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Figure 1. Maxwell’s demon extracting work from a single heat reservoir at a cost of spin angular
momentum. In step (a), the demon has no memory and the gas in the heat reservoir is in thermal
equilibrium. Next, in step (b), the demon performs measurements of the speeds of the molecules
and partitions the reservoir in two, trapping the fastest moving molecules in the partition on the
right side, and uses a heat engine operating between the two partitions to extract work. Finally, in
step (c), the demon’s memory is erased using a spin reservoir and the two partitions are allowed
to return to equilibrium. (Online version in colour.)

Although this may appear to be a contentious result, it should not necessarily
be regarded as contradicting various historical statements of the second law of
thermodynamics within their intended contexts. For example, consider Kelvin’s
dictum ‘it is impossible, by means of inanimate material agency, to derive
mechanical effect from any portion of matter by cooling it below the temperature
of the coldest part of the surrounding objects’ (Kelvin 1882, p. 179). The presence
of the demon in our analysis, which in principle could be an automated machine,
is not of any significance here. Rather, Kelvin’s discussions are exclusively within
the context of heat and thermal reservoirs that were of overriding importance
at the time of his work and, quite naturally, he did not allow for a broader
class of reservoirs of the kind considered here. Our analysis therefore lies outside
of Kelvin’s considerations and within a more general context. For example, our
results do not appear contentious at all for an analogous, but broader, statement
of the second law as it is impossible to derive mechanical effect from any
portion of matter through a reduction in the information-theoretic entropy of
the system as a whole. The foregoing discussion illustrates the potential impact
of a no-energy-cost erasure protocol.

A quite different approach to this problem has been considered recently
by Sagawa & Ueda (2009). They explored the possibility of reducing the
information erasure cost at the expense of incurring an additional cost in the

Proc. R. Soc. A

 on December 15, 2016http://rspa.royalsocietypublishing.org/Downloaded from 

Beware:	  blatant	  self	  promoAon!	  
See	  also	  “InformaAon	  Erasure”	  
Chapter	  in	  “Thermodynamics	  in	  the	  quantum	  	  
Regime	  -‐	  Recent	  Progress	  and	  Outlook”	  
	  
	  
	  	  



Spin	  heat	  engine	  (SHE)	  -‐	  conceptual	  model 

Richard	  Taylor	  
PhD	  (since	  2015)	  

Heat	  Engine	  

620 M. W. P. STRAND BERG

must be absorbed (or emitted) to achieve one photon
of net absorption (or emission). These net photons
must complete with the spontaneous-emission photons.
Thus, as T,ff is lowered, fewer photons need be handled
for the same signal-to-noise ratio. Here the tremendous
di6'erence between so-called positive and negative
temperatures (our T,tt) is apparent. For the absorption
case, the noise-power distribution p„(T) approaches
zero as T,tt approaches +0. However, it approaches
hP as 7 ff approaches —0. This is intuitively satis-

fying, since it means that spontaneous-emission noise
actually acts as least-count noise in a net emission
system. To put it otherwise, if we have e photons per
frequency interval per second from the amplifier, the
least count is one photon and this is just the spon-
taneous-emission noise. We are dealing here with phase-
coherent photons, however, so the signal-to-noise ratio
is as the reciprocal band width, instead of as the square
root of the reciprocal band width, which is the case
when incoherent photons (or particles) are counted.
We have essentially solved the problem of the sta-
tistical noise for a linear system with coherent particles.
For those who like a simple, appealing, albeit inaccu-

rate, explanation of quantum-mechanical noise, we
o8er the following suggestions that have grown out of
our work. At high effective temperatures, the noise is
high, since the least-count effect (shot effect) becomes

large, because the net emission is small on account of
interfering absorption. As the effective temperature is
lowered, the number of photons to be amplified can be
linearly lowered and the same least count, i.e., the
same signal-to-noise ratio, can be maintained. The
limit as T,ff approaches 0 will always be photon shot
noise.
Neglecting, then, many practical details that are

solely within the realm of engineering ingenuity (for
which we hold high regard), we have shown that the
limiting sensitivity of quantum-mechanical amplihers
is given in a readily achievable limit by the eGective
quantum-mechanical noise power density. This noise
power density is given parametrically by an effective
temperature. The essential and drastic difference be-
tween negative and positive temperatures is demon-
strated by this function, in that, as T approaches —0,
this function approaches (—hv) and, as T approaches
+0, this function approaches 0. This means that in
the region where hv(kT. .. the noise 6gure can be
represented, essentially, as the ratio of the quantum-
mechanical temperature and the source temperature.
With the equality sign reversed, the noise 6gure be-
comes large. For 1-cm radiation, this turning point is
at 1.5'K. At any frequency, we may say that the
limiting temperature sensitivity for a quantum-
mechanical ampli6er is, essentially, hv/k.
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Information theory provides a constructive criterion for setting
up probability distributions on the basis of partial knowledge,
and leads to a type of statistical inference which is called the
maximum-entropy estimate. It is the least biased estimate
possible on the given information; i.e., it is maximally noncom-
mittal with regard to missing information. If one considers
statistical mechanics as a form of statistical inference rather than
as a physical theory, it is found that the usual computational
rules, starting with the determination of the partition function,
are an immediate consequence of the maximum-entropy principle.
In the resulting "subjective statistical mechanics, "the usual rules
are thus justified independently of any physical argument, and
in particular independently of experimental verification; whether

or not the results agree with experiment, they still represent the
best estimates that could have been made on the basis of the
information available.
It is concluded that statistical mechanics need not be regarded

as a physical theory dependent for its validity on the truth of
additional assumptions not contained in the laws of mechanics
(such as ergodicity, metric transitivity, equal a priori probabilities,
etc.). Furthermore, it is possible to maintain a sharp distinction
between its physical and statistical aspects. The former consists
only of the correct enumeration of the states of a system and
their properties; the latter is a straightforward example of
statistical inference.

1. INTRODUCTION

HE recent appearance of a very comprehensive
survey' of past attempts to justify the methods

of statistical mechanics in terms of mechanics, classical
or quantum, has helped greatly, and at a very opportune
time, to emphasize the unsolved problems in this field.

' D. ter Haar, Revs. Modern Phys. 27, 289 (1955).

Although the subject has been under development for
many years, we still do not have a complete and
satisfactory theory, in the sense that there is no line
of argument proceeding from the laws of microscopic
mechanics to macroscopic phenomena, that is generally
regarded by physicists as convincing in all respects.
Such an argument should (a) be free from objection on
mathematical grounds, (b) involve no additional arbi-
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In all the foregoing discussions, the idea has been

implicit that the (fi) on which we base our probability
distributions represent the results of measurements of
various quantities. If the energy is included among the
fi„ the resulting equations are identical with those of
conventional statistical mechanics. However, in practice
a measurement of energy is rarely part of the initial
information available; it is the temperature that is
easily measurable. In order to treat the experimental
measurement of temperature from the present point of
view, it is necessary to consider not only the system 0&

under investigation, but also another system 0.2. We
introduce several definitions:
A heat bath is a system 0-2 such that
(a) The separation of energy levels of o2 is much

smaller than any macroscopically measurable energy
diGerence, so that the possible energies E2; form, from
the macroscopic point of view, a continuum.
(b) The entropy S2 of the maximum-entropy proba-

bility distribution for given (E~) is a definite monotonic
function of (E2); i.e., o.2 contains no "mechanical
parameters" which can be varied independently of its
energy.
(c) o~ can be placed in interaction with another

system 0~ in such a way that only energy can be trans-
ferred between them (i.e., no mass, momentum, etc.),
and in the total energy E=E&+E2+E», the interaction
term 8~2 is small compared to either E~ or E~. This
state of interaction will be called thermal contact.
A thermometer is a heat-bath 02 equipped with a

pointer which reads its average energy. The scale is,
however, calibrated so as to give a number T, called
the temperature, de6ned by

1/T= dS2/d(E2). — (5-4)

In a measurement of temperature, we place the
thermometer in thermal contact with the system 0.~ of
interest. We are now uncertain not only of the state of
the system 0.

& but also of the state of the thermometer
a2, and so in making inferences, we must find the
maximum-entropy probability distribution of the total
system 2=o.i+o.2, subject to the available information.
A state of Z is de6ned by specifying simultaneously a
state i of 0.& and a state j of 0.2 to which we assign a
probability p;, . Now however we have an additional
piece of information, of a type not previously con-
sidered; we know that the interaction of 0.& and cr2 may
allow transitions to take place between states (ij) and
(mu) if the total energy is conserved:

Ei;+E2r=Ei +Ex
In the absence of detailed knowledge of the matrix
elements of Ei2 responsible for these transitions (which
in practice is never available), we have no rational basis
for excluding the possibility of any transition of this
type. Therefore all states of Z having a given total
energy must be considered equivalent; the probability
p;; in its dependence on energy may contain only

(E2)=——lnZ2(lw, );
BX

(5-7)

or, solving for X by use of (2-13), we find that the
quantity statistically conjugate to the energy is the
reciprocal temperature:

X=dSg/d(E2) = 1/T. (5-g)

More generally, this factorization is always possible if
the information available consists of certain properties
of 0& by itself and certain properties of 0-2 by itself.
The probability distribution then factors into two
independent distributions

p' =p'(1)PJ(2)
and the total entropy is additive:

S(Z)=Si+S2.

(5-9)

We conclude that the function of the thermometer is
merely to tell us what value of the parameter P should
be used in specifying the probability distribution of
system 0&. Given this value and the above factorization
property, it is no longer necessary to consider the
properties of the thermometer in detail when incorpo-
rating temperature measurements into our probability
distributions; the mathematical processes used in
setting up probability distributions based on energy or
temperature measurements are exactly the same but
only interpreted diGerently.
It is clear that any quantity which can be inter-

changed between two systems in such a way that the
total amount is conserved, may be used in place of
energy in arguments of the above type, and the funda-
mental symmetry of the theory with respect to such
quantities is preserved. Thus, we may dehne a "volume
bath, " "particle bath, " "momentum bath, " etc., and
the probability distribution which gives the most
unbiased representation of our knowledge of the state
of a system is obtained by the same mathematical
procedure whether the available information consists
of a measurement of (f&) or its statistically conjugate
quantity XA,.
' This argument admittedly lacks rigor, which can be supplied

only by consideration of phase coherence properties between the
various states by means of the density matrix formalism. This,
however, leads to the result given.

(E»+E»), not E» and E» separately ".Therefore, the
maximum-entropy probability distribution, based on
knowledge of (E2) and the conservation of energy, is
associated with the partition function

Z (X)=P exp t
—X(Ei,+E2;)j=Zi(X)Zg (X), (5-5)

which factors into separate partition functions for the
two systems

Zi (X)=P, exp(—XEi;), Z2P )=P; exp(—XE2;), (5-6)
with ) determined as before by
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FIG. 2. Stages of the qdSHE. The interaction between the
QD and the phonons is represented by a dynamic shift in the
energy of the exciton state. The nuclear spins, which are ini-
tially polarized in the direction of the z axis, are represented
by their total spin angular momentum I and its projection
onto the z axis. Panel (a) represents the beginning of a cycle,
(b) represents the extraction of �E of heat by a red detuned
laser, (c) represents the conversion of the extracted heat to
�E of optical work by an on-resonance laser, and (d) repre-
sents the spin exchange between the QD and the nuclei that
erases information left in the QD. The size of the green disc
symbolizes the relative population in each state of the working
fluid.

averaged value of the state |Xi.
Optical work output. For this stage, a laser that is

resonant with the zero phonon line of the transition |#i $
|Xi, as depicted in Fig. 2(c), transfers population from
|Xi to |#i. The duration of the stage is timed so that as
much of the population in |Xi is transferred. The work
of �E appears as increased coherent light.

Erasure (or resetting). The spin-exchanging hyper-
fine interaction between the nuclei and the electron of
the QD is ever present. However, it occurs on a time
scale of nanoseconds which is much slower than the tens
of picoseconds time scale of the laser pulses and picosec-
ond time scale of the phonons and so its e↵ect is neg-
ligible during the previous stages. The erasure stage,
represented in Fig. 2(d), consists simply of waiting for
a duration of the order of tens of nanoseconds to allow
the hyperfine interaction to bring the spin of the electron
into equilibrium with the spins of the nuclei.

In the remainder of this section we describe the phonon
and nuclear spin interactions with the QD.

C. Modelling the QD-phonon interaction

There have been a number of studies of the role of
phonons in the photoluminescence induced in QDs, both
in the presence of an optical cavity or otherwise [24–
34]. The interaction between the longitudinal acoustic

phonon modes and the electronic system is described by a
spin-boson coupling whose strength depends on the elec-
tronic spatial wave functions [19]. The ground electronic
states have the same orbital wave function and so they
couple equally to the phonon modes. Provided the elec-
tron lies predominately in the ground states for a time
longer than the coherence time of the phonon modes, the
phonon modes will find an equilibrium that incorporates
the deformation due to the ground states; the details of
this argument can be found, e.g., in appendix B of [32]
and also section III of [35]. We assume that this is the
case here, and so essentially the phonon coupling to the
electronic states can be incorporated in a modified cou-
pling to the exciton state alone.
As shown in Fig. 2, at various times a coherent laser

drives the transition between one of the ground states
and the exciton state. The corresponding Hamiltonian
describing the electronic system, phonon bath and a laser
field system is given, in the rotating frame with respect
to the laser frequency and after making the rotating wave
approximation, by

Ĥep = ~⌦µ(�̂
+
µ + �̂�

µ ) + |Xi hX|
"
~�µ +

X

k

~�k(b̂
†
k + b̂k)

#

+
X

k

~!k b̂
†
k b̂k, (3)

where �µ, ⌦µ and �+
µ = |Xi hµ| = (�̂�

µ )
† are the de-

tuning of the laser, Rabi frequency and raising operator
associated with the laser-driven transition |µi $ |Xi for
µ =" or #, �k is the modified phonon coupling param-
eter for the exciton state, and b̂†k, b̂k are the creation
and annihilation operators of the phonon mode with mo-
mentum indexed by k. Eq. (3) shows that the coupling
between the phonon modes and the QD results in the
energy of the exciton state being shifted by a weighted
sum of phonon position operators (b̂†k + b̂k)/

p
2. As the

position is inherently oscillating, the energy of the exci-
ton state |Xi is represented in Fig. 2 as being attached
to the end of a spring.
The correlation time of the phonons is of the order

of picoseconds which is su�ciently long for the correla-
tions between them and the quantum dot to be impor-
tant for the operation of the qdSHE. A non-Markovian
treatment of the phonons is therefore needed. There
are many ways this can be done. For example, non-
Markovian master equations can be based on perturba-
tive expansions of a memory kernel [36]. Microscopic
methods to simulate non-Markovian dynamics include
non-equilibrium Green’s functions [37], numerically ex-
act deterministic iterative path integral schemes [38], and
path integral quantum Monte-Carlo methods [39]. How-
ever, these approaches are often numerically expensive
to implement. The chain representation of open quan-
tum systems o↵ers an alternate technique for simulating
the short time quantum dynamics accurately with rela-
tive computational ease [40]. The philosophy behind it is
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FIG. 2. Stages of the qdSHE. The interaction between the
QD and the phonons is represented by a dynamic shift in the
energy of the exciton state. The nuclear spins, which are ini-
tially polarized in the direction of the z axis, are represented
by their total spin angular momentum I and its projection
onto the z axis. Panel (a) represents the beginning of a cycle,
(b) represents the extraction of �E of heat by a red detuned
laser, (c) represents the conversion of the extracted heat to
�E of optical work by an on-resonance laser, and (d) repre-
sents the spin exchange between the QD and the nuclei that
erases information left in the QD. The size of the green disc
symbolizes the relative population in each state of the working
fluid.
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|Xi, as depicted in Fig. 2(c), transfers population from
|Xi to |#i. The duration of the stage is timed so that as
much of the population in |Xi is transferred. The work
of �E appears as increased coherent light.
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similar to the time dependent density matrix renormal-
ization group methods where the bath is discretized and
the spectral density is evaluated recursively until the de-
sired convergence is obtained. The key advantage of the
chain representation is that the dynamics can be often
accurately obtained using a truncated Hilbert space [40].

Here we adopt the truncated chain representation de-
veloped by Burghardt and coworkers [40–48] to model
the non-Markovian QD-phonon interaction. In this ap-
proach, the weighted sum of phonon position operators
appearing in Eq. (3) is identified as the position operator
Q̂1 of an e↵ective mode where

Q̂1 =
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The momentum operator and angular frequency associ-
ated with the mode are given by
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where [Q̂1, P̂1] = i~. This e↵ective mode is used to de-
fine an infinite chain of orthogonal e↵ective modes that
comprise di↵erent linear combinations of the momentum
modes. The Hamiltonian in Eq. (3) then takes the fol-
lowing form (in mass-weighted coordinates [40])
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where the last term represents the phonon bath Hamil-
tonian in terms of the position and momentum operators
Q̂n and P̂n, and frequencies e!n, of the e↵ective modes
[49].

In our case, it is su�cient to retain only the most sig-
nificant non-Markovian e↵ects and these are obtained by
truncating the chain after just the first e↵ective mode.
Following the treatment of Hughes et al. [40], this en-
tails redefining our system Hamiltonian to include only
the phonon operators Q̂1 and P̂1, i.e.
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and relegating the remaining e↵ective modes to a Marko-
vian treatment. The relegated modes constitute a resid-
ual phonon bath that induces phenomenological damping
in the first e↵ective mode. Using J(!) =

P
k |�k|2�(! �

!k) with the spectral function for the longitudinal acous-

tic phonons J(!) = ↵p!3e�!2/2!2
b , where ↵p is a coupling

parameter and !b is a high frequency cuto↵ [28]. The
equations Eqs. (5) and (7) are calculated using the fol-
lowing integrals,
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Following Ref. [40], we use the technique known as
Markovian closure, where the chain of e↵ective phonon
modes is terminated by its interaction with a Markovian
system that represents the residual phonon bath, to ob-
tain the master equation for the density operator describ-
ing the state, ⇢, of the QD and the first e↵ective mode
as follows:
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D. Modelling the QD-nuclear spin interaction

The third stage of the QHE, where the QD returns to
its initial state |1i, is represented by panel (d) of Fig. 2. It
involves a controlled electron-nuclear spin flip mediated
by the spin polarised nuclei. The coupling of an electronic
spin to a nuclear spin reservoir is known as the central
spin problem and is important for quantum memories
and exploiting entanglement in quantum computing. In
our case, we are interested in the nuclear spin reservoir
serving as an entropy sink for the electron in the QD.
The scheme is, in its ideal form, a unitary one which
accumulates entropy in the nuclear spin reservoir in a way
that can be compared with algorithmic cooling [50]. The
Hamiltonian describing the interaction between the QD
electron and the nuclear spins in an external magnetic
field is given by [51]
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similar to the time dependent density matrix renormal-
ization group methods where the bath is discretized and
the spectral density is evaluated recursively until the de-
sired convergence is obtained. The key advantage of the
chain representation is that the dynamics can be often
accurately obtained using a truncated Hilbert space [40].

Here we adopt the truncated chain representation de-
veloped by Burghardt and coworkers [40–48] to model
the non-Markovian QD-phonon interaction. In this ap-
proach, the weighted sum of phonon position operators
appearing in Eq. (3) is identified as the position operator
Q̂1 of an e↵ective mode where
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where [Q̂1, P̂1] = i~. This e↵ective mode is used to de-
fine an infinite chain of orthogonal e↵ective modes that
comprise di↵erent linear combinations of the momentum
modes. The Hamiltonian in Eq. (3) then takes the fol-
lowing form (in mass-weighted coordinates [40])
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where the last term represents the phonon bath Hamil-
tonian in terms of the position and momentum operators
Q̂n and P̂n, and frequencies e!n, of the e↵ective modes
[49].

In our case, it is su�cient to retain only the most sig-
nificant non-Markovian e↵ects and these are obtained by
truncating the chain after just the first e↵ective mode.
Following the treatment of Hughes et al. [40], this en-
tails redefining our system Hamiltonian to include only
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and relegating the remaining e↵ective modes to a Marko-
vian treatment. The relegated modes constitute a resid-
ual phonon bath that induces phenomenological damping
in the first e↵ective mode. Using J(!) =
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parameter and !b is a high frequency cuto↵ [28]. The
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Following Ref. [40], we use the technique known as
Markovian closure, where the chain of e↵ective phonon
modes is terminated by its interaction with a Markovian
system that represents the residual phonon bath, to ob-
tain the master equation for the density operator describ-
ing the state, ⇢, of the QD and the first e↵ective mode
as follows:
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the friction coe�cient that represents the coupling be-
tween the first e↵ective mode and the residual phonon
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D. Modelling the QD-nuclear spin interaction

The third stage of the QHE, where the QD returns to
its initial state |1i, is represented by panel (d) of Fig. 2. It
involves a controlled electron-nuclear spin flip mediated
by the spin polarised nuclei. The coupling of an electronic
spin to a nuclear spin reservoir is known as the central
spin problem and is important for quantum memories
and exploiting entanglement in quantum computing. In
our case, we are interested in the nuclear spin reservoir
serving as an entropy sink for the electron in the QD.
The scheme is, in its ideal form, a unitary one which
accumulates entropy in the nuclear spin reservoir in a way
that can be compared with algorithmic cooling [50]. The
Hamiltonian describing the interaction between the QD
electron and the nuclear spins in an external magnetic
field is given by [51]
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similar to the time dependent density matrix renormal-
ization group methods where the bath is discretized and
the spectral density is evaluated recursively until the de-
sired convergence is obtained. The key advantage of the
chain representation is that the dynamics can be often
accurately obtained using a truncated Hilbert space [40].

Here we adopt the truncated chain representation de-
veloped by Burghardt and coworkers [40–48] to model
the non-Markovian QD-phonon interaction. In this ap-
proach, the weighted sum of phonon position operators
appearing in Eq. (3) is identified as the position operator
Q̂1 of an e↵ective mode where
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where [Q̂1, P̂1] = i~. This e↵ective mode is used to de-
fine an infinite chain of orthogonal e↵ective modes that
comprise di↵erent linear combinations of the momentum
modes. The Hamiltonian in Eq. (3) then takes the fol-
lowing form (in mass-weighted coordinates [40])
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where the last term represents the phonon bath Hamil-
tonian in terms of the position and momentum operators
Q̂n and P̂n, and frequencies e!n, of the e↵ective modes
[49].

In our case, it is su�cient to retain only the most sig-
nificant non-Markovian e↵ects and these are obtained by
truncating the chain after just the first e↵ective mode.
Following the treatment of Hughes et al. [40], this en-
tails redefining our system Hamiltonian to include only
the phonon operators Q̂1 and P̂1, i.e.

Ĥ(1)
ep = ~⌦µ(�̂

+
µ + �̂�

µ ) + |Xi hX| (~�µ + ~D1Q̂1)

+
1

2
[P̂ 2

1 + e!2
1Q̂

2
1] , (9)

and relegating the remaining e↵ective modes to a Marko-
vian treatment. The relegated modes constitute a resid-
ual phonon bath that induces phenomenological damping
in the first e↵ective mode. Using J(!) =
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Following Ref. [40], we use the technique known as
Markovian closure, where the chain of e↵ective phonon
modes is terminated by its interaction with a Markovian
system that represents the residual phonon bath, to ob-
tain the master equation for the density operator describ-
ing the state, ⇢, of the QD and the first e↵ective mode
as follows:
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D. Modelling the QD-nuclear spin interaction

The third stage of the QHE, where the QD returns to
its initial state |1i, is represented by panel (d) of Fig. 2. It
involves a controlled electron-nuclear spin flip mediated
by the spin polarised nuclei. The coupling of an electronic
spin to a nuclear spin reservoir is known as the central
spin problem and is important for quantum memories
and exploiting entanglement in quantum computing. In
our case, we are interested in the nuclear spin reservoir
serving as an entropy sink for the electron in the QD.
The scheme is, in its ideal form, a unitary one which
accumulates entropy in the nuclear spin reservoir in a way
that can be compared with algorithmic cooling [50]. The
Hamiltonian describing the interaction between the QD
electron and the nuclear spins in an external magnetic
field is given by [51]
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the spectral density is evaluated recursively until the de-
sired convergence is obtained. The key advantage of the
chain representation is that the dynamics can be often
accurately obtained using a truncated Hilbert space [40].

Here we adopt the truncated chain representation de-
veloped by Burghardt and coworkers [40–48] to model
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where [Q̂1, P̂1] = i~. This e↵ective mode is used to de-
fine an infinite chain of orthogonal e↵ective modes that
comprise di↵erent linear combinations of the momentum
modes. The Hamiltonian in Eq. (3) then takes the fol-
lowing form (in mass-weighted coordinates [40])
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where the last term represents the phonon bath Hamil-
tonian in terms of the position and momentum operators
Q̂n and P̂n, and frequencies e!n, of the e↵ective modes
[49].

In our case, it is su�cient to retain only the most sig-
nificant non-Markovian e↵ects and these are obtained by
truncating the chain after just the first e↵ective mode.
Following the treatment of Hughes et al. [40], this en-
tails redefining our system Hamiltonian to include only
the phonon operators Q̂1 and P̂1, i.e.
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and relegating the remaining e↵ective modes to a Marko-
vian treatment. The relegated modes constitute a resid-
ual phonon bath that induces phenomenological damping
in the first e↵ective mode. Using J(!) =
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Following Ref. [40], we use the technique known as
Markovian closure, where the chain of e↵ective phonon
modes is terminated by its interaction with a Markovian
system that represents the residual phonon bath, to ob-
tain the master equation for the density operator describ-
ing the state, ⇢, of the QD and the first e↵ective mode
as follows:
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the friction coe�cient that represents the coupling be-
tween the first e↵ective mode and the residual phonon
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energy of the first e↵ective mode given by [40]

Eth =
~e!1

2
coth

✓
~e!1

2kBT

◆
. (13)

D. Modelling the QD-nuclear spin interaction

The third stage of the QHE, where the QD returns to
its initial state |1i, is represented by panel (d) of Fig. 2. It
involves a controlled electron-nuclear spin flip mediated
by the spin polarised nuclei. The coupling of an electronic
spin to a nuclear spin reservoir is known as the central
spin problem and is important for quantum memories
and exploiting entanglement in quantum computing. In
our case, we are interested in the nuclear spin reservoir
serving as an entropy sink for the electron in the QD.
The scheme is, in its ideal form, a unitary one which
accumulates entropy in the nuclear spin reservoir in a way
that can be compared with algorithmic cooling [50]. The
Hamiltonian describing the interaction between the QD
electron and the nuclear spins in an external magnetic
field is given by [51]
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FIG. 2. Stages of the qdSHE. The interaction between the
QD and the phonons is represented by a dynamic shift in the
energy of the exciton state. The nuclear spins, which are ini-
tially polarized in the direction of the z axis, are represented
by their total spin angular momentum I and its projection
onto the z axis. Panel (a) represents the beginning of a cycle,
(b) represents the extraction of �E of heat by a red detuned
laser, (c) represents the conversion of the extracted heat to
�E of optical work by an on-resonance laser, and (d) repre-
sents the spin exchange between the QD and the nuclei that
erases information left in the QD. The size of the green disc
symbolizes the relative population in each state of the working
fluid.

averaged value of the state |Xi.
Optical work output. For this stage, a laser that is

resonant with the zero phonon line of the transition |#i $
|Xi, as depicted in Fig. 2(c), transfers population from
|Xi to |#i. The duration of the stage is timed so that as
much of the population in |Xi is transferred. The work
of �E appears as increased coherent light.

Erasure (or resetting). The spin-exchanging hyper-
fine interaction between the nuclei and the electron of
the QD is ever present. However, it occurs on a time
scale of nanoseconds which is much slower than the tens
of picoseconds time scale of the laser pulses and picosec-
ond time scale of the phonons and so its e↵ect is neg-
ligible during the previous stages. The erasure stage,
represented in Fig. 2(d), consists simply of waiting for
a duration of the order of tens of nanoseconds to allow
the hyperfine interaction to bring the spin of the electron
into equilibrium with the spins of the nuclei.

In the remainder of this section we describe the phonon
and nuclear spin interactions with the QD.

C. Modelling the QD-phonon interaction

There have been a number of studies of the role of
phonons in the photoluminescence induced in QDs, both
in the presence of an optical cavity or otherwise [24–
34]. The interaction between the longitudinal acoustic

phonon modes and the electronic system is described by a
spin-boson coupling whose strength depends on the elec-
tronic spatial wave functions [19]. The ground electronic
states have the same orbital wave function and so they
couple equally to the phonon modes. Provided the elec-
tron lies predominately in the ground states for a time
longer than the coherence time of the phonon modes, the
phonon modes will find an equilibrium that incorporates
the deformation due to the ground states; the details of
this argument can be found, e.g., in appendix B of [32]
and also section III of [35]. We assume that this is the
case here, and so essentially the phonon coupling to the
electronic states can be incorporated in a modified cou-
pling to the exciton state alone.
As shown in Fig. 2, at various times a coherent laser

drives the transition between one of the ground states
and the exciton state. The corresponding Hamiltonian
describing the electronic system, phonon bath and a laser
field system is given, in the rotating frame with respect
to the laser frequency and after making the rotating wave
approximation, by

Ĥep = ~⌦µ(�̂
+
µ + �̂�

µ ) + |Xi hX|
"
~�µ +

X

k

~�k(b̂
†
k + b̂k)
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+
X

k

~!k b̂
†
k b̂k, (3)

where �µ, ⌦µ and �+
µ = |Xi hµ| = (�̂�

µ )
† are the de-

tuning of the laser, Rabi frequency and raising operator
associated with the laser-driven transition |µi $ |Xi for
µ =" or #, �k is the modified phonon coupling param-
eter for the exciton state, and b̂†k, b̂k are the creation
and annihilation operators of the phonon mode with mo-
mentum indexed by k. Eq. (3) shows that the coupling
between the phonon modes and the QD results in the
energy of the exciton state being shifted by a weighted
sum of phonon position operators (b̂†k + b̂k)/

p
2. As the

position is inherently oscillating, the energy of the exci-
ton state |Xi is represented in Fig. 2 as being attached
to the end of a spring.
The correlation time of the phonons is of the order

of picoseconds which is su�ciently long for the correla-
tions between them and the quantum dot to be impor-
tant for the operation of the qdSHE. A non-Markovian
treatment of the phonons is therefore needed. There
are many ways this can be done. For example, non-
Markovian master equations can be based on perturba-
tive expansions of a memory kernel [36]. Microscopic
methods to simulate non-Markovian dynamics include
non-equilibrium Green’s functions [37], numerically ex-
act deterministic iterative path integral schemes [38], and
path integral quantum Monte-Carlo methods [39]. How-
ever, these approaches are often numerically expensive
to implement. The chain representation of open quan-
tum systems o↵ers an alternate technique for simulating
the short time quantum dynamics accurately with rela-
tive computational ease [40]. The philosophy behind it is
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similar to the time dependent density matrix renormal-
ization group methods where the bath is discretized and
the spectral density is evaluated recursively until the de-
sired convergence is obtained. The key advantage of the
chain representation is that the dynamics can be often
accurately obtained using a truncated Hilbert space [40].

Here we adopt the truncated chain representation de-
veloped by Burghardt and coworkers [40–48] to model
the non-Markovian QD-phonon interaction. In this ap-
proach, the weighted sum of phonon position operators
appearing in Eq. (3) is identified as the position operator
Q̂1 of an e↵ective mode where
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where [Q̂1, P̂1] = i~. This e↵ective mode is used to de-
fine an infinite chain of orthogonal e↵ective modes that
comprise di↵erent linear combinations of the momentum
modes. The Hamiltonian in Eq. (3) then takes the fol-
lowing form (in mass-weighted coordinates [40])
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where the last term represents the phonon bath Hamil-
tonian in terms of the position and momentum operators
Q̂n and P̂n, and frequencies e!n, of the e↵ective modes
[49].

In our case, it is su�cient to retain only the most sig-
nificant non-Markovian e↵ects and these are obtained by
truncating the chain after just the first e↵ective mode.
Following the treatment of Hughes et al. [40], this en-
tails redefining our system Hamiltonian to include only
the phonon operators Q̂1 and P̂1, i.e.
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and relegating the remaining e↵ective modes to a Marko-
vian treatment. The relegated modes constitute a resid-
ual phonon bath that induces phenomenological damping
in the first e↵ective mode. Using J(!) =

P
k |�k|2�(! �

!k) with the spectral function for the longitudinal acous-

tic phonons J(!) = ↵p!3e�!2/2!2
b , where ↵p is a coupling

parameter and !b is a high frequency cuto↵ [28]. The
equations Eqs. (5) and (7) are calculated using the fol-
lowing integrals,

D2
1 =

Z 1

0
J(!)d! = 2↵p!

4
b (10)

e!2
1 =

Z 1

0
!2J(!)d! = 8↵p!

6
b . (11)

Following Ref. [40], we use the technique known as
Markovian closure, where the chain of e↵ective phonon
modes is terminated by its interaction with a Markovian
system that represents the residual phonon bath, to ob-
tain the master equation for the density operator describ-
ing the state, ⇢, of the QD and the first e↵ective mode
as follows:

@⇢̂

@t
=

1

i~ [Ĥ
(1)
ep , ⇢̂] +

�R
2
L(�̂�

" ) +
�R
2
L(�̂�

# )

+
�ph
i~ [Q̂1, [P̂1, ⇢̂(t)]+]� 2�phEth

~2 [Q̂1, [Q̂1, ⇢̂(t)]],

(12)

where Ĥ(1)
ep is given by Eq. (9), L(Ô) = 2Ô⇢̂Ô†� Ô†Ô⇢̂�

⇢̂Ô†Ô is the Lindblad superoperator, �R is the radiative
decay rate from the exciton to each ground state, �ph is
the friction coe�cient that represents the coupling be-
tween the first e↵ective mode and the residual phonon
bath, [·, ·] and [·, ·]+ are the commutator and anticom-
mutator, respectively, and Eth is the mean equilibrium
energy of the first e↵ective mode given by [40]

Eth =
~e!1

2
coth

✓
~e!1

2kBT

◆
. (13)

D. Modelling the QD-nuclear spin interaction

The third stage of the QHE, where the QD returns to
its initial state |1i, is represented by panel (d) of Fig. 2. It
involves a controlled electron-nuclear spin flip mediated
by the spin polarised nuclei. The coupling of an electronic
spin to a nuclear spin reservoir is known as the central
spin problem and is important for quantum memories
and exploiting entanglement in quantum computing. In
our case, we are interested in the nuclear spin reservoir
serving as an entropy sink for the electron in the QD.
The scheme is, in its ideal form, a unitary one which
accumulates entropy in the nuclear spin reservoir in a way
that can be compared with algorithmic cooling [50]. The
Hamiltonian describing the interaction between the QD
electron and the nuclear spins in an external magnetic
field is given by [51]

Ĥen = g⇤µBB0Ŝz +
X

j

h
gnµnB0Î

(j)
z + 2ajŜz Î

(j)
z

+ aj(Ŝ+Î
(j)
� + Ŝ�Î

(j)
+ )

i
(14)
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|li and nuclear state |ni0. Notice that the state |", 0i0
is a fixed point of the hyperfine interaction Eq. (16).
Choosing the duration t = ⇡/(2

p
�) results the electron

spin being flipped to |"i only if it is initially in the state
|#i and remaining unchanged otherwise, which erases the
memory of the electron, as represented by the mapping

|", 0i 7! |", 0i (26a)

|#, 0i 7! �i |", 1i0 . (26b)

The erasure stage is not complete, however, as the hy-
perfine interaction is ever present and the evolution de-
scribed by Eq. (21) beyond the time t = ⇡/(2

p
�) would

undo the erasure as the qdSHE undergoes its second cy-
cle. To be more specific, at the end of stage two (panel
(c) of Fig. 2) of the second cycle the system would be in
a statistical mixture of the states |", 0i, |#, 0i, |", 1i0 and
|#, 1i0; in the case of the state |", 1i0 the system would
evolve beyond t = ⇡/(2

p
�) according to Eq. (21) back

to |#, 0i, whereas the electron needs to remain unchanged
in this case because it is in the desired state |"i.

To avoid this problem and complete the erasure stage
at t = ⇡/(2

p
�), we would like to perform an operation on

the nuclei that transforms both states |", 0i and |", 1i0 on
the left sides of Eqs. (26) into fixed points of the hyperfine
interaction. To minimize losses, the desired operation
should not incur a cost in terms of spinlabor or work.

This leaves only the possibility of generating rela-
tive phase shifts between the terms on the right side of
Eq. (23), which can be implemented by briefly applying
an additional magnetic field Bpls that is directed along

the z direction, i.e. Bpls(rj) = Bpls(rj)k̂ where Bpls(rj)
is the magnitude of the field at the position rj of the
jth nucleus. If the duration of this magnetic pulse is
short compared to the spin flopping time of the order of
t ⇠ 10 ns, we can ignore the hyperfine interaction dur-
ing the pulse to a good approximation. Experimentally
magnetic pulses can be generated as short as 3 ps [52]
which easily satisfies this condition. We therefore model
the evolution of the nuclei during the pulse according to
the Hamiltonian

Ĥpls = gnµn

X

j

Bpls(rj)Î
(j)
z . (27)

The e↵ect of the pulse on the electron is the multiplica-
tion of its state by a trivial phase factor, which we ignore
for brevity. The e↵ect on the nuclei is to transform the
state |0i into e�i⇥⌧ |0i, and the state |1i0 into

|1i⌧ = Ûpls(⌧) |1i0 =
e�i⇥⌧

p
�

X

j

aje
�i✓j⌧I(j)� |0i (28)

where ⌧ is the duration of the pulse, Ûpls(⌧) = e�iĤpls⌧/~,
✓j ⌘ gnµnBpls(rj)/~ and ⇥ ⌘ 1

2

P
j ✓j . The combination

of the hyperfine interaction for t = ⇡/(2
p
�) followed by

the magnetic pulse gives the mapping

|", 0i 7! e�i⇥⌧ |", 0i (29a)

|#, 0i 7! �i |", 1i⌧ . (29b)

In Appendix B we show that further time evolution under
the hyperfine interaction results in

Û (e↵)
en (t) |", 1i⌧ = |", 1i⌧ + e�i⇥⌧ �̃(⌧)

�

⇥ {[cos(p�t)� 1] |", 1i0 � i sin(
p
�t) |#, 0i} (30)

where

�̃(⌧) ⌘
X

j

a2je
�i✓j⌧ . (31)

For suitable choices of the magnetic field Bpls(rj) and the
pulse duration ⌧ the factor �̃(⌧)/� is negligible. In that
case, the state |", 1i⌧ is an approximate fixed point of
the hyperfine interaction. As |", 0i is also a fixed point,
the erasure process is e↵ectively halted by the magnetic
pulse.
We now estimate the condition on the magnetic

field and pulse duration as follows. Using aj =
1
2Av0| (rj)|2, taking the wave function of the electron
to be a spherically symmetric Gaussian, i.e.  (x, y, z) =
1/(2⇡�2)3/4 exp[�(x2 + y2 + z2)/(4�2)] where � is the
standard deviation, treating the magnetic field to vary
linearly along the x direction only, i.e. Bpls(rj) =
bplsxj + C where bpls and C are constants and xj is the
x coordinate of rj , and approximating the sum over j as
a volume integral yields, from Eq. (31),

�̃(⌧) ⇡
Z

A2v20
4(2⇡�2)3

e�(x2+y2+z2)/�2�i�⌧xdxdydz (32)

=
A2v20

32⇡3/2�3
e��2⌧2�2/4 (33)

where � ⌘ gnµnbpls/~ and, for brevity, we have ignored
the overall phase factor due to the constant C of the
magnetic field. For comparison, the corresponding cal-
culation of � using Eq. (25) is

�̃(⌧) ⇡
Z

A2v20
4(2⇡�2)3

e�(x2+y2+z2)/�2

dxdydz (34)

=
A2v20

32⇡3/2�3
(35)

and so

�̃(⌧)

�
⇡ e��2⌧2�2/4 . (36)

For the magnetic pulse to be e↵ective, the right side
should to be negligible compared to unity, and so we
need �⌧ � 1/(2�), and thus

bpls⌧ � ~
2gnµn�

. (37)

In principle, there is no fundamental reason that
would prevent this condition from being achievable, but
whether it can be satisfied in practice is a question of
the available technology. As an example, consider the

|0i = |""" · · · "i
<latexit sha1_base64="bIhm22DRoyZ6m8SWbvGGc0F/rM0="></latexit><latexit sha1_base64="bIhm22DRoyZ6m8SWbvGGc0F/rM0="></latexit><latexit sha1_base64="bIhm22DRoyZ6m8SWbvGGc0F/rM0="></latexit><latexit sha1_base64="bIhm22DRoyZ6m8SWbvGGc0F/rM0="></latexit><latexit sha1_base64="MfGaM0g7G6vy+chYIdQZ3VF9inA="></latexit><latexit sha1_base64="MfGaM0g7G6vy+chYIdQZ3VF9inA="></latexit>
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transition by �E/~, where �E = 2 meV, as shown in
Fig. 2(b). The corresponding e↵ective Rabi frequency is

⌦ =
p

�2 + ⌦1
2 ⇡ 2 meV/~ gives the highest frequency

of the internal dynamics of the working fluid. The associ-
ated period is commensurate with the phonon coherence
time, which is of order 1 ps, and this justifies our use of
a non-Markovian treatment of the phonons.

Figure 3 compares the ground state population ⇢""
(blue curve), exciton population ⇢XX (red curve), change
in mean phonon number �N1 (magenta) and mean posi-
tion of the e↵ective mode Q1 (black, dashed) for di↵erent
combinations of temperature T and friction coe�cient
�ph. For T = 60 K, ~�ph = 0.001 meV, panel (a), almost
50% percent of the ground state population is transferred
to the exciton state at t ⇡ 10 ps, and for T = 150 K,
panel (c), approximately 60% population is transferred
at a slightly earlier time. Correspondingly, the change in
mean phonon number �N1 reduces showing that heat is
absorbed from the phonons. The non-Markovian nature
of the phonons is manifested in Q1 as oscillations about
a drifting mean. The absorbed heat, population trans-
fer and excursions in Q1 are all less pronounced for the
friction coe�cient of �ph = 0.1 meV (right panels).

The optimum duration of the first stage corresponds
to a pulse length that gives high exciton population and
phonon absorption. The first stage isn’t stopped exactly
at the maximum number of phonons absorbed as mea-
surements of the exciton population are accessed easier
experimentally. Thus we choose an exciton maxima that
coincides closely to the maximum phonon absorption.

B. Second stage: optical work output

The second stage entails a second laser field of Rabi
frequency ⌦2 that is resonant with the zero phonon line
of the |#i $ |Xi transition, as illustrated in Fig. 2(c).
Figure 4 shows a simulation of stage two for the param-
eter combination T = 60 K and ~�ph = 0.001 meV. To
minimize radiative decay from the exciton state, the sec-
ond stage begins immediately following the end of the
first stage at the optimum time of t ⇡ 8.7 ps. The Rabi
frequency ⌦R

2 = 4.316 meV/~ is chosen to maximize the
population transfer from |Xi to |#i and, as such, the
pulse area approximates a ⇡ pulse.

The net result of the first two stages is that ap-
proximately 50% of the population is transferred from
|"i to |#i. In this process, thermal phonon energy of
�E = 2 meV is converted to coherent light by stimu-
lated emission. Loss due to the spontaneous emission is
minimized since the population of |Xi is negligible at the
end of the second stage.

C. Third stage: information erasure

We focus on the ideal case where the nuclear spins are
initially fully polarised and, to demonstrate the underly-

ing principle as simply as possible, we limit the analysis
to nuclei with a spin quantum number of I = 1/2. We
use the notation |ni

x

to represent a collective state of
the nuclei in which n nuclei are in the state |#i and the
remainder are in |"i. If n > 0 the subscript x, which is
an n-dimensional vector, is used to uniquely specify one
of many possible collective states with the same z com-
ponent of the total spin angular momentum. We assume
that each nucleus is initially polarised with a z compo-
nent of spin of ~/2 (i.e. in state |"i), and write the initial
collective state of all the nuclei as |0i ⌘ |""" · · ·i.
For the first cycle of the qdSHE, the time evolution of

the electron-nuclear system follows [51]

Û (e↵)
en (t) |", 0i = |", 0i (20)

Û (e↵)
en (t) |#, 0i = cos(

p
�t) |#, 0i � i sin(

p
�t) |", 1i0 (21)

where

Û (e↵)
en (t) = exp[�iĤ(e↵)

en t/~] (22)

|1i0 = Î� |0i (23)

Î� ⌘ 1p
�

X

j

aj Î
(j)
� (24)

� ⌘
X

j
a2j (25)

and |l, ni0 represents the tensor product of electron state
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|li and nuclear state |ni0. Notice that the state |", 0i0
is a fixed point of the hyperfine interaction Eq. (16).
Choosing the duration t = ⇡/(2

p
�) results the electron

spin being flipped to |"i only if it is initially in the state
|#i and remaining unchanged otherwise, which erases the
memory of the electron, as represented by the mapping

|", 0i 7! |", 0i (26a)

|#, 0i 7! �i |", 1i0 . (26b)

The erasure stage is not complete, however, as the hy-
perfine interaction is ever present and the evolution de-
scribed by Eq. (21) beyond the time t = ⇡/(2

p
�) would

undo the erasure as the qdSHE undergoes its second cy-
cle. To be more specific, at the end of stage two (panel
(c) of Fig. 2) of the second cycle the system would be in
a statistical mixture of the states |", 0i, |#, 0i, |", 1i0 and
|#, 1i0; in the case of the state |", 1i0 the system would
evolve beyond t = ⇡/(2

p
�) according to Eq. (21) back

to |#, 0i, whereas the electron needs to remain unchanged
in this case because it is in the desired state |"i.

To avoid this problem and complete the erasure stage
at t = ⇡/(2

p
�), we would like to perform an operation on

the nuclei that transforms both states |", 0i and |", 1i0 on
the left sides of Eqs. (26) into fixed points of the hyperfine
interaction. To minimize losses, the desired operation
should not incur a cost in terms of spinlabor or work.

This leaves only the possibility of generating rela-
tive phase shifts between the terms on the right side of
Eq. (23), which can be implemented by briefly applying
an additional magnetic field Bpls that is directed along

the z direction, i.e. Bpls(rj) = Bpls(rj)k̂ where Bpls(rj)
is the magnitude of the field at the position rj of the
jth nucleus. If the duration of this magnetic pulse is
short compared to the spin flopping time of the order of
t ⇠ 10 ns, we can ignore the hyperfine interaction dur-
ing the pulse to a good approximation. Experimentally
magnetic pulses can be generated as short as 3 ps [52]
which easily satisfies this condition. We therefore model
the evolution of the nuclei during the pulse according to
the Hamiltonian

Ĥpls = gnµn

X

j

Bpls(rj)Î
(j)
z . (27)

The e↵ect of the pulse on the electron is the multiplica-
tion of its state by a trivial phase factor, which we ignore
for brevity. The e↵ect on the nuclei is to transform the
state |0i into e�i⇥⌧ |0i, and the state |1i0 into

|1i⌧ = Ûpls(⌧) |1i0 =
e�i⇥⌧

p
�

X

j

aje
�i✓j⌧I(j)� |0i (28)

where ⌧ is the duration of the pulse, Ûpls(⌧) = e�iĤpls⌧/~,
✓j ⌘ gnµnBpls(rj)/~ and ⇥ ⌘ 1

2

P
j ✓j . The combination

of the hyperfine interaction for t = ⇡/(2
p
�) followed by

the magnetic pulse gives the mapping

|", 0i 7! e�i⇥⌧ |", 0i (29a)

|#, 0i 7! �i |", 1i⌧ . (29b)

In Appendix B we show that further time evolution under
the hyperfine interaction results in

Û (e↵)
en (t) |", 1i⌧ = |", 1i⌧ + e�i⇥⌧ �̃(⌧)

�

⇥ {[cos(p�t)� 1] |", 1i0 � i sin(
p
�t) |#, 0i} (30)

where

�̃(⌧) ⌘
X

j

a2je
�i✓j⌧ . (31)

For suitable choices of the magnetic field Bpls(rj) and the
pulse duration ⌧ the factor �̃(⌧)/� is negligible. In that
case, the state |", 1i⌧ is an approximate fixed point of
the hyperfine interaction. As |", 0i is also a fixed point,
the erasure process is e↵ectively halted by the magnetic
pulse.
We now estimate the condition on the magnetic

field and pulse duration as follows. Using aj =
1
2Av0| (rj)|2, taking the wave function of the electron
to be a spherically symmetric Gaussian, i.e.  (x, y, z) =
1/(2⇡�2)3/4 exp[�(x2 + y2 + z2)/(4�2)] where � is the
standard deviation, treating the magnetic field to vary
linearly along the x direction only, i.e. Bpls(rj) =
bplsxj + C where bpls and C are constants and xj is the
x coordinate of rj , and approximating the sum over j as
a volume integral yields, from Eq. (31),

�̃(⌧) ⇡
Z

A2v20
4(2⇡�2)3

e�(x2+y2+z2)/�2�i�⌧xdxdydz (32)

=
A2v20

32⇡3/2�3
e��2⌧2�2/4 (33)

where � ⌘ gnµnbpls/~ and, for brevity, we have ignored
the overall phase factor due to the constant C of the
magnetic field. For comparison, the corresponding cal-
culation of � using Eq. (25) is

�̃(⌧) ⇡
Z

A2v20
4(2⇡�2)3

e�(x2+y2+z2)/�2

dxdydz (34)

=
A2v20

32⇡3/2�3
(35)

and so

�̃(⌧)

�
⇡ e��2⌧2�2/4 . (36)

For the magnetic pulse to be e↵ective, the right side
should to be negligible compared to unity, and so we
need �⌧ � 1/(2�), and thus

bpls⌧ � ~
2gnµn�

. (37)

In principle, there is no fundamental reason that
would prevent this condition from being achievable, but
whether it can be satisfied in practice is a question of
the available technology. As an example, consider the

Induces	  a	  phase	  in	  the	  state	  that	  restores	  the	  	  
fixed	  point	  proper/es	  	  
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|li and nuclear state |ni0. Notice that the state |", 0i0
is a fixed point of the hyperfine interaction Eq. (16).
Choosing the duration t = ⇡/(2

p
�) results the electron

spin being flipped to |"i only if it is initially in the state
|#i and remaining unchanged otherwise, which erases the
memory of the electron, as represented by the mapping

|", 0i 7! |", 0i (26a)

|#, 0i 7! �i |", 1i0 . (26b)

The erasure stage is not complete, however, as the hy-
perfine interaction is ever present and the evolution de-
scribed by Eq. (21) beyond the time t = ⇡/(2

p
�) would

undo the erasure as the qdSHE undergoes its second cy-
cle. To be more specific, at the end of stage two (panel
(c) of Fig. 2) of the second cycle the system would be in
a statistical mixture of the states |", 0i, |#, 0i, |", 1i0 and
|#, 1i0; in the case of the state |", 1i0 the system would
evolve beyond t = ⇡/(2

p
�) according to Eq. (21) back

to |#, 0i, whereas the electron needs to remain unchanged
in this case because it is in the desired state |"i.

To avoid this problem and complete the erasure stage
at t = ⇡/(2

p
�), we would like to perform an operation on

the nuclei that transforms both states |", 0i and |", 1i0 on
the left sides of Eqs. (26) into fixed points of the hyperfine
interaction. To minimize losses, the desired operation
should not incur a cost in terms of spinlabor or work.

This leaves only the possibility of generating rela-
tive phase shifts between the terms on the right side of
Eq. (23), which can be implemented by briefly applying
an additional magnetic field Bpls that is directed along

the z direction, i.e. Bpls(rj) = Bpls(rj)k̂ where Bpls(rj)
is the magnitude of the field at the position rj of the
jth nucleus. If the duration of this magnetic pulse is
short compared to the spin flopping time of the order of
t ⇠ 10 ns, we can ignore the hyperfine interaction dur-
ing the pulse to a good approximation. Experimentally
magnetic pulses can be generated as short as 3 ps [52]
which easily satisfies this condition. We therefore model
the evolution of the nuclei during the pulse according to
the Hamiltonian

Ĥpls = gnµn

X

j

Bpls(rj)Î
(j)
z . (27)

The e↵ect of the pulse on the electron is the multiplica-
tion of its state by a trivial phase factor, which we ignore
for brevity. The e↵ect on the nuclei is to transform the
state |0i into e�i⇥⌧ |0i, and the state |1i0 into

|1i⌧ = Ûpls(⌧) |1i0 =
e�i⇥⌧

p
�

X

j

aje
�i✓j⌧I(j)� |0i (28)

where ⌧ is the duration of the pulse, Ûpls(⌧) = e�iĤpls⌧/~,
✓j ⌘ gnµnBpls(rj)/~ and ⇥ ⌘ 1

2

P
j ✓j . The combination

of the hyperfine interaction for t = ⇡/(2
p
�) followed by

the magnetic pulse gives the mapping

|", 0i 7! e�i⇥⌧ |", 0i (29a)

|#, 0i 7! �i |", 1i⌧ . (29b)

In Appendix B we show that further time evolution under
the hyperfine interaction results in

Û (e↵)
en (t) |", 1i⌧ = |", 1i⌧ + e�i⇥⌧ �̃(⌧)

�

⇥ {[cos(p�t)� 1] |", 1i0 � i sin(
p
�t) |#, 0i} (30)

where

�̃(⌧) ⌘
X

j

a2je
�i✓j⌧ . (31)

For suitable choices of the magnetic field Bpls(rj) and the
pulse duration ⌧ the factor �̃(⌧)/� is negligible. In that
case, the state |", 1i⌧ is an approximate fixed point of
the hyperfine interaction. As |", 0i is also a fixed point,
the erasure process is e↵ectively halted by the magnetic
pulse.
We now estimate the condition on the magnetic

field and pulse duration as follows. Using aj =
1
2Av0| (rj)|2, taking the wave function of the electron
to be a spherically symmetric Gaussian, i.e.  (x, y, z) =
1/(2⇡�2)3/4 exp[�(x2 + y2 + z2)/(4�2)] where � is the
standard deviation, treating the magnetic field to vary
linearly along the x direction only, i.e. Bpls(rj) =
bplsxj + C where bpls and C are constants and xj is the
x coordinate of rj , and approximating the sum over j as
a volume integral yields, from Eq. (31),

�̃(⌧) ⇡
Z

A2v20
4(2⇡�2)3

e�(x2+y2+z2)/�2�i�⌧xdxdydz (32)

=
A2v20

32⇡3/2�3
e��2⌧2�2/4 (33)

where � ⌘ gnµnbpls/~ and, for brevity, we have ignored
the overall phase factor due to the constant C of the
magnetic field. For comparison, the corresponding cal-
culation of � using Eq. (25) is

�̃(⌧) ⇡
Z

A2v20
4(2⇡�2)3

e�(x2+y2+z2)/�2

dxdydz (34)

=
A2v20

32⇡3/2�3
(35)

and so

�̃(⌧)

�
⇡ e��2⌧2�2/4 . (36)

For the magnetic pulse to be e↵ective, the right side
should to be negligible compared to unity, and so we
need �⌧ � 1/(2�), and thus

bpls⌧ � ~
2gnµn�

. (37)

In principle, there is no fundamental reason that
would prevent this condition from being achievable, but
whether it can be satisfied in practice is a question of
the available technology. As an example, consider the

θ	  

or	   fixed	  	  
point	  or	  

θ	   θ	  

Need	  	   �̃(⌧)
�

⌧ 1
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(tough	  experimentally)	  	  
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