar \lambda_{k}\left(\hat{b}_{k}^{\dagger}+\hat{b}_{k}\right)\right] \\
& +\sum_{k} \hbar \omega_{k} \hat{b}_{k}^{\dagger} \hat{b}_{k} \\
& \quad \sigma_{\mu}^{+}=|X\rangle\langle\mu|=\left(\hat{\sigma}_{\mu}^{-}\right)^{\dagger}, \mu=\uparrow \text { or } \downarrow
\end{aligned}
$$

$\Delta_{\mu}, \Omega_{\mu}$ Detuning and Rabi frequency

Modelling laser interaction and phonon reservoir

Effective mode description to deal with non-Markovian effects

$$
\begin{aligned}
\hat{Q}_{1} & =\frac{1}{D_{1}} \sum_{k} \lambda_{k}\left(b_{k}^{\dagger}+b_{k}\right), \quad \hat{P}_{1}=\frac{i \hbar}{2 D_{1}} \sum_{k} \lambda_{k}\left(b_{k}^{\dagger}-b_{k}\right) \\
D_{1}^{2} & =\sum_{k}\left|\lambda_{k}\right|^{2} . \\
\hat{H}_{\mathrm{ep}} & =\hbar \Omega_{\mu}\left(\hat{\sigma}_{\mu}^{+}+\hat{\sigma}_{\mu}^{-}\right)+|X\rangle\langle X|\left(\hbar \Delta_{\mu}+\hbar D_{1} \hat{Q}_{1}\right) \\
& +\frac{1}{2} \sum_{n}\left[\hat{P}_{n}^{2}+\widetilde{\omega}_{n}^{2} \hat{Q}_{n}^{2}\right],
\end{aligned}
$$

First mode couples to the exciton and the remaining are considered as Markovian reservoirs for the first mode

$$
\begin{aligned}
\frac{\partial \hat{\rho}}{\partial t} & =\frac{1}{i \hbar}\left[\hat{H}_{\mathrm{ep}}^{(1)}, \hat{\rho}\right]+\frac{\gamma_{R}}{2} \mathcal{L}\left(\hat{\sigma}_{\uparrow}^{-}\right)+\frac{\gamma_{R}}{2} \mathcal{L}\left(\hat{\sigma}_{\downarrow}^{-}\right) \\
& +\frac{\gamma_{\mathrm{ph}}}{i \hbar}\left[\hat{Q}_{1},\left[\hat{P}_{1}, \hat{\rho}(t)\right]_{+}\right]-\frac{2 \gamma_{\mathrm{ph}} E_{\mathrm{th}}}{\hbar^{2}}\left[\hat{Q}_{1},\left[\hat{Q}_{1}, \hat{\rho}(t)\right]\right],
\end{aligned}
$$

Heat extraction and work output

Results from simulations of the master equation

$$
\begin{aligned}
\frac{\partial \hat{\rho}}{\partial t} & =\frac{1}{i \hbar}\left[\hat{H}_{\mathrm{ep}}^{(1)}, \hat{\rho}\right]+\frac{\gamma_{R}}{2} \mathcal{L}\left(\hat{\sigma}_{\uparrow}^{-}\right)+\frac{\gamma_{R}}{2} \mathcal{L}\left(\hat{\sigma}_{\downarrow}^{-}\right) \\
& \left.+\frac{\gamma_{\mathrm{ph}}}{i \hbar}\left[\hat{Q}_{1},\left[\hat{P}_{1}, \hat{\rho}(t)\right]\right]_{+}\right]-\frac{2 \gamma_{\mathrm{ph}} E_{\mathrm{th}}}{\hbar^{2}}\left[\hat{Q}_{1},\left[\hat{Q}_{1}, \hat{\rho}(t)\right]\right],
\end{aligned}
$$

Closing the cycle: entropy resetting

Central spin problem

adjust B_{z} to cancel this

Erasure in the first cycle

$$
\begin{aligned}
& |\uparrow, 0\rangle \mapsto|\uparrow, 0\rangle \\
& |\downarrow, 0\rangle \mapsto-i|\uparrow, 1\rangle_{0}
\end{aligned}
$$

statistical mixture

statistical mixture
(entropy)

$$
\begin{aligned}
& |0\rangle=|\uparrow \uparrow \uparrow \cdots \uparrow\rangle \\
& |1\rangle_{0}=\hat{\mathbb{I}}_{-}|0\rangle
\end{aligned}
$$

$$
\hat{\mathbb{I}}_{-} \equiv \frac{1}{\sqrt{\gamma}} \sum_{j} a_{j} \hat{I}_{-}^{(j)}
$$

$$
\gamma \equiv \sum_{j} a_{j}^{2}
$$

Erasure fails in the second cycle!

Solution: spatially-varying magnetic field

$$
\hat{H}_{\mathrm{pls}}=g_{n} \mu_{n} \sum_{i} B_{\mathrm{pls}}\left(\mathbf{r}_{j}\right) \hat{I}_{z}^{(j)}
$$

Induces a phase in the state that restores the fixed point properties

$$
\begin{aligned}
& \hat{U}_{\text {en }}^{(\text {eff })}(t)|\uparrow, 1\rangle_{\tau}=|\uparrow, 1\rangle_{\tau}+e^{-i \Theta \tau} \frac{\tilde{\gamma}(\tau)}{\gamma} \\
& \quad \times\left\{[\cos (\sqrt{\gamma} t)-1]|\uparrow, 1\rangle_{0}-i \sin (\sqrt{\gamma} t)|\downarrow, 0\rangle\right\}
\end{aligned}
$$

Need $\frac{\tilde{\gamma}(\tau)}{\gamma} \ll 1 \quad$ (tough experimentally)

Wrapping up

No free-lunch! (it is just paid in a different currency)

Conclusions and perspectives

- SHE: extracts work from a single thermal reservoir
- No magic and no violation of physical laws:

Statistical mechanics doesn't care which
currency you use, as long as you pay the bill!

- QD: proposal of a proof-of-principle demonstration

Our group

* J. S. S. T. Wright, T. Gould, A. R. R. Carvalho, S. Bedkihal, and J. A. Vaccaro Phys. Rev. A 97, 052104 (2018)

Funding

PhD opportunities!

