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XXZ m
odel   

1D system
s -> m
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ore easily strongly correlated,    tools
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Stability

Generating 
Correlations

Probing System
s

J.-S. Bernier et al. PRA (2013)
D.P. et al PRL (2012)

C. Guo et al. PRA (2018) 

Relaxation Regim
es

B.Sciolla. et al PRL (2015)

Localization

X. Xu et al. PRB (2018) 

M
ethods

X. Xu et al. in preparation 

Interplay betw
een interactions

and dissipation
•

Steady states 
•

O
ut-of-equilibrium

 phase transitions  
•

Transient correlations

•
Relaxation regim

es
•

Propagation correlations 
•

M
ethods 

•
…

 

Spreading correlations

J.-S. Bernier. et al PRL (2018)

Tim
e crystals 

R.R.W
. W

ang et al PRE (2018)
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Patil et al. Phys. Rev. Lett. (2015) 
Laser intensity    

Take bosons in a lattice and shine light 
at low

 intensity on it such that there 
can be fluorescence. 

Studying the light em
itted you can 

learn about the system
 properties.      
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Ultracold
gases

experim
ents

prided
them

selves
to

be
clean

and
close.

Now
they

can
be

open
and

also
disordered

…
butin

a
controlled

w
ay!

Luschen
et al. Phys. Rev. X (2017) 

Experim
ents 

Take a strongly interacting disordered 
Hubbard m

odel. It is m
any-body 

localized -> the population im
balance I 

betw
een nearest sites stays large. 

But once dephasing is applied the 
Im

balance w
ill decay. 

𝛾
decay rate     
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Schindler et al. N
at Phys (2013) 

Experim
ents 

Another w
ay to study experim

entally 
these system

s is by using  a quantum
 

sim
ulator. 

Here trapped ions by Blatt’s group. 

𝑈
=
𝑒
𝐿
𝑑𝑡=

𝑒
𝐻
+
𝐷
𝑑𝑡≈

𝑒
𝐷
𝑑𝑡𝑒

𝐻
𝑑𝑡
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Strategies to study m
anybody

open quantum
 system

s
(w

hich cannot be diagonalized)

Large (sm
all) baths 

•
Couple the m

any-body system
 to another m

any-body system
 

•
Represent the bath’s harm

onic oscillators as a chain     

System
Bath2

Bath1

M
ascarenhaset al. 

Znidaricet al.  
Biella et al.  
Balachandran et al. 
Ponom

arev
et al.  

…
 

M
ascarenhaset al., Q

uantum
 (2017) 
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Strategies to study m
anybody

open quantum
 system

s
(w

hich cannot be diagonalized)

Large (sm
all) baths 

•
Couple the m

any-body system
 to another m

any-body system
 

•
Represent the bath’s harm

onic oscillators as a chain     

System
 (can be m

any body) 

Therm
ofield transform

ation + star to chain m
apping

de Vega and Banuls, PRA (2015) 

Bath2

U
se M

PS 
algorithm

s 
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Strategies to study m
anybody

open quantum
 system

s
(w

hich cannot be diagonalized)

Local Lindblad m
aster equations 

•
Local jum

p operators (w
ith or w

ithout unraveling) 

w
here 𝑉𝑘

is local (m
ost of the tim

e single site).   
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Local Lindblad m
aster equations can be done in different w

ays. O
ne of the 

m
ost prom

ising is  

Another possibility is to use the m
ethod of surrogate Ham

iltonian 

Prosen, ZnidaricJStatM
ech

(2009)
M

endozaArenaset al (2018)  

Gelm
an et al., J. Chem

. Phys. (2004) 
Torrontegui, KosloffN

JP (2016)     

Portion of system
 in 

contact w
ith bath L 

Portion of system
 in 

contact w
ith bath R 

System
Spins

Sw
ap
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How
 to effectively m

odel baths for m
any-body quantum

 system
s is som

ething 
w

hich deserves to be studied further. 

And rem
em

ber that one needs to be careful, because single site local Lindblad 
m

aster equations have been show
n to result in apparent violations of the 

second law
. 

W
e show

 here one of the tw
o approaches that w

e have been exploring. 

1)
Redfield m

aster equation 
2)

Therm
ofield transform

ation 

before this …
 a little discussion on M

atrix Product States and O
perators      

Levy, Kosloff, EPL (2014) 

de Vega and Banuls, PRA (2015)
Guo et al. PRA (2018)  

Redfield, J Res Dev (1957) 



•
Size of |𝜓

>
scales as 𝑑

𝐿
w

here 𝑑
is the size of the local 

Hilbert space w
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Size of |𝜓

>
scales as 𝑑

𝐿
w

here 𝑑
is the size of the local 

Hilbert space w
hile 𝐿

is the size of the system
  

•
Rew

rite |𝜓
>

as the product of a series of 3-dim
ensional 

tensors  

•
N

ow
 it scales polynom

iallyw
ith system

 size 

𝜓
=


𝜎
1 ,𝜎

2 ,⋯
,𝜎
𝐿 𝐶

𝜎
1 ,𝜎

2 ,⋯
,𝜎
𝐿|𝜎1 ,𝜎2 ,⋯

,𝜎
𝐿 〉

BIG
 PR

O
BLEM

!!! 

U. Schollw
ock, Ann. Phys. 326, 96 (2011)

Standard tool for 1-
dim

ensional quantum
 

m
any body system

s!
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U. Schollw
ock, Ann. Phys. 326, 96 (2011)
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Forthe
sim

ulation
w

e
m

ap
the

density
operatorto

a
state

by
the

m
apping

The
evolution

isthen
given

by

And
w

e
use

m
atrix

productstates
(orexactdiagonalization)w

ith
num

berconservation
in

bra
and

ket

Verstraete
et al., PRL.(2004)

exam
ple

w
ith

dephasing
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How
ever

it
is

dynam
ics

dependent
w

hether
the

needed
bond

dim
ension

D
for

an
accurate

evolution
is

less
for

stochastic
evolution

of
for

purification
(evolution

of
the

density
m

atrix).

Daley, Adv. Phys. (2014)
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M
PS

U
sing

stochastic
trajectoriesisofcourse

also
possible.

Bonnes, Lauchli, arXiv:1411.4831

Both
m

ethodsare
used.
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X. Xu
SU

TD
C. Guo

SU
TD/ZISTI

+ D.P.

J. Thingna
Luxem

bourg
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arkov

approxim
ation

Itispossible
to

w
rite

a
second-orderm

asterequation
in

thisform

W
here

,

and
w

ith

and

System
 S bath B 

coupling

Bath 2-tim
e correlations

Evolution of operator
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Redfield

W
e

considera
system

and
a

bath.

Considerw
eak

coupling,𝛾
sm

all,Born-M
arkov

approxim
ation

Itispossible
to

w
rite

a
second-orderm

asterequation
in

thisform

W
here

,

System
 S bath B 

coupling

Solved usually by exact 
diagonalization of 

system
 Ham

iltonian!  

Q
uickly difficult for 

m
any-body system

s
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w
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W
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Redfield w
ith M
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W
e

now
show

how
to

study
large(r)system

w
ith

Redfield
and

M
PS

W
e

considerthe
system

coupled
to

the
bath

only
in

the
centre

ofthe
chain

Thiscan
be

seen
asan

M
PO

w
hich

w
e

then
evolvesin

tim
e

Trotterized
evolution and convolution w

ith bath correlations  
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Redfield w
ith M

PS

W
e

now
show

how
to

study
large(r)system

w
ith

Redfield
and

M
PS

W
e

considerthe
system

coupled
to

the
bath

only
in

the
centre

ofthe
chain

Site num
ber

Initial M
PO

s

Size MPO
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W
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ith M
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W
e

now
show

how
to

study
large(r)system

w
ith

Redfield
and

M
PS

W
e

considerthe
system

coupled
to

the
bath

only
in

the
centre

ofthe
chain

Superoperator
as M

PO
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Redfield w
ith M

PS

Then
w

e
use

the
M

PO
to

evolve
the

M
PS

follow
ing

(w
e

use
Runge-Kutta)

M
PO

s after 
som

e tim
e

M
PS after 

som
e tim

e

Site num
ber

Size MPO/MPS
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W
e

considerand
XXZ

chain

bath
ofharm

onic
oscillators

and
coupling

in
the

m
iddle
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W
hat w

e got …
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Letuslook
atthe

localm
agnetization

versustim
e

fordifferentpositions

Ballistic
propagation

forthe
tails

N
on-ballistic

in
the

centre

U
nitary

evolution
of

single
spin

flipped
dow

n

Itexplainsthe
tails

∆=
5,ℎ

=
0.5,𝜔

𝑐
=
20,𝑇

=
2,𝛾

=
0.02
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W
hat w

e got …
. 

Letuslook
atthe

localm
agnetization

versustim
e

fordifferentpositions

To
study

the
evolution

w
e

look
at

how
the

perturbation
due

to
the

bath
propagates

in
the

system
.

U
nitary

evolution

Dissipative
evolution

for
5,9,13

and
21

spins
∆=

5,ℎ
=
0.5,𝜔

𝑐
=
20,𝑇

=
2,𝛾

=
0.02
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W
hat w

e got …
. 

W
e

com
pare

Redfield
to

m
asterequationsin

Lindblad
lim

it

1)
Singularcoupling

lim
it

2)
LocalHam

iltonian
neglectcouplings

betw
een

sites
W

ichterich
etal.PRE

(2007)

Both
approxim

ations
w

ork
betterfor

largertem
peratures.

11 sites 
correlations

Local 
m

agnetization

∆=
0.5,ℎ

=
0.5,𝜔

𝑐
=
20,𝛾

=
0.02
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W
hat w

e got …
. 

W
e

com
pare

Redfield
to

m
asterequationsin

Lindblad
lim

it

1)
Singularcoupling

lim
it

2)
LocalHam

iltonian
neglectcouplings

betw
een

sites
W

ichterich
etal.PRE

(2007)

Different interactions

Both
approaches

w
hich

give
Lindblad

evolutions
struggle

to
capture

the
dependence

on
the

interaction

ℎ
=
0.5,𝜔

𝑐
=
20,𝑇

=
2,𝛾

=
0.02

∆=
0.5

∆=
1.5

∆=
3.0

∆=
5.0
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M
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a
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W
e
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ed

how
to

use
the

Redfield
m

asterequation
forlarge

system
s

W
e

show
ed

thatthanks
to

this
m

aster
equation

w
e

can
explore

a
m

uch
broader

setof
regim

es.
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Conclusions 

M
any-body

quantum
system

scan
be

a
usefulw

orking
fluid

Im
portantto

m
odelproperly

bathsforthem

W
e

show
ed

how
to

use
the

Redfield
m

asterequation
forlarge

system
s

W
e

show
ed

thatthanks
to

this
m

aster
equation

w
e

can
explore

a
m

uch
broader

setof
regim

es.

O
utlook 

Steady
states

w
ith

Redfield
and

M
PS?

Tim
e-dependence?

…



Bath 1
M

any-body quantum
 

w
orking fluid

Bath 2



Bath 1
M

any-body quantum
 

w
orking fluid

Bath 2
Rectification

V. Balachandran
E. Pereira

G. Benenti
G. Casati

+ D.P.

Physical Review
 Letters 120, 200603 (2018) 
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Rectification is characterized by 

The Contrast is also useful

Current in forw
ard bias

Current in reverse bias Bath 2
Bath 1

Q
uantum

 system

Bath 2
Bath 1

Q
uantum

 system

for perfect 
diode

→
∞

→
1
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Terraneo
et al. PRL (2002) 

Li et al PRL (2004)  
…

 
Li et al. Rev M

od Phys (2012)
…
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classicalchain

ofparticles
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reflection
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a
diode
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Excitations are gapped and localized at the boundary: but only in reverse bias    
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W
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W
e have found that thanks to the interplay betw

een baths and interactions not only it is 
possible to rectify currents but in the therm

odynam
ic lim

it the system
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W
hat about therm

al baths? 
W

e use global Lindblad baths, for w
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e do exact diagonalization, and 
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e still see strong rectification as the anisotropy ∆
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CONCLUSIONS

•
M

any-body open quantum
 system

s are the best! 
•

Em
erging properties  

•
Phase transitions    

•
…

 

•
Im

plem
entation of Redfield     

•
Perfect diode 

OUTLOOK

•
W

e need to understand them
 better  

•
W

e need to find w
ays to understand them

 better!  
•

Extract w
ork    

•
…
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