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Universal Quantum Gates
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Controlled Not

Any N qubit operation can be 
carried out using these two gates.
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Single Qubit Rotation
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One way to go…

Loss and DiVincenzo, ‘98

| 0    = |1    =

Manipulate electron spins with electric and magnetic fields to 
carry out quantum gates.

Problem:  Errors and Decoherence!  May be solvable, but it 
won’t be easy!



Another way to go…



Fractional Quantum Hall (FQH) States

B

An incompressible quantum liquid can form when the Landau 
level filling fraction ν = nelec(hc/eB) is a rational fraction.

Occurs when a two-
dimensional electron gas is 
placed in a magnetic field

Great stuff, but what does this have to do with quantum computing?

Quasiparticle excitations can have fractional charge.
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Quasiparticles (charge = e/3,  for ν = 1/3)

Fractional Quantum Hall (FQH) States

B

An incompressible quantum liquid can form when the Landau 
level filling fraction ν = nelec(hc/eB) is a rational fraction.

Occurs when a two-
dimensional electron gas is 
placed in a magnetic field

Great stuff, but what does this have to do with quantum computing?

Quasiparticle excitations can have fractional charge.



Topological Degeneracy (X.G. Wen)
A theoretical curiosity:  FQH states on topologically nontrivial 
surfaces have degenerate ground states which can only be 
distinguished by global measurements.

Degeneracy
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For the ν = 1/3 state:
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Non-Abelian FQH States (Moore, Read ’91)

Fractionally charged quasiparticles

A degenerate Hilbert space whose dimensionality is exponentially 
large in the number of quasiparticles.

States in this space can only be distinguished by global 
measurements provided quasiparticles are far apart.

Essential features:

A perfect place to hide quantum information!



Exchanging Particles in 2+1 Dimensions

Particle “world-lines” form braids in 2+1 (=3) dimensions

1 time
dimension

2 space dimensions



Exchanging Particles in 2+1 Dimensions

Particle “world-lines” form braids in 2+1 (=3) dimensions

Clockwise
exchange

Counterclockwise
exchange



Fractional (Abelian) Statistics

iψ

i
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f e ψψ ϑ=

Phase

θ = 0    Bosons 

θ = π Fermions

θ = π/3    ν=1/3 quasiparticles

Only possible for particles in 2 
space dimensions.
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degenerate states

Non-Abelian Statistics (Moore, Read ’91)
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Non-Abelian Statistics (Moore, Read ’91)
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ψ i Matrix!

Matrices form a non-Abelian representation of the braid group.

(Related to the Jones Polynomial, TQFT (Witten), Conformal Field 
Theory (Moore, Seiberg), etc.)  
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Many Non-Abelian Anyons



Matrix depends only on the topology of the braid swept out by anyon
world lines!

Robust quantum computation?
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ν = 5/2
Very likely a Moore-Read “Pfaffian” 
state.  

Charge e/4 quasiparticles with braiding 
properties described by SU(2)2 Chern-
Simons Theory.

Not sufficiently “rich” nonabelian
statistics to do universal quantum 
computation.

Possible Non-Abelian FQH States

J.S. Xia et al., PRL (2004).

Nayak and Wilczek,  1996

Moore and Read, 1991
Morf, 1998

But see, S. Bravyi, quant-ph/0511178 and
M. Freedman, C. Nayak and K. Walker, 
cond-mat/0512066.



ν = 12/5
Possibly a Read-Rezayi k = 3 
“Parafermion” state. 

Charge e/5 quasiparticles with braiding 
properties described by SU(2)3 Chern-
Simons Theory.

SU(2)3 is sufficiently “rich” to do 
universal quantum computation.

Possible Non-Abelian FQH States

J.S. Xia et al., PRL (2004).

Slingerland and Bais, 2001

Freedman, Larsen, and Wang, 2001

Read and Rezyai, 1999



A Fibonacci Anyon

1. Fibonacci anyons have a quantum attribute known as q-spin:

The laws of Fibonacci anyons:

q-spin = 1

2. A collection of Fibonacci anyons can have a total q-spin of  
either 0 or 1:

0,1

Notation:  Ovals are labeled
by total q-spin of enclosed
particles.

Fibonacci Anyons

Fibonacci

(Kuperberg, Preskill)



3. The “fusion” rule for combining q-spin is:     1 x 1  =  0 + 1

This means that two Fibonacci anyons can have total q-spin 0 or 1, 
or be in any quantum superposition of the two.

α +   β
0 1

0 11 1 1 0

Two dimensional
Hilbert space

Three Fibonacci anyons Three dimensional Hilbert space

α + β + γ

Fibonacci Anyons
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q-spin Fusion Diagram
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0 1 1 0 1

q-spin
States are paths in 
the fusion diagram
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1 0 1 1 0

q-spin
Here’s another one
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1      2       3       4       5       6      7       8       9

5 8 13 21

3 5 8 13

q-spin

Count states by counting paths

• Hilbert space dimensionality grows as the Fibonacci sequence!

• Exponentially large in the number of quasiparticles, so big
enough for quantum computing.



The F Matrix
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Changing fusion bases:



The R Matrix

0
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Exchanging particles:

F and R must satisfy certain consistency 
conditions (the “pentagon” and 
“hexagon” equations).  For Fibonacci 
anyons these equations uniquely 
determine F and R.
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Encoding a Qubit

0 1

Non-Computational State

State of qubit is determined by
q-spin of two leftmost particles

Qubit States

1 0

Transitions to this state are
leakage errors

1 1
=1

=0

(Freedman, Larsen, and Wang, 2001)



Braiding Matrices for 3 Fibonacci Anyons
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Single Qubit Operations

Important consequence: As long as we braid within a qubit, 
there is no leakage error.

1 1

Can we do arbitrary single qubit rotations this way?

General rule: Braiding inside an oval does not change the total q-spin
of the enclosed particles.



Single Qubit Operations are Rotations

2 π

−2 π

2 π−2 π

The set of all 
single qubit

rotations lives in a 
solid sphere of 

radius 2π.

αUψ ψαU
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N = 1
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Brute Force Search

Brute force searching rapidly becomes infeasible as 
braids get longer.

Fortunately, a clever algorithm due to Solovay and 
Kitaev allows for systematic improvement of the 
braid given a sufficiently dense covering of SU(2).
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Solovay-Kitaev Construction

Braid Length c|ln| ε 4≈c,
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Problems:
1. We are pulling quasiparticles out of qubits: Leakage error!

2. 87 dimensional search space (as opposed to 3 for three-
particle braids).  Straightforward “brute force” search is 
problematic.

Qubit 1

Qubit 2

1

1

?

?

SU(5)+SU(8)

What About Two Qubit Gates?



a

b

1

1

Goal: Find a braid in which some rotation is performed on the 
target qubit only if the control qubit is in the state 1.  (b=1)

Two Qubit Controlled Gates

Control qubit

Target qubit



Weave a pair of anyons from the control qubit between anyons in 
the target qubit.  

a

b
control

pair

Important Rule: Braiding a q-spin 0 object does not induce transitions.

Target qubit is only affected if control qubit is in state   1

(b = 1)

Constructing Two Qubit Gates by “Weaving”

1

1



Only nontrivial case is when the control pair has q-spin 1.  

a

control
pair

Constructing Two Qubit Gates by “Weaving”

1

1

We’ve reduced the problem to weaving one anyon around 
three others.   Still too hard for brute force approach!



a

control
pair

OK, Try Weaving Through Only Two Particles

1

1

Question:  Can we find a weave which does not lead to 
leakage errors?

We’re back to SU(2), so this is numerically feasible.



A Trick:  Effective Braiding

Actual Weaving Effective Braiding

The effect of weaving the blue anyon through the two green 
anyons has approximately the same effect as braiding the two
green anyons twice.



Controlled–“Knot” Gate

Effective braiding is all within the target qubit No leakage!

Not a CNOT, but sufficient for universal quantum computation.



Another Trick:  Injection Weaving
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Step 1:  Inject the control pair into the target qubit.



control 
pair
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Step 2: Weave the control pair inside the injected target qubit.

control 
pair



Step 3: Extract the control pair from the target using the inverse of 
the injection weave.

control 
pair

Putting it all together we have a CNOT gate:

Injection Rotation Extraction



Solovay-Kitaev Improved CNOT



Universal Set of Fault Tolerant Gates

φUψ ψφUSingle qubit rotations:

Controlled NOT:



Quantum Circuit
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Braid


