Exploring Novel Phases in Cold Quantum Gases

H.P. Büchler

Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften, Innsbruck, Austria

Atomic quantum gases

Bose-Einstein condensation

- Gross-Pitaevskii equation
- non-linear dynamics

Rotating condensates

- vortices
- fractional quantum Hall

Quantum degenerate dilute atomic gases of fermions and bosons

Molecules

- Feshbach resonances
- BCS-BEC crossover
- dipolar gases

Optical lattices

- quantum information
- Hubbard models
- strong correlations
- exotic phases

Atomic gases in an optical lattice

Preparation

- lattice loading schemes
- controlled single particle manipulations (entanglement)
- decoherence of qubits

Thermodynamics

- Hubbard models
- design of Hamiltonians
- strongly correlated many-body systems

Measurement

- momentum distribution
- structure factor
- pairing gap
- ...

Bose-Hubbard tool box

Optical lattices

- standing laser configuration

- characteristic energies

$$E_{\rm r} = \frac{\hbar^2 \mathbf{k}^2}{2m} \sim 10 \rm{kHz}$$
$$V_0/E_{\rm r} \sim 50$$

- high stability of the optical lattice

1D, 2D, and 3D Lattice structures

Internal states

- spin dependent optical lattices
- alkaline earth atoms

Control of interaction

 $r_0^3 n \ll 1$

- pseudo-potential approximation

Scattering properties

- scattering amplitude:

$$f(k) = -\frac{1}{1/a_s + ik}$$

- bound state energy $a_s > 0$: $E_{\rm M} = -\frac{\hbar^2}{ma_s^2}$

Tuning of scattering length

- changing the first "bound state" energy via an external parameter
 - magnetic Feshbach resonance
 - optical Feshbach resonance

Microscopic Hamiltonian

$$H = \int dx \ \psi^{+}(x) \left(-\frac{\hbar^{2}}{2m} \Delta + V(x) \right) \psi(x) + \frac{g}{2} \int dx \ \psi^{+}(x) \psi^{+}(x) \psi(x) \psi(x)$$
optical lattice
$$g = \frac{4\pi \hbar^{2} a_{s}}{m} \quad \text{:interaction strength}$$

- strong opitcal lattice $V>E_{
 m r}$
- express the bosonic field operator in terms of Wannier functions
- restriction to lowest Bloch band (Jaksch et al PRL '98)

$$\psi(\mathbf{x}) = \sum_{i} w(\mathbf{x} - \mathbf{x}_i)b_i$$

Bose-Hubbard Model

Bose-Hubbard model (Fisher et al PRB '81)

 $U \sim E_{\rm r} a_s / \lambda$ $J \sim E_{\rm r} e^{-2\sqrt{\nu}}$

Phase diagram

Superfluid

- long-range order
- finite superfluid stiffness
- linear excitation spectrum

Experiments

Long-range order:

(Greiner et al., 02)

Disappearance of coherence for strong optical lattices (Greiner et al. '02)

$$\frac{V}{E_r} > 13$$

Appearance of well defined two particle excitations

Ring exchange and Exotic phases in cold gases

(H.P. Büchler, M. Hermele, S.D. Huber, M.P.A Fisher, and P. Zoller, PRL '05)

Exotic phases

What is an exotic phase?

- the low energy properties of the system are dominated by a symmetry not present in the microscopic model

emergent symmetry

- local conserved quantity, local gauge symmetries
- fractional excitations
- spin-liquid, resonating valence bond (RVB), Coulomb phase

Applications

- topological protected quantum memory and quantum computing (Kitaev et al, '97, loffe et al., Nature '02)
- how often do they appear in nature?

Ring exchange

Ring exchange

- bosons on a lattice

$$H_{\rm R-E} = K \left[b_1^+ b_2 b_3^+ b_4 + b_1 b_2^+ b_3 b_4^+ \right]$$

Relation to dimer models

- ring exchange energy

- kinetic energy in the dimer model

Scattering Resonance

Geometric scattering resonance

- bosons in an optical lattice
- coupling to an artificial 'molecular' state (analogy of Feshbach resonance)
- tuning the energy of the 'molecule'

scattering resonance with large interactions

b_4 b_3 b_3 b_1 b_2

Effective coupling Hamilton

Scattering Resonance

Geometric scattering resonance

- bosons in an optical lattice
- coupling to an artificial 'molecular' state (analogy of Feshbach resonance)
- tuning the energy of the 'molecule'

scattering resonance with large interactions

Effective coupling Hamilton

d-wave symmetry

 $m^+ [b_1 b_3 - b_2 b_4] + c.c.$

Ring exchange

Lattice gauge theory

3D setup

- atoms on links of a 3D cubic lattice
- molecular site in the center of each face
- half-filling: 3/2 bosons on each cube

3D lattice gauge theory

- lattice of corner-sharing octahedra
- ring exchange leaves the number of bosons on each octahedra invariant
- gauge transformation

n red corner / *m* blue corner

 $b_{\langle nm \rangle} \rightarrow b_{\langle nm \rangle} e^{i[\chi(n) - \chi(m)]}$

Lattice gauge theory

Confined phase

- all excitations are gapped
- electric charges are linear confined

Coulomb phase

- spin liquid phase
- electric charges interact
 - via Coulomb potential
- two artificial light modes

Phase diagram

Superfluid phase

- broken U(1) symmetry
- finite superfluid stiffness

Exotic phase

- Coulomb phase of the U(1) lattice gauge theory
- no broken symmetries
- artificial QED: linear light mode
- fractional excitations with Coulomb interaction

Conclusion

Quantum Simulator

- study of systems with ring exchange interaction
- sign problem in Monte-Carlo simulations

Design of Novel Materials

- realization of spin liquids
- artificial QED
- topological order

Spectroscopic Measurement

- measurement of correlation in bosonic systmes
- detection of non-conventional order parameters

