

Heat transfers within a nonequilibrium quantum fluid of polaritons

Maxime Richard

CNRS, Université Grenoble Alpes - Institut Néel, Grenoble, France

KITP, UCSB June 2018

Free space photons

• No interactions

00

Photons in planar optical cavity

Photons in planar optical cavity

- Well-defined rest mass: $m \downarrow \parallel c \uparrow 2 = \hbar \omega \downarrow 0$
- Well-defined in-plane momentum: ħk↓||
- Well defined kinetic energy: $\hbar\omega(k\downarrow\parallel) \simeq \hbar\omega\downarrow 0 + \hbar 12$ $k\downarrow\parallel 12/2m\downarrow\parallel$

 \approx

Photons in planar optical cavity

- Well-defined rest mass: $m \downarrow \parallel c \uparrow 2 = \hbar \omega \downarrow 0$
- Well-defined in-plane momentum: ħk↓||
- Well defined kinetic energy: $\hbar\omega(k\downarrow \parallel) \simeq \hbar\omega\downarrow 0 + \hbar 12$ $k\downarrow \parallel 12/2m\downarrow \parallel$
- No interactions

 \approx

1. Engineering Interactions

1. Engineering Interactions

Photons in planar optical cavity

1. Engineering Interactions

Photons in planar optical cavity

1. Engineering Interactions

Photons in planar optical cavity In the strong coupling regime

1. Engineering Interactions

1. Engineering Interactions

Photons in planar optical cavity In the strong coupling regime

→cavity photons get "dressed" by excitons :

Semiconductor quantum well e.g. GaAs, CdTe, ZnSe, ZnO etc...

1. Engineering Interactions

Photons in planar optical cavity In the strong coupling regime

→ cavity photons get "dressed" by excitons :

\int

→ u↓z Polaritons do interact With each others (via Coulomb)

Semiconductor quantum well e.g. GaAs, CdTe, ZnSe, ZnO etc...

1. Engineering Interactions

Photons in planar optical cavity In the strong coupling regime

Semiconductor quantum well e.g. GaAs, CdTe, ZnSe, ZnO etc... → cavity photons get "dressed" by excitons :

\int

→ u↓z Polaritons do interact With each others (via Coulomb)

Polaritons ≈ Fluids of 2D interacting photons

2. Driven-dissipative nature

Photons in planar optical cavity In the strong coupling regime

- EM vacuum
- (...) light

3. Polaritons easily turn quantum degenerate

3. Polaritons easily turn quantum degenerate

3. Polaritons easily turn quantum degenerate

• Integer spin

3. Polaritons easily turn quantum degenerate

- Integer spin
- $\rho(E) \propto m \downarrow \parallel (2D)$

$$\frac{m\downarrow\parallel}{\text{Mass Rb atom}} = 4 \times 10 \uparrow -10$$

3. Polaritons easily turn quantum degenerate

- $\frac{m\downarrow\parallel}{\text{Mass } \mathbf{Rb} \text{ atom}}$ Integer spin $-=4 \times 10 \ t - 10$
- $\rho(E) \propto m \downarrow \parallel (2D)$

"temperature" / Energy scale for quantum degeneracy is large and "easy" to reach experimentally

3. Polaritons easily turn quantum degenerate

Ex1: (2006) Driven-dissipative analog of **BE condensation** [1]

[1] J. Kasprzak, MR et al. Nature (2006)

"temperature" / Energy scale for quantum degeneracy is large and 'easy' to reach experimentally

3. Polaritons easily turn quantum degenerate

Ex1: (2006) Driven-dissipative analog of **BE condensation** [1]

Belongs to a **different universality class** than equilibrium condensation [1b,1c]

[1] J. Kasprzak, MR *et al.* Nature (2006)
[1b] L. M. Sieberer et al. , *Phys. Rev. Lett.* **110** 195301 (2013)
[1c] S. Diehl *Nat. Physics, News&Views*, **11** 446 (2015)

3. Polaritons easily turn quantum degenerate

Ex2: (2009) Superfluidity according to Landau's criterion [2]

Superfluid features captured by a driven-dissipative version of gross-Piteavskii equation [3]

[2] A. Amo et al. Nature Physics 5, 805 (2009)
[3] I. Carusotto and C. Ciuti Phys. Rev. Lett. 93, 166401 (2004)

3. Polaritons easily turn quantum degenerate

Ex3: Driven-dissipative quantum hydrodynamics (2008-ongoing) [4]

- Steady-state (SS) quantized vortices [5]
- SS Dark and bright **solitons** [6,7]
- Quantum turbulence and dynamics [8-10]
- Spinor degree of freedom [11,12]

[4] I. Carusotto and C. Ciuti, Rev. Mod. Phys. 85, 299 (2013)
[5] K. Lagoudakis, MR *et al.* Nat. Phys. 4 706 (2008)
[6] A. Amo et al., Science 332, 167 (2011)
[7] M. Sich et al. Nature Photonics 6, 50 (2012)
[8] G. Nardin et al. Nature Physics 7, 635 (2011)
[9] G. Grosso et al. Phys. Rev. Lett. 107, 245301 (2011)
[10] L. Dominici et al. Nat. Comm. 9, 1467 (2018)
[11] R. Hivet et al. Nat. Phys. 8, 724 (2012)
[12] K. Lagoudakis *et al.* Science 326 974 (2009)à

Vortex core 2

phonons

4. Polaritons also interact with solid-state vibrations

4. Polaritons also interact with solid-state vibrations

phonons

4. Polaritons also interact with solid-state vibrations

phonons

4. Polaritons also interact with solid-state vibrations

phonons

4. Polaritons also interact with solid-state vibrations

Dispersive coupling with the thermal bath of phonons

phonons

+ MMD-+

4. Polaritons also interact with solid-state vibrations

phonons

- 0000-

phonons ns

4. Polaritons also interact with solid-state vibrations

Ex4: Use a "cold" gas of polaritons as a refrigerant [13]

[13] S. Klembt,...MR, Phys. Rev. Lett. 114, 186403 (2015)

phonons

4. Polaritons also interact with solid-state vibrations

[13] S. Klembt,...MR, Phys. Rev. Lett. **114**, 186403 (2015)
Intermediate summary

Polaritons...

- Have the **kinetic** properties of **2D massive particles**
- Interact with each others -
- Get easily into quantum degeneracy

Microcanonical-like thermalization channel

- are in a driven-dissipative situation
- Interact with the thermal phonons bath

 Canonical-like thermalization channel

Intermediate summary

Polaritons...

- Have the kinetic properties of 2D massive particles
- Interact with each others
- Get easily into quantum degeneracy
- are in a driven-dissipative situation
- Interact with the thermal phonons bath

Two intrinsically competing features :

Towards a dynamically stable steady-state

Towards thermal equilibrium

1. **Define, measure, and control** *w*, the ratio of thermal-todynamical regime in a polariton fluid

2. « Hybrid » properties of a polariton condensate at the thermal-todynamical **crossover** (w=1)

Towards thermal equilibrium

Towards a dynamically stable steady-state

i.e. the ratio of thermal-to-dynamical regime in a polariton fluid

Incoherent nonresonant optical excitation

i.e. the ratio of thermal-to-dynamical regime in a polariton fluid

Typical measurement under incoherent excitation (phonons Tp=10K)

i.e. the ratio of thermal-to-dynamical regime in a polariton fluid

Incoherent nonresonant optical excitation

Typical measurement under incoherent excitation (phonons Tp=10K)

1. Define and measure *w* i.e. the ratio of thermal-to-dynamical regime in a polariton fluid

 $\gamma(C12, T\downarrow P) = \gamma \downarrow rad (C12)$)+

* C² is the photonic fraction of the polariton state

Typical measurement under incoherent excitation (phonons Tp=10K)

1. Define and measure *w* i.e. the ratio of thermal-to-dynamical regime in a polariton fluid

Typical measurement under incoherent excitation (phonons Tp=10K)

 $\gamma(C12, T\downarrow P) = \gamma I \text{rad} (C12) + \gamma I \text{nr} (C12)$

* C² is the photonic fraction of the polariton state

1. Define and measure *w* i.e. the ratio of thermal-to-dynamical regime in a polariton fluid

Typical measurement under incoherent excitation (phonons Tp=10K)

1. Define and measure *w* i.e. the ratio of thermal-to-dynamical regime in a polariton fluid

Typical measurement under incoherent excitation (phonons Tp=10K)

i.e. the ratio of thermal-to-dynamical regime in a polariton fluid

i.e. the ratio of thermal-to-dynamical regime in a polariton fluid

 $\gamma l rad (C12) + \gamma l nr (C12)$

w(Tp) is experimentally extracted and quantitatively understood

1. Define and measure *w* i.e. the ratio of thermal-to-dynamical regime in a polariton fluid

Definition of the thermal-to-dynamical interaction rate ratio

$w(C\uparrow 2, T\downarrow P) \equiv w(C\uparrow 2, T\downarrow P)/\gamma \downarrow rad(C\uparrow 2) + \gamma \downarrow nr(C\uparrow 2)$

1. Define and measure *w* i.e. the ratio of thermal-to-dynamical regime in a polariton fluid

Definition of the thermal-to-dynamical interaction rate ratio

 $w(C12,T\downarrow P) \equiv w(C12,T\downarrow P)/\gamma \downarrow rad(C12) + \gamma \downarrow nr(C12)$

w, \approx degree of thermalization, is a control parameter of the phase transition \rightarrow Hybrid nature of the phenomenon

Coherence length **decreases** for increasing \boldsymbol{w} \rightarrow nonequilibrium analog of thermal depletion of the condensate

Phase of the condensate

Demonstrate and characterize a **hybrid** quantum phase transition :

- Half controlled by drive and losses and
- Half controlled by thermalization
- **Properties are hybrid** as well, with features typical from both realms [13]

Demonstrate and characterize a hybrid quantum phase transition :

- Half controlled by drive and losses and
- Half controlled by thermalization
- Properties are hybrid as well, with features typical from both realms [13]
- w continuously bridges two different universality classes... how do we make sense of that ? Could it define a new class in itself ?

Demonstrate and characterize a hybrid quantum phase transition :

- Half controlled by drive and losses and
- Half controlled by thermalization
- Properties are hybrid as well, with features typical from both realms [13]
- w continuously bridges two different universality classes... how do we make sense of that ? Could it define a new class in itself ?
- > What determines the stability of topological excitations at $w \sim 1$

Demonstrate and characterize a hybrid quantum phase transition :

- Half controlled by drive and losses and
- Half controlled by thermalization
- Properties are hybrid as well, with features typical from both realms [13]
- w continuously bridges two different universality classes... how do we make sense of that ? Could it define a new class in itself ?
- \blacktriangleright What determines the stability of topological excitations at $w \sim 1$
- New resources to manipulate heat and work: many-body quantum degrees of freedom + not constrained by thermal equilibrium [14]
 → e.g. performances and resources of a polaritonic engine at finite *w* ~1? [15]

[13] S. Klembt,..., MR, Phys. Rev. Lett. **120**, 035301 (2018)
[14] S. Klembt,..., MR, Phys. Rev. Lett. **114**, 186403 (2015)
[15] K. Rojan,..., MR & A. Minguzzi, Phys. Rev. Lett **119**, 127401 (2017)

Acknowledgments

"Quantum fluids of light" people

Acknowledgments

Positions available !

Experiments

Petr Stepanov

Sebastian Klembt Thorsten Klein

MACQUARIE University

Thomas Volz

ANR

Theory

Anna Minguzzi

Universiteit Antwerpen

lacopo Carusotto Michiel Wouters

Available Resources in a polaritonic engines

[16] I. Savenko *et al*. Phys. Rev. Lett. **110** 127402

Results: Vortices thermal disconnection

Results: Vortices thermal disconnection

Results: Vortices thermal disconnection

Captures the vortices thermal disconnection

Would require beyond mean-field to capture the disconnection temperature

Spatial correlations

Spatial correlations

Spatial correlations

Phase pattern

Vortex thermal stability analysis

Vortex thermal stability analysis

Semiconductor microcavity

Planar semiconductor microcavity

Semiconductor microcavity

