Topological order and quantum entanglement

Michael Levin, Xiao-Gang Wen

Gapped

- Gapped
- Degenerate ground state on torus

- Gapped
- Degenerate ground state on torus
- Fractional statistics

- Gapped
- Degenerate ground state on torus
- Fractional statistics
- "Topological order"

Real life examples

• FQH liquids.

Real life examples

- FQH liquids.
- Hope: Frustrated magnets
 - Many theoretical models
 - A few candidate materials
 - Cs₂CuCl₄
 - κ -(BEDT-TTF)₂Cu₂(CN)₃

Theory of topological phases

Theory of topological phases

- We have:
 - Low energy effective theory: TQFT
 - Mathematical framework: Tensor categories
 - Physical picture: String condensation, etc.

Theory of topological phases

- We have:
 - Low energy effective theory: TQFT
 - Mathematical framework: Tensor categories
 - Physical picture: String condensation, etc.
- We're missing a lot

Physical characterization is incomplete

Physical characterization is incomplete

- Symmetry breaking order can be detected in a wave function
- But we don't know how to detect topological order in a wave function

Many wave functions

- Theoretical wave functions
 - Gutzwiller projected states: $\Psi_{spin} = P \Psi_{ferm}$
 - Quantum loop gases: $\Psi_d(X) = d^{N_{loops}(X)}$

Many wave functions

- Theoretical wave functions
 - Gutzwiller projected states: $\Psi_{spin} = P \Psi_{ferm}$
 - Quantum loop gases: $\Psi_d(X) = d^{N_{loops}(X)}$
- Numerical wave functions
 J₁-J₃ spin-1/2 Heisenberg model:

$$H = J_1 \sum_{n.n} S_i \pounds S_j + J_3 \sum_{3rd n.n} S_i \pounds S_j$$

Many wave functions

- Theoretical wave functions
 - Gutzwiller projected states: $\Psi_{spin} = P \Psi_{ferm}$
 - Quantum loop gases: $\Psi_d(X) = d^{N_{loops}(X)}$
- Numerical wave functions
 J₁-J₃ spin-1/2 Heisenberg model:

$$H = J_1 \sum_{n.n} S_i \ \pounds S_j \ + \ J_3 \ \sum_{3rd \ n.n} S_i \ \pounds S_j$$

How do we know if they're topologically ordered?

Main Result

- Then: S_{top}=0 for normal states, S_{top} ≠ 0 for topologically ordered states
- S_{top} is universal for each topological phase:

$$S_{top} = log(D^2)$$

where $D^2 = \sum_{\alpha} d_{\alpha}^2$

 cond-mat/0510613 (Kitaev/Preskill posted similar result on hep-th/0510092)

Physical picture

• Why does $S_{top} = 0$ for normal phases, $S_{top} \neq 0$ for topological phases?

Physical picture

Why does S_{top} = 0 for normal phases, S_{top} ≠ 0 for topological phases?

Nonlocal entanglement!

- Topologically ordered states have nonlocal entanglement
- S_{top} measures nonlocal entanglement

Topologically ordered states have nonlocal entanglement

Z₂ topological order

- Use string picture: $\sigma_{i}^{x} = -1 - \text{ string on link}$ $\sigma_{i}^{x} = +1 - \text{ no string on link}$
- Ψ is uniform superposition of closed string configurations

- Use string picture: $\sigma_{i}^{x} = -1 - \text{ string on link}$ $\sigma_{i}^{x} = +1 - \text{ no string on link}$
- Ψ is uniform superposition of closed string configurations

- Use string picture: $\sigma_{i}^{x} = -1 - \text{ string on link}$ $\sigma_{i}^{x} = +1 - \text{ no string on link}$
- Ψ is uniform superposition of closed string configurations
- All local correlations iσ^x_i σ^x_j j
 vanish

- Use string picture: $\sigma^{x}_{i} = -1 - \text{ string on link}$ $\sigma^{x}_{i} = +1 - \text{ no string on link}$
- Ψ is uniform superposition of closed string configurations
- All local correlations iσ^x_i σ^x_j j vanish
- There is a *nonlocal* correlation: iΠ_{i 3 C} σ^x_i j =1

• Perturb Hamiltonian: $H \rightarrow H + \epsilon \sum_{i} \sigma_{i}^{z}$

• Perturb Hamiltonian: $H \rightarrow H + \epsilon \sum_{i} \sigma_{i}^{z}$

- Perturb Hamiltonian: $H \rightarrow H + \epsilon \sum_{i} \sigma_{i}^{z}$
- Thin string operator fails: $\langle \prod_{i \in C} \sigma_i^x \rangle = 0$

- Perturb Hamiltonian: $H \rightarrow H + \epsilon \sum_{i} \sigma_{i}^{z}$
- Thin string operator fails: $\langle \prod_{i \in C} \sigma_i^x \rangle = 0$
- But "fattened" string operator works

S_{top} measures string correlations

$$-S_{top} = (S_1 - S_2) - (S_3 - S_4)$$

We have argued:

- S_{top} = 0 for normal phases
- $S_{top} \neq 0$ for topological phases
- S_{top} is universal
- But why does S_{top} = log(D²)?

Exactly soluble example

 $H = -V \sum_{x} \sigma_{I1}^{x} \sigma_{I2}^{x} \sigma_{I3}^{x} - t \sum_{x} \sigma_{p1}^{z} \sigma_{p2}^{z} \sigma_{p3}^{z} \sigma_{p4}^{z} \sigma_{p5}^{z} \sigma_{p6}^{z}$

Ψ is uniform superposition of closed string configurations

- For any $q_1, \dots, q_n = 0, 1, \sum_m q_m$ even, define $\Psi^{in}_{q_1, \dots, q_n}$
- Similarly define $\Psi^{out}_{q_1,...,q_n}$

- For any $q_1, \dots, q_n = 0, 1, \sum_m q_m$ even, define $\Psi^{in}_{q_1, \dots, q_n}$
- Similarly define $\Psi^{out}_{q_1,...,q_n}$

- For any $q_1, \dots, q_n = 0, 1, \sum_m q_m$ even, define $\Psi^{in}_{q_1, \dots, q_n}$
- Similarly define $\Psi^{out}_{q_1,...,q_n}$

- For any $q_1, \dots, q_n = 0, 1, \sum_m q_m$ even, define $\Psi^{in}_{q_1, \dots, q_n}$
- Similarly define $\Psi^{out}_{q_1,...,q_n}$

Then:
$$\Psi = \sum_{q} \Psi^{in}{}_{q} \Psi^{out}{}_{q}$$

Then:
$$\Psi = \sum_{q} \Psi^{in}{}_{q} \Psi^{out}{}_{q}$$

Therefore ρ_R is an equal mixture of all Ψ^{in}_{q}

Then:
$$\Psi = \sum_{q} \Psi^{in}{}_{q} \Psi^{out}{}_{q}$$

Therefore ρ_R is an equal mixture of all Ψ^{in}_{q}

There are 2^{n-1} different $\Psi_{q}^{in} * S_{R} = (n-1) \log 2$

S_R = (n-k) log 2 where
 k = # boundary curves

S_R = (n-k) log 2 where
 k = # boundary curves

•
$$S_1 = (n_1-2) \log 2;$$

 $S_2 = (n_2-1) \log 2;$
 $S_3 = (n_3-1) \log 2;$
 $S_4 = (n_4-2) \log 2;$

S_R = (n-k) log 2 where
 k = # boundary curves

•
$$S_1 = (n_1-2) \log 2;$$

 $S_2 = (n_2-1) \log 2;$
 $S_3 = (n_3-1) \log 2;$
 $S_4 = (n_4-2) \log 2;$

 $-S_{top} = (n_1 - n_2 - n_3 + n_4 - 2) \log 2 = -2 \log 2 = -\log(2^2)$

S_R = (n-k) log 2 where
 k = # boundary curves

•
$$S_1 = (n_1-2) \log 2;$$

 $S_2 = (n_2-1) \log 2;$
 $S_3 = (n_3-1) \log 2;$
 $S_4 = (n_4-2) \log 2;$

 $-S_{top} = (n_1 - n_2 - n_3 + n_4 - 2) \log 2 = -2 \log 2 = -\log(2^2)$ Right result: D=2 for Z₂ topological order!

Topological entropy in the continuum

$$S = C L + \dots$$

Topological entropy in the continuum

$$S = C L - S_{top}$$

Topological entropy in the continuum

$$S = C L - S_{top}$$

Universal finite size correction!

Topological entropy for disk

$$S = c L - S_{top}/2$$

Universal finite size correction!

Conclusions/New directions

- Compute S_{top} for J₁-J₃ model, quantum loop gas, etc.
- S_{top} and critical theories
- Can we get more information from Ψ e.g. statistics of quasiparticles?