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0 Motivation
@ Foundations of quantum statistical mechanics
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Foundations of quantum statistical mechanics

Quantum ergodicity: John von Neumann ‘29
(Proof of the ergodic theorem and the
H-theorem in quantum mechanics)
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Foundations of quantum statistical mechanics

Quantum ergodicity: John von Neumann ‘29
(Proof of the ergodic theorem and the
H-theorem in quantum mechanics)

Recent works (keywords)
Tasaki ‘98
(From Quantum Dynamics to the Canonical Distribution. . .)

Goldstein, Lebowitz, Tumulka, and Zanghi ‘06

(Canonical Typicality)

Popescu, Short, and A. Winter ‘06

(Entanglement and the foundation of statistical mechanics)

Goldstein, Lebowitz, Mastrodonato, Tumulka, and Zanghi ‘10
(Normal typicality and von Neumann’s quantum ergodic theorem)

MR and Srednicki ‘12
(Alternatives to Eigenstate Thermalization)
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0 Motivation

@ Experiments with ultracold quantum gases
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Experiment with ultracold bosons in one dimension

Effective 1D ¢ potential
M. Olshanii, PRL 81, 938 (1998).

Uip(z) = g1nd(x)

Lieb-Liniger parameter
_ Mmgip
h2p
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Experiment with ultracold bosons in one dimension
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Dipolar quantum Newton’s cradle (dysprosium atoms)
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Y. Tang, W. Kao, K.-Y. Li, S. Seo, K. Mallayya, MR, S. Gopalakrishnan, and B. L. Leyv,

Phys. Rev. X 8, 021030 (2018).
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Dipolar quantum Newton’s cradle (dysprosium atoms)
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Y. Tang, W. Kao, K.-Y. Li, S. Seo, K. Mallayya, MR, S. Gopalakrishnan, and B. L. Leyv,
Phys. Rev. X 8, 021030 (2018).
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9 Quantum chaos and random matrix theory
@ Classical mechanics
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Classical chaos and integrability

Particle trajectories in a circular cavity and a Bunimovich stadium (scholarpedia)
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Classical chaos and integrability

Particle trajectories in a circular cavity and a Bunimovich stadium (scholarpedia)

@ A Hamiltonian H(p, q), with q = (q1,--- ,g~) @and p = (p1,--+ ,pn), IS
said to be integrable if there are N functionally independent constants
of the motion I = (I3, -- - , Inx) in involution:

of 99 Of 9y
IC“H =Y, IOMI =Y, h ) = - A T s -
{la, HY =0, {Io,3} =0, where {f,g}= 3 oooh—ood

i=1,N
Liouville’s integrability theorem: (p, q)—(I, ®), so that H(p, q)—H (I).
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Classical chaos and integrability

Particle trajectories in a circular cavity and a Bunimovich stadium (scholarpedia)

@ A Hamiltonian H(p, q), with q = (q1, -+ ,g~) @and p = (p1,--+ ,pn), IS
said to be integrable if there are N functionally independent constants
of the motion I = (I3, --- , In) in involution:

- _ _ N~ 2l 00 0f 0y
{I.,H} =0, {I.,Iz}=0, where {f g}= i:XI:N Ba: 9o Op: Bar’
Liouville’s integrability theorem: (p,q)— (I, ®), so that H(p, q)—H (I).

@ Chaos: exponential sensitivity of the trajectories to perturbations
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9 Quantum chaos and random matrix theory

@ Random matrix theory
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Random matrix theory

@ Wigner (1955) & Dyson (1962): Statistical properties of the spectra of
complex quantum systems (in a narrow energy window) can be pre-
dicted from the statistical properties of the spectra of random matrices
(with the appropriate symmetries). It was used with great success to
understand the spectra of complex nuclei.
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Random matrix theory

@ Wigner (1955) & Dyson (1962): Statistical properties of the spectra of
complex quantum systems (in a narrow energy window) can be pre-
dicted from the statistical properties of the spectra of random matrices
(with the appropriate symmetries). It was used with great success to
understand the spectra of complex nuclei.

Distribution of level spacings for the “Nuclear Data Ensemble”

10 T T —
I Poisson NDE 1
L 1726 spacings 4
051 ¥, b
GOE
L - i
1 1
0 1 2 3

T. Guhr et al., Physics Reports 299, 189 (1998).

Marcos Rigol (Penn State) Dynamics in quantum systems June 6, 2018



Semi-classical limit: Statistics of energy levels

@ Berry-Tabor conjecture (1977): The statistics of level spacings of quan-
tum systems whose classical counterpart is integrable is described by
a Poisson distribution. (Energy eigenvalues behave like a sequence of
independent random variables.)
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Semi-classical limit: Statistics of energy levels

@ Berry-Tabor conjecture (1977): The statistics of level spacings of quan-
tum systems whose classical counterpart is integrable is described by
a Poisson distribution. (Energy eigenvalues behave like a sequence of
independent random variables.)

@ Bohigas, Giannoni, and Schmit (1984): At high energies, the statistics
of level spacings of a particle in a Sinai billiard is described by a Wigner-
Dyson distribution. This was conjecture to apply to quantum systems
that have a classically chaotic counterpart (violated in singular cases).
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Semi-classical limit: Statistics of energy levels

@ Berry-Tabor conjecture (1977): The statistics of level spacings of quan-
tum systems whose classical counterpart is integrable is described by
a Poisson distribution. (Energy eigenvalues behave like a sequence of
independent random variables.)

@ Bohigas, Giannoni, and Schmit (1984): At high energies, the statistics
of level spacings of a particle in a Sinai billiard is described by a Wigner-
Dyson distribution. This was conjecture to apply to quantum systems
that have a classically chaotic counterpart (violated in singular cases).

Distribution of level spacings: rectangular and chaotic cavities

/GOE distribution

s=0 1 2
Z. Rudnik, Notices AMS 55, 32 (2008).
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Integrability to quantum chaos transition

Spinless fermions (hard-core bosons, spin-1/2) in one dimension

L
IA{ = Z {—t <f;rfz+1 + H.C.) + Vﬁiﬁi+1 —t (fjfl_l,_Q + H.C.) + V/’fli’fl,i_i_z}
=1
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Integrability to quantum chaos transition

Spinless fermions (hard-core bosons, spin-1/2) in one dimension

L
=3 {=t (flfi1 +He) + Vinag — ¢ (f fira + He) + Voo )
=1

Level spacing distribution (Ny = L/3)

1 T

t'=V’=0.00

t'=V’=0.02

t’'=V"=0.04

t’'=V'=0.32

t'=V'=0.64

Marcos Rigol (Penn State)

ISR o

L. Santos and MR, PRE 81, 036206 (2010); PRE 82, 031130 (2010).
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e Dynamics and thermalization
@ Quantum mechanics vs statistical mechanics
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Exact results from quantum mechanics

If the initial state is not an eigenstate of
i) # [a) where Hla) = Eqla) and  E = (ini H|¢ini),
then observables O evolve in time:

O(7) = (W(1)|Op(r)) where [(r)) = e A7 |ghm).
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Exact results from quantum mechanics

If the initial state is not an eigenstate of
|Ymi) # la) where Hla) = Ealo) and E = (g H|vmi),
then observables O evolve in time:
O(r) = W(DIOl(r))  where (7)) = e~ ym).
What is it that we call thermalization?

O(r>7")~O(E) ~O(T) ~ O(T, ).
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Exact results from quantum mechanics

If the initial state is not an eigenstate of H
|Ymi) # la) where Hla) = Ealo) and E = (g H|vmi),
then observables O evolve in time:
O(r) = (()IOf(r)) where [$(r)) = e~ thn).
What is it that we call thermalization?
O(tr >7") ~O(E) ~ O(T) ~ O(T, ).

One can rewrite

O(1) =Y CrCue"Fa=PBo)T005 using  |Yhn) = Y _ Cala).
o, a
Taking the infinite time average (diagonal ensemble ppe = 3", |Ca|?|a){c|)

Ot = Jim [ dr' (WO} = 3 CalOna = (O

which depends on the initial conditions through C,, = (a|¢ini).
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Energy fluctuations after a sudden quench (locality)

Initial state i) = >, Cao|a) is an eigenstate of Hini. Att =0

Ho— H=Hy+W with W=> () and Hla)= Eala).
J

MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).
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Energy fluctuations after a sudden quench (locality)

Initial state i) = >, Cao|a) is an eigenstate of Hini. Att =0

Ho— H=Hy+W with W=> () and Hla)= Eala).
J

The energy fluctuations after a quench, AE, are:

AE = \/Z EZ|Cal? — (D BalCal?)? = \/<¢ini\w2|¢ini> — (i [ W),

from which it follows that:

AE = Z [<wini|w(j1)w(j2)|1/’ini> - <wini|1I)(j1)|¢ini><¢ini|w(j2)|"/}ini>] N&oo \/N7

J1.J2

where N is the total number of lattice sites.

MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).
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Energy fluctuations after a sudden quench (locality)

Initial state i) = >, Cao|a) is an eigenstate of Hini. Att =0

Ho— H=Hy+W with W=> () and Hla)= Eala).
J

The energy fluctuations after a quench, AE, are:

AE = \/Z EZ|Cal? — (D BalCal?)? = \/<¢ini\w2|¢ini> — (i [ W),

from which it follows that:

AE = [ [(tbinild (51 )i (G2) [eoni) — (il (51) b} (i D (5z) )] Y& VN,

J1,32
where N is the total number of lattice sites.
They are subextensive as in traditional ensembles in statistical mechanics.

MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).
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e Dynamics and thermalization

@ Dynamics
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Numerical experiments in one dimension

Hard-core bosons (b2 = b> = 0) in one-dimension

L
=Y {—t (BZTBZ-H + H.c.) + Vi —t (Bji)m + H.c.) + V'mﬁ,-+2}
=1
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Numerical experiments in one dimension

Hard-core bosons (b2 = b> = 0) in one-dimension

L
=Y {—t (BZTBM + H.c.) + Vi —t (Bji)m + H.c.) + V'mm+2}
=1

“One can rewrite

= CiCee"Pa"E)T0,5 using  [in) = D _ Cala).
o, «

Taking the infinite time average (diagonal ensemble ppe = 3", |Ca|?|a){c|)

_ . 1 /7
O(r) = lim = [ dr'(¥(+")|O|¥(r Z|C ?0Oaa = (O)pE,

which depends on the initial conditions through C,, = (a|¢ini).”
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Numerical experiments in one dimension

Hard-core bosons (b2 = b> = 0) in one-dimension
L
I;[ = Z {—t (BIBH-l aF H.C.) + Vit — v (BIIA)H_Q + H.C.) aF Vlﬁiﬁi+2}
i=1

Nonequilibrium dynamics in 1D (density-density structure factor)

Time evolution of N(k)
T

T
time average -+
41=0000

N, = 8 hard-core bosons
N = 24 |lattice sites
Fix ¢ = V' and “quench”

tini = 0.5, Vini = 2
— tfin = 1;Win =1

. .
—n2 0 w2
ka

MR, PRL 103, 100403 (2009).
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Integrated results for L = 24, N, = 8

Relative difference

_ SkIN (k) — Nog(k)

o) > Noe(h)
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Integrated results for L = 24, N, = 8

Relative difference

_ X4 IN(k, 7) — Nog(k)|
Zk NpE(k)

r'=V'=0.24 — L=24

ON(T)

0.1

3N,
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Scaling of the integrated results with system size

Relative difference

_ X4 IN(k, 7) — Nog(k)
Zk NpE(k)

r=v'=0.24 — L=2I

ON(T)
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e Dynamics and thermalization

@ Thermalization
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Statistical description after relaxation (nonintegrable)

Canonical calculation

Oce = Tr {OﬁCE}
PcE = Z(;El exp (—f[/kBT>
Zce = Tr {exp (—I:I/kBT)}

E=Tr {fIﬁCE} T =30
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Statistical description after relaxation (nonintegrable)

Canonical calculation o SUUEHITE i
A L Initial
OCE =Tr {OﬁCE} 03 E — l;l;algonal
R ’ - = = Canonical

PcE = Z(;El exp (—H/kBT> 205
Zoe = Tr {exp (—I:I/kBT)} 01 I

E=Tr{fjce} T=30 ol

T /2 0 /2 TC
ka
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Statistical description after relaxation (nonintegrable)

Canonical calculation 04 Sttucture factor
AL L Initial
OCE =Tr {OPCE} 03 —— Diagonal
— — Canonical
PCE = ZEEI exp (—H/kBT) § 0
Zoe = Tr {exp (—I:I/kBT)} 01 I
E:Tr{fIﬁCE} T =30 ol
-T /2 0 /2 T
ka
. ) ) 0.4 T T T
Microcanonical calculation - Initial
03 —— Diagonal
a i — — Microcanonical
OME = Z<\I’a|0|qja> =

N, states ~ =02
with £ — AFE < E, < E+ AFE
Niaes = # of states in the window

- -m/2 0 /2 T
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Thermalization and the lack thereof at integrability

Relative difference
>k [Npe(k) — Nve(k)|

Zk Npe (k>
o_
0.08¢ :
i o=~ T=2.0, =21
0.06 oo T=2.0, L=24 :

=—=a7=3.0, L=24

Diff. Diag. vs Microcan.
o
(e)
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e Dynamics and thermalization

@ Eigenstate thermalization
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Eigenstate thermalization

Paradox?

2 1Cal0u = NEAE Y. Ou

|E—E.|<AE

Left hand side: Depends on the initial conditions through C,, = (a|ini)
Right hand side: Depends only on the energy
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Eigenstate thermalization

Paradox?
Z |C | OaOé -

Left hand side: Depends on the initial conditions through C,, = (a|ini)
Right hand side: Depends only on the energy

Oaa

N
EAE \p_p,|<AE

Eigenstate thermalization hypothesis (ETH): diagonal part
[Deutsch, PRA 43 2046 (1991); Srednicki, PRE 50, 888 (1994);

MR, Dunjko, and Olshanii, Nature 452, 854 (2008).]

The expectation value («|O|«) of a few-body observable O in an
eigenstate of the Hamiltonian |«), with energy E,, of a large in-

teracting many-body system equals the thermal average of O at
the mean energy E,,:

(@|Ola) = Ome(Ea)
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ETH — away from integrability (' = V' =

Structure factor =
. . . 2, —— Diagonal
Eigenstates with energies closestto £ .1} — — cigenstate I
- eigenstate 2 |
- — - eigenstate 3
0 " 1 " " 1 "
-T -T/2 0 /2 T
ka
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ETH — away from integrability (' = V' =

Structure factor =
. . . = —— Diagonal
Eigenstates with energies closestto £ .1} — — cigenstate I
- eigenstate 2 |
- — - eigenstate 3
0 " 1 " " 1 "
- -T/2 0 /2 T
06 T T T I T T T T T T T T ka
05k - L=21 ]
’ o - L=24
20T g, Canonical 1 N (k = 7) vs eigenstate energy
Lo3f . . . _
= ook There is no eigenstate thermaliza-
Tt tion at the edges of the spectrum
011 7 (there is no quantum chaos either)
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EJL
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Breakdown of ETH at integrability (¢ = V' = 0)

0.2
Structure factor

Eigenstates with energies closestto £ ¢ 1}

N(k)

— Diagonal

— — eigenstate 1
- eigenstate 2 |

C— eiglenstate 3

- -1/2 0 /2 s
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Breakdown of ETH at integrability (¢ = V' = 0)
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Eigenstate thermalization in the 2D AF-TFIM

Hamiltonian: H = J ) ~6{6§ +9> 6 +e> 6%,

(1,3)
N=10 - N=12 N =16 - N=18 N =20
20
(a) (b) (©)] (G)]
15 N s
E 10
\2)
5
0 .
-2 2 —04 0.0 0.4 0.8 —04 0.0 04 0.8
gL« (e) (4] , (h)
w
$6 0
= e=g=25
X
2
0.0 0.4 08 —-06 -03 00 03 06 -0.8 .4 0.0 0.4 0.8

Y0 o0 o4 08 ~04 0
Eo/[(17]+ g+ ¢)N]

Eo/[(I7]+ g +€)N] Eo/[(17] + g +)N]
R. Mondaini, K. R. Fratus, M. Srednicki, and MR, PRE 93, 032104 (2016).

Eo/[(IJ] +g+¢)N]

Santos & MR’10, Khatami et al.’13, Sorg et al’14, Kim et al.’"14, Beugeling et al’14’'15,

Steinigeweg et al.’14’15, Luitz’'16, Luitz & Bar Lev'16...
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Smallness of the time fluctuations

Relative difference

_ X4 IN(k, 7) — Nog(k)
Zk NpE(k)

r=v'=0.24 — L=2I

ON(T)
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Time fluctuations

Are they small because of dephasing?

_— (Ba—Eg)t ’L(E EB)t
C*C 6 B O ~ —O
O(t) - O(t) Zﬁj o Z r—
a#p a;ﬁﬁ
VN2 i ;
~ V- 'states Otyplcal N Otyplcal
Netates  *° ab
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Time fluctuations

Are they small because of dephasing?

’L(E —Ep)t

C* C 6 i(Eq Eg)to -~ "0
O(t) - O(t) Zﬁj o Z r—
a#fB a;ﬁﬁ
/N2 i :
~ states Otyplcal N Otyplcal
Netates P ab

Time average of O(t)

W = Z |Ca|20aa
~>

N,
o~ {Vstates

typical
O ~ OXP

Marcos Rigol (Penn State) Dynamics in quantum systems June 6, 2018 29/37



Time fluctuations

Are they small because of dephasing?

E— o 5y ei(Ba—Ep)t
O(t) - 0(t) = D CiChe'®=P 005~ 3 T Nages 8
a,B B states
a#fB a#f
/N2 i :
~ states Otyplcal N Otyplcal
Netates P af

Time average of O(t)

W = Z |Ca|20aa

(e

1 .

typical

~ Y froOaa ~ OY
— Nstates

Dephasing is not enough.
One needs 07 < OYpiea

[e7e%
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Time fluctuations

Are they small because of dephasing?

N (Ba—Ep)t z(E —Ep)t
O(t) — O(t CCge™ MO~ O
() ¢ ; of Z Netates "
a#fB oc;éﬁ
NL .
~ states Otyplcal N Otyplcal
Netates P ab
Neg(k=m)l
Time average of O(t) 50 0 0.09
— 2
- Z |Ca| Oaa 25
~ ~ Otypical @ 0
Z Nstates o
N -25
Dephasing is not enough.
typical |
One needs 05 < OYP? _50
MR, PRA 80, 053607 (2009). wom L B
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Eigenstate thermalization hypothesis

Eigenstate thermalization hypothesis
M. Srednicki, J. Phys. A 32, 1163 (1999); L. D’Alessio et al., Adv. Phys. 65, 239 (2016).

Oaﬁ = O(E)(sag + C_S(E)/Qfo(E,w)Rag

where E = (E, + Eg)/2, w = E, — Eg, S(E) is the thermodynamic entropy at
energy E, and R, is a random number with zero mean and unit variance.
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Eigenstate thermalization hypothesis

Eigenstate thermalization hypothesis
M. Srednicki, J. Phys. A 32, 1163 (1999); L. D’Alessio et al., Adv. Phys. 65, 239 (2016).

Oaﬁ = O(E)(sag + C_S(E)/Qfo(E,w)Rag
where E = (E, + Eg)/2, w = E, — Eg, S(E) is the thermodynamic entropy at
energy E, and R, is a random number with zero mean and unit variance.
Off-diagonal matrix elements [histogram of (|Oag| — |Oaglave)/|Oas|avel

T
Nonintegrable - m(k=0) 4+ E
-1 - n(x=0) 5
- ave m(k=0) [

0

0 5 0 15
E -E
a B

E. Khatami, G. Pupillo, M. Srednicki, and MR, PRL 111, 050403 (2013).
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Matrix elements of Hermitian operators within RMT

Let O = 3, Os)i)(i|, where Oli) = O;li),

Oagp = (a|018) = Eo (al)( Zown e

|o) and |B) are eigenstates of a random matrix. Averaging over |a) and |3)
(random orthogonal unit vectors in arbitrary bases): (y&)*(?) = 4 500
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Matrix elements of Hermitian operators within RMT

Let O = 3, Os)i)(i|, where Oli) = O;li),
Oagp = (a|018) = Eo (al)( Zo (@) 9!

|o) and |B) are eigenstates of a random matrix. Averaging over |a) and |3)
(random orthogonal unit vectors in arbitrary bases): (y&)*(?) = 4 500

This means that (to leading order):

1 _ I —
OaazﬁgOiEO, while O.5 =0 for o #p6.
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Matrix elements of Hermitian operators within RMT

Let O = 3, Os)i)(i|, where Oli) = O;li),
Oagp = (a|018) = Eo (al)( Zo (@) 9!

|o) and |B) are eigenstates of a random matrix. Averaging over |a) and |3)
(random orthogonal unit vectors in arbitrary bases): (y&)*(?) = 4 500

This means that (to leading order):

1 ~ . .

Oaa = 5;01- =0, while O.3=0 for a#8.
One can further show that (n = 2 for GOE and n = 1 for GUE):

"2 2_ . 2z 1 2 _ A3
02, — Oca = N|Oasl? = EZOZ» = 507

Marcos Rigol (Penn State) Dynamics in quantum systems June 6, 2018

31/37



Matrix elements of Hermitian operators within RMT

Let O = 3, Os)i)(i|, where Oli) = O;li),
Oagp = (a|018) = Eo (al)( Zo (@) 9!

|o) and |B) are eigenstates of a random matrix. Averaging over |a) and |3)
(random orthogonal unit vectors in arbitrary bases): (y&)*(?) = 4 500

This means that (to leading order):
1 _ . .
Oaa = 5;01 =0, while O.3=0 for a#8.
One can further show that (n = 2 for GOE and n = 1 for GUE):
A2 . A 2_ o 2. "1 2 _ N7z
O%a = Oaa” = n[Oasl? = 5 Zi:oi = 507
Combining these results one can write
_ |02
Oup =~ O(SQB + 5Ra5,
where R,z is a random variable (real for GOE and complex for GUE).
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Ratio of variances in the 2D F-TFIM

Hamiltonian: B = —J ) "676f +g» 67
(i) i

Ratio of variances for the ferromagnetic structure factor
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R. Mondaini and MR, PRE 96, 012157 (2017).
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@ Equilibration and thermalization
occur in generic isolated systems
* Finite size effects
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@ Equilibration and thermalization %
. o (hermal
occur in generic isolated systems
* Finite size effects

Ep 7 thermal Thermal state

e Eigenstate thermalization hypothesis v
* <\IJ01’O|\I]0¢> = <O>microcan.(Ea)

@ Thermalization and ETH break down
at, and close to (finite L), integrability
% Quantum equivalent of KAM?

time,

dephasing

Initial state

@ Small time fluctuations <— smallness of
off-diagonal elements

° Tlme plays only an aUX”Iary r0|e ‘ EIGENSTATE THERMALIZATION
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@ Equilibration and thermalization Q
. o thermal
occur in generic isolated systems
thermal Thermal state

* Finite size effects %9

° Eigenstgte thermalization hypothesis
* <\IJ01’O|\I]0¢> = <O>microcan.(Ea)

@ Thermalization and ETH break down
at, and close to (finite L), integrability
% Quantum equivalent of KAM?

time,

dephasing

Initial state

@ Small time fluctuations <— smallness of
off-diagonal elements

° Tlme plays Only an aUX”Iary r0|e ‘ EIGENSTATE THERMALIZATION

@ Integrable systems are different
(Generalized Gibbs ensemble)
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Coherence after quenches in Bose-Fermi mixtures

Delocallzed fermions Bose- Emstem condensate

\Q/\A\A/\/\/\/\/K/\Q/

A2
- _Quench | Jj —
No dynamlcs No dynamics Dynamics
W/\ \/ \//\ \&f s
c1 02 0102 #0 01 02 #0

S. Will, D. lyer, and MR
Nat. Commun. 6, 6009 (2015).

Marcos Rigol (Penn State) Dynamics in quantum systems June 6, 2018 35/ 37



Coherence after quenches in Bose-Fermi mixtures

Delocalizeq\fermions Bose-Einstﬁin condensate
N
\YYAY YAYYAYYAV /aV
AA—AA—ATAATA
a=Aa/2
—J Quench L
No dynamics No dynamics Dynamics
WAJ VV
c c1 Eo)#

np sin[rnpjle?nB [cos(UFBt/R)—1]

(&l 2ot0) (8) = F :

npr and np are the fermion and boson fillings.

S. Will, D. lyer, and MR
Nat. Commun. 6, 6009 (2015).
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Coherence after quenches in Bose-Fermi mixtures

Delocalized\fermions Bose-Einstﬁin condensate
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S. Will, D. lyer, and MR
Nat. Commun. 6, 6009 (2015).
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Coherence after quenches in Bose-Fermi mixtures
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Coherence after quenches in Bose-Fermi mixtures

) . o 2hky
Delocalized fermions Bose-Einstein condensate 5 2,

NYAYYaYVavvaviaVy,

T

T
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® =200 ps >
H Y

]
Integration

No dynamics No dynamics

Integrated density n (a.u.)

n(t)- n(t)

Momentum, Ky (Kiar)
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S. Will, D. lyer, and MR
Nat. Commun. 6, 6009 (2015).
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Coherence after quenches in Bose-Fermi mixtures
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Information entropy (S; = — 3, |cf|?In |c¥}?)
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L.F. Santos and MR, PRE 81, 036206 (2010); PRE 82, 031130 (2010).
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Fluctuation-dissipation theorem (dipolar bosons)

Occupation in the center of the tra P
2 ° P (1;=1/2) Hamiltonian

L=15,N=5 Z=1
integ. 10 H=—-J E (b;bj+1 + HC)
Jj=1

+Vy _ﬁﬁl‘s EDIAL
J

<l

magnetic atoms, polar molecules

2 . . s . . .
il momint C or Relaxation dynamics
O(t) = C(t)O(t = 0)
where
o) = o(t + t)O(t')
(O@))*
0 5 10 15 0 5 10 15 20 Srednicki, JPA32, 1163 (1999).

E. Khatami, G. Pupillo, M. Srednicki, and MR, PRL 111, 050403 (2013).
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