A single ion spin heat engine coupled to a harmonic oscillator flyweel

- Trapped ion basics
- Trapped ion quantum computing
- Single-ion Otto heat engine
- Spin-driven heat engine
- Future: multi-ion crystal quantum heat engine

F. Schmidt-Kaler

www.quantenbit.de

Harmonic oscillator wavefunctions in a Paul trap

$$H_{oscillator} = \hbar \omega_{ax} (a^{\dagger}a + \frac{1}{2})$$

 $\Delta x \sim 10$ nm $\Delta \omega / 2\pi \sim 1$ MHz n ~ 3/s

Eigen functions and energies:

$$E(n) = \hbar \omega_{ax} \left(n + \frac{1}{2} \right)$$

Laser Excitation of a single Ion

Allows for preparing and measuring phonons

Sideband cooling into the motional ground state

Signature: no further excitation allowed "Dark state" |0>

Single ion qubit manipulation

- Single photon detuning Δ much larger than natural linewidth
- Very small spont. scattering rate
- Effective two-level system

Four beams near 397nm used pairwise in different configurations

Single qubit rotation

- Copropgating beams
- No effective k-vector
- No coupling to ion motion
- 99,9949(2) % fidelity gates

$$\Omega_{Raman} \propto \frac{\Omega_r \Omega_b}{\Delta}$$

Designed qubit interactions

Interaction of spin 1 and 2 due to coupling to common mode of vibration

Spin-dependent light forces

Monroe, et al, Science **272**, 1131 (1996) Leibfried et al., Nature 412, 422 (2003) McDonnell et al. PRL **98**, 063603 (2007)

Poschinger et al, PRL105, 263602 (2010)

Scalable Quantum computing

Laser pulses generate entangled states Segmented Micro trap allows controlling the ion positions

Ion movement – qubit register reconfigration

- Shuttle ion crystal
- Separate two-ion crystal
- Merge into two-ion crystal
- Swap ion positions
- Shuttle single ion

Geometric phase gate 99.5(1)% fidelity on *radial* mode

Walter et al., PRL109, 080501 (2012) Kaufmann et al, NJP 16, 073012 (2014) Kaufmann et al, RPA 95, 052319 (2017)

2- and 3-qubit shuttle and swapping

Kaufmann et al., PRA 95, 052319 (2017)

"Knitting together" a 4-ion GHZ state

Full state tomography yields **94.7 % fidelity** from about 50k measurements.

Kaufmann et al, PRL 119, 150503 (2017)

equivalent circuit:

0000> + |1111>

Experimental sequence uses > 300 shuttling operations for SB cooling, state preparation, quantum circuit, state analysis.

Key figures, now and future, for trapped ion-QC

- Gates, read-out of spin state better $1 10^{-4...5.6}$, typ. 30μ s, few μ s
- Qubit register reconfiguration operations, few μ s to 100 μ s ~ 1 μ s
- Long coherence times, up to a few seconds ≥ seconds with dynamical decoupling pulse sequences, decoherence-free substates, >10s ...minutes

Optimization of speed and fidelity required, challenge scalability to > 50 qubits

Goal: Implementing topological error correction

Bermudez et al, Phys. Rev. X 7, 041061, Nigg et al., Sci. 234, 302 (2014)

$$S_{z}^{(2)} = Z_{2}Z_{3}Z_{5}Z_{6}$$

$$S_{x}^{(2)} = X_{2}X_{3}X_{5}X_{6}$$

$$S_{x}^{(2)} = X_{2}X_{3}X_{5}X_{6}$$

$$S_{x}^{(1)} = Z_{1}Z_{2}Z_{3}Z_{4}$$

$$S_{x}^{(1)} = X_{1}X_{2}X_{3}X_{4}$$

$$S_{x}^{(1)} = X_{1}X_{2}X_{3}X_{4}$$

$$S_{x}^{(3)} = Z_{3}Z_{4}Z_{6}Z_{7}$$

$$S_{x}^{(3)} = X_{3}X_{4}X_{6}X_{7}$$

- Trapped ion basics
- Trapped ion quantum computing
- Single-ion Otto heat engine
- Spin-driven heat engine
- Future: multi-ion crystal quantum heat engine

Proposals

Maser Scovil et al, PRL 2, 262 (1959)

Three Level System Geva et al., J Chem Phys (1996)

Quantum Thermodynamics Gemmer et al, Springer, Lect Notes 784 (2009), Anders, Esposito, NJP 19, 010201 (2017)

Quantum dot Esposito et al., PRE 81, 041106 (2010)

The working principle – single ion HE

Doppler heating/cooling in radial direction induces axial displacement

Equilibrium position shifted

Pseudopotential

To reach reach large axial amplitudes of movement

- strong radial confinement
- weak axial confinement

Stroboscopic motion measurements

Reading the position of the piston

Princeton Instruments ICCD:

- 8 ns gate time
- 10 MHz frame reate

Working principle and results

 $P = 3.4 \times 10^{-22} \text{ J/s}$

 $\eta = 0.28\%$

Roßnagel, et al. Sci. 352, 325 (2016)

Heat-Engine Operation in the Quantum Regime

Generic heat engine	Implementation with a trapped ⁴⁰ Ca ⁺ ion
Working medium	Spin of the valence electron: $ \uparrow\rangle$, $ \downarrow\rangle$
Thermal baths	Controlling the spin by optical pumping
Gearing mechanism	Spin-dependent optical dipole force
Storage for delivered work	Axial oscillation: $ 0\rangle$, $ 1\rangle$, $ 2\rangle$,

Controlling the Spins Thermodynamics

Function	Cooling	Heating
Polarisation	circular	linear
Duration	180 ns	130 ns
Excitation (p_{\uparrow})	0.545(2)	0.828(3)
Temperature	0.4 mK	3.5 mK
Period (= axial oscillation)		740 ns

Heat-Engine setup

Analysis - photon number distributions

18 µs

Fitting Rabi-Oscillation to phonon number distributions p_n

Analysis - photon number distributions

0.005

0

-20

70

80

50

n

60

Poschinger et al,

 $Re(\alpha)$

Outcome

the Q-function

- Mean energy
- Coherent displacement
- Relative fluctuations
- Ergotropy

measured for the machine starting from n=0 after an operation time t

Simple Model

Classical equation of motion: $m\ddot{x} = -\omega x^2 + S(t)\Delta_S^{(0)}\sin(kx)$

Numerically calculated trajectories

Spin polarization

- Fluctuations between different realizations
- Width of calculated energy distribution fits data

Poschinger et al,

Goals:

• Autonomous machine operation

- Implement multi-ion spin-driven engines
- Fully controlled ancilla-bath, non-Markowian
- Quantum entanglement in heat engines
- Interconnection between quantum error correction, quantum computing and heat engines

The team

www.quantenbit.de

Folman @Be'er Sheva Retzker @Jerusalem Zoller, Blatt @Innsbruck Budker, Walz @Mainz Lesanowski @Nottingham Wrachtrup @Stuttgart Zanthier, Lutz @Erlangen Plenio, Jelezko, Calacro@Ulm Jamieson @Melburne

