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Quantum fault tolerance: Topological vs. “Brute force”
• Error correction and fault tolerance will be essential in the 
operation of large-scale quantum computers.
• Topological quantum computing is the elegant approach, in 
which the “hardware” is intrinsically robust due to principles of 
local quantum physics (if operated at a temperature well below 
the mass gap). We hope it will work, but a physical realization of 
a topological quantum computer may be hard to achieve.
• There is also a “standard” approach to fault-tolerant quantum 
computing, which uses clever circuit design to overcome the 
deficiencies of quantum hardware. It, too, works in principle, if 
the hardware is not too noisy.
• Either approach (or perhaps a combination of the two) might 
eventually lead to quantum computers capable of solving hard 
problems. Which path we eventually follow will depend on which 
turns out to be more feasible technologically, and we don’t know 
that yet. 



Quantum error correction
Can large-scale quantum computers really be built and 
operated? Surely there are daunting technical challenges to be 
overcome. But are there obstacles in principle that might prevent 
us from ever attacking hard computational problems with 
quantum computers?

What comes to mind is the problem of errors. Quantum 
computers will be far more susceptible to error than conventional 
digital computers. A particular challenge is to prevent 
decoherence due to interactions of the computer with the 
environment. Even aside from decoherence, the unitary 
quantum gates will not be perfect, and small imperfections will 
accumulate over time...



Quantum factoring
For example, suppose we would like to factor a 200 digit number 
(which hasn’t yet been done with today’s classical computers). 
The quantum factoring algorithm requires a few thousand qubits
and a few billion (nontrivial) quantum gates. Suppose that in 
each gate (including “identity gates”), there is a probability ε of a 
serious error due to an interaction with the environment. Then 
for the algorithm to have a good probability of success, we 
require (ignoring parallelization, just to get a crude idea)

This is a very severe limitation! 

Our confidence that large-scale quantum computations will 
someday be possible has been bolstered by the development of 
the theory of quantum error correction --- much larger error 
probabilities can be tolerated.
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Quantum error correction
1. Error models and error correction
2. Quantum error-correcting codes
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Quantum computer: the standard model

(1) Hilbert space of n qubits: 
(2) prepare initial state:
(3) execute circuit built from set of 
universal quantum gates:
(4) measure in basis 
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The model can be simulated by a classical computer with access to a 
random number generator. But there is an exponential slowdown, since the 
simulation involves matrices of exponential size… Thus we believe that 
quantum model is intrinsically more powerful than the corresponding 
classical model. 

Our goal is to simulate accurately the ideal quantum circuit model using the 
imperfect noisy gates that can be executed by an actual device (assuming 
the noise is not too strong).



Errors
The most general type of error acting on n qubits can be 
expressed as a unitary transformation acting on the qubits and 
their environment:
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The states of the environment are neither normalized 
nor mutually orthogonal. The operators are a basis for 
operators acting on n qubits, conveniently chosen to be “Pauli
operators”:

where

The  errors could be “unitary errors” if or 
decoherence errors if the states of the environment are 
mutually orthogonal.



Errors

Our objective is to recover the (unknown) state of the 
quantum computer. We can’t expect to succeed for arbitrary 
errors, but we might succeed if the errors are of a restricted 
type. In fact, since the interactions with the environment are 
local, it is reasonable to expect that the errors are not too 
strongly correlated.

Define the “weight” w of a Pauli operator to be the number of 
qubits on which it acts nontrivially; that is X,Y, or Z is applied to w
of the qubits, and I is applied to n-w qubits. If errors are weakly 
correlated (and rare), then Pauli operators       with large weight 
have small amplitude
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Error recovery
We would like to devise a recovery procedure that acts on the 
data and an ancilla:

which works for any

Then we say that we can “correct t errors” in the block of n
qubits.  Information about the error that occurred gets 
transferred to the ancilla and can be discarded:      
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Error recovery

Errors entangle the data with the environment, producing 
decoherence. Recovery transforms entanglement of the 
data with the environment into entanglement of the ancilla
with the environment,  “purifying” the data. Decoherence
is thus reversed. Entropy introduced in the data is transferred to 
the ancilla and can be discarded --- we “refrigerate” the data at 
the expense of “heating” the ancilla. If we wish to erase the 
ancilla (cool it to so that we can use it again) we need to 
pay a power bill.
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Quantum error-correcting code
We won’t be able to correct all errors of weight up to t for 
arbitrary states But perhaps we can succeed 
for states contained in a code subspace of the full Hilbert space,

If the code subspace has dimension 2k, then we say that k
encoded qubits are embedded in the block of n qubits.

How can such a code be constructed? It will suffice if 

are mutually orthogonal.

If so, then it is possible in principle to perform an (incomplete) 
orthogonal measurement that determines the error Ea (without 
revealing any information about the encoded state). We recover 
by applying the unitary transformation Ea

-1.

qubits .| nψ 〉 ∈H

code  qubits .n∈H H
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2-qubit “code”
The key concept in quantum coding theory is the stabilizer of a 
state. E.g., is the simultaneous 
eigenstate with eigenvalue 1 of two commuting Pauli operators: 

MX = X ⊗ X , MZ = Z ⊗ Z .
These two conditions on two qubits determine a one-dimensional 
subspace, i.e., a unique state.

Suppose that Bob’s qubit is protected, but Alice’s qubit might 
have been damaged. Can we diagnose the damage? 

The space of possible errors is spanned by

By measuring the 2 generators of the code’s stabilizer group, we 
can distinguish all possible errors acting on Alice’s qubit.

( )| | 00 |11 / 2AB ABφ + 〉 = 〉 + 〉

{ , , , }I X Y Z I= ⊗E�



2-qubit “code”
MX=X ⊗ X 
MZ =Z ⊗ Z 

MX MZ

I⊗I + +

X⊗I + -

Y⊗I - -

Z⊗I - +

( )1| | 00 |11
2 AB ABφ + 〉 = 〉 + 〉

All of the errors in 
anticommute with the stabilizer generators 
in distinguishable ways.

{ , , , }I X Y Z I= ⊗E�

By measuring the 2 generators of the code’s stabilizer group, 
we can distinguish all possible errors acting on Alice’s qubit.



4-qubit code
MX=X X X X 
MZ =Z Z Z Z

MX MZ

I I I I + +

X I I I + -

Y I I I - -

Z I I I - +

(An X changes the 
parity, a Z changes 
the relative phase, a
Y does both..)

There are n - k = 4 – 2 = 2
encoded qubits.

|
|

The 4-dimensional 
code space is 
spanned by:

0000 |1111
0011 |1100

| 0101 |1010
| 0110 |1001

〉 + 〉
〉 + 〉
〉 + 〉
〉 + 〉

Suppose that one qubit out of the four is damaged, and we 
know which one, but we don’t know the nature of the damage. 
By measuring the two stabilizer generators, we can distinguish 
among I,X,Y,Z acting on (e.g.) the first qubit.



General stabilizer codes
Operators M1,M2,…,Mn-k are independent mutually commuting 
Pauli operators, Mi

2=I, which generate an abelian subgroup S of 
the “Pauli group.” S is the code’s stabilizer group.

A vector |ψ〉 in the n-qubit Hilbert space is in the code subspace 
iff M |ψ〉 = |ψ〉 for all M in S .

The dimension of the code space is:
(There are k encoded qubits.)

The code can correct t errors if each (nontrivial) Pauli operator of 
weight up to 2t anticommutes with at least one of the stabilizer 
generators:

All errors up to weight t are distinguishable (and correctable).
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5-qubit code
Suppose we would like to encode k=1 protected qubits in a 
block of n qubits, and be able to correct all weight-1 errors. 
How large must n be?

There are two mutually orthogonal “codewords”
that span the code subspace. Furthermore
all should be mutually orthogonal.

There are 3×5+1=16 Pauli operators of weight ≤ 1, and the 
Hilbert space of 5 qubits has dimension 25=32. Therefore, for 
n=5, there is just barely enough room: 16×2 ≤ 25=32 .

To see that the code really exists, we can construct it 
explicitly.

| 0 , | 1〉 〉

| 0 , | 1a bE E〉 〉



5-qubit code
The code is the simultaneous eigenspace with eigenvalue 1 of 
4 commuting check operators (stabilizer
generators):

All of these stabilizer generators square
to I; they are mutually commuting  because 
there are two collisions between X and Z.

The other three generators are obtained from the first by cyclic
permutations. (Note that  M5  = Z Z X I X = M1 M2 M3 M4 is not 
independent.) Therefore, the code is cyclic (cyclic 
permutations of the qubits preserve the code space).

Claim: no Pauli operator E of weight 1 or 2 commutes with all 
of the check operators. Weight 1: each column contains an X
and a Z. Weight 2: Because the code is cyclic, it suffices to 
consider ??I I I and ?I ?I I ….

M1 = X Z Z X I = +1
M2  = I X Z Z X = +1
M3  = X I X Z Z = +1
M4  = Z X I X Z = +1



M1 M2 M3 M4

X1 + + + -
Y1 - + - -
Z1 - + - +
X2 - + + +
Y2 - - + -
Z2 + - + -
X3 - - + +
Y3 - - - +
Z3 + + - +
X4 + - - +
Y4 - - - -
Z4 - + + -
X5 + + - -
Y5 + - - -
Z5 + - + +
I + + + +

5-qubit code
-- k=1 protected qubit
-- corrects t=1 error
The code is the simultaneous 
eigenspace with eigenvalue 1 of 
4 commuting check operators:
M1 = X Z Z X I = +1
M2  = I X Z Z X = +1
M3  = X I X Z Z = +1
M4  = Z X I X Z = +1
By these operators, we can 
distinguish all possible weight-
one errors. Each “syndrome” 
points to a unique Pauli
operator of weight 0 or 1.



How do we measure the stabilizer 
generators without destroying the 
encoded state?

5-qubit code
M1 = X Z Z X I
M2  = I X Z Z X
M3  = X I X Z Z
M4  = Z X I X Z M

0 |1A A〉 + 〉

Apply M
conditioned on 
value of an 
ancilla qubit.

|X=1  Eigenstate: | 0 |1A AM〉 + 〉
Measure X

M1

X
Z

Z
X=



What are the encoded operations
that preserve the code space and 
act nontrivially within it?

5-qubit code
M1 = X Z Z X I
M2  = I X Z Z X
M3  = X I X Z Z
M4  = Z X I X Z

Z Z Z Z Z Z
X X X X X X

=

=
We may choose 
them to be:

(which anticommute with one another 
and commute with the stabilizer).

General stabilizer code
The code stabilizer S is an abelian subgroup of order 2n-k of 
the the n-qubit Pauli group. Its dual or normalizer S⊥ is the 
subgroup of the Pauli group containing all Pauli operators 
that commute with S (thus S⊥ contains S). The encoded 
operations are the coset space S⊥ / S . The minimum weight 
of S⊥ \ S is the distance of the code. A code with distance 
d=2t+1 can correct t errors.



7-qubit code
Corrects the bit-flip (X) errors. The three-bit 
string (MZ,1 ,MZ,2 ,MZ,3 ) (if nonzero) points 
to the position of the error.

,1

, 2

, 3

Z

Z

Z

M Z I Z I Z I Z
M Z Z I I Z Z I
M Z Z Z Z I I I

=
=
=

Corrects the phase (Z) errors. The three-bit 
string (MX,1 ,MX,2 ,MX,3 ) (if nonzero) points 
to the position of the error.

,1

, 2

, 3

X

X

X

M X I X I X I X
M X X I I X X I
M X X X X I I I

=
=
=

The MZ ’s commute with the MX ’s , because each row of the MZ matrix 
has an even number of “collisions” with each row of the MX matrix; i.e., the  
rows are orthogonal in the sense of linear algebra over the field        .  Any 
two matrices with this property define a quantum code, which is said to be of 
the “CSS” (Calderbank-Shor-Steane) type. With CSS codes, the bit-flip and 
phase error correction can be executed separately. The encoded operations 
can be chosen to be 

which commute with the code stabilizer and are not contained in it. 

2Z

,Z I I I I Z Z Z X I I I I X X X= =



Fault tolerance
• The measured error syndrome (i.e., the eigenvalues
of the check operators) might be inaccurate.

• Errors might propagate during syndrome 
measurement.

• We need to implement a universal set of quantum 
gates that act on encoded quantum states, without 
unacceptable error propagation.

• We need codes that can correct many errors in the 
code block.



Fault-tolerant error correction
Fault: a location in a circuit where a gate or storage error occurs.
Error: a qubit in a block that deviates from the ideal state.

X
Error

Correction
Error

Correction
X

X

If input has no errors, and circuit has at 
most one fault, output has at most one 
error.

If input has at most one error, and 
circuit has no faults, output has no 
errors.

Error
Correction

Error
Correction

Error
Correction

X

X

A quantum memory fails only if two faults occur in some “extended rectangle.”



Fault-tolerant error correction

Error
Correction

Error
Correction

Error
Correction

X

X

A quantum memory fails only if two faults occur in some “extended rectangle.”

If we perform T error correction steps in succession, and faults occur 
independently with probability ε at each circuit location, then the probability of a 
memory failure is 2

failP TAε≤
where A is the number of pairs of circuit locations in an extended rectangle. 
Therefore, by using a quantum code that corrects one error and a fault-tolerant 
error correction procedure, we can improve the “storage time” for quantum 
information (the time we can store a state with some specified constant fidelity) 
to T=O(ε −2), compared to T=O(ε −1) for an unprotected quantum state. 



Error propagation in error correction

X

X
X

A single error due to the environment 
causes multiple errors in the data.



Fault-tolerant measurement
This is bad: This is better:

| 0 |1〉+ 〉

X
Z

Z
X

| 0000 |1111〉+ 〉

X
Z

Z
X

To make the procedure fault tolerant, we replace the single ancilla qubit by an 
encoded qubit, using a suitable code (in this case the quantum repetition 
code). That way, we avoid using any ancilla qubit more than once, and so 
control the error propagation. The state  ,  the X=1 
eiqenstate in the repetition code, is sometimes called a cat state. The phase 
of the cat state (the value of the encoded X, that is XXXX) is determined by 
measuring X of each qubit and computing the parity of the outcomes. 

| 0000 |1111〉+ 〉



Preparation and verification
Included in our procedure is the preparation of the state | 0000 |1111〉+ 〉

| 0 |1〉+ 〉
| 0〉
| 0〉
| 0〉

X

But this encoding circuit is not fault tolerant --- a single X error could 
propagate to two qubits, so that is prepared instead. Using 
this faulty ancilla would introduce two errors into the data. So we need to 
check the ancilla (after it is prepared, and before we let it touch the data) by 
verifying that the first and last bits agree.

| 0011 |1100〉+ 〉

| 0000 |1111〉+ 〉

X
X

If verification fails, the ancilla is discarded. Though the 
gates and measurements used in verification could be 
faulty, there would need to be two independent faults in the 
syndrome measurement procedure for the encoded data to 
be damaged. X X| 0〉



Preparation and consumption of quantum software

data in 

software out

data out

software in

Entropy

prepare software

verify software

Software is used to read out an error 
syndrome, or to perform a gate on 
encoded data. Error propagation 
during the preparation of the software 
can cause bugs that might damage 
the data when the software is used.

Therefore the software must be checked and purified. After a single use, 
the software is irreparably damaged and must be discarded. 



Consumption of quantum software

Input

Program A Program B Program A

time 1 time 2 time 3

Output

After a single use, the software is irreparably damaged and must be 
discarded.  To execute a quantum algorithm, the user downloads and 
consumes a particular program many times.



Fault-tolerant quantum gates
Fault: a location in a circuit where a gate or storage error occurs.
Error: a qubit in a block that deviates from the ideal state.

X
Quantum 

Gate
Quantum

Gate
X

X
X

If input has at most one error, and 
circuit has no faults, output has at most 
one error in each block.

If input has no errors, and circuit has at 
most one fault, output has at most one 
error in each block.

Error
Correction

Quantum 
Gate

Error
Correction

X

X Quantum 
Gate

Each gate is preceded by an error correction step. The circuit 
simulation fails only if two faults occur in some “extended rectangle.”



Fault-tolerant quantum gates
Error

Correction
Quantum 

Gate
Error

Correction
X

X Quantum 
Gate

Each gate is followed by an error correction step. The circuit 
simulation fails only if two faults occur in some “extended rectangle.”

If we simulate an ideal circuit with L quantum gates, and faults occur 
independently with probability ε at each circuit location, then the probability of 
failure is 2

fail maxP LA ε≤
where Amax is an upper bound on the number of pairs of circuit locations in each 
extended rectangle. Therefore, by using a quantum code that corrects one error 
and  fault-tolerant quantum gates, we can improve the circuit size that can be 
simulated reliably to L=O(ε −2), compared to L=O(ε −1) for an unprotected 
quantum circuit. 



Transversal gates are fault tolerant:

=

For codes of the CSS type, an encoded CNOT can be implemented by
executing CNOTs between the corresponding qubits in the encoded 
blocks. This gate may propagate errors from one block to another, but 
not from one qubit to another in the same block.

Not all gates in a universal set can be realized transversally and fault 
tolerantly. To complete a universal fault-tolerant gate set, we must add 
to the transversal gates additional gates that are implemented by 
consuming quantum software. 



Quantum software for the “π/8 gate”
1 0

0
V P

i
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is hard and 
needed for 
universality. 

1 0
0

P
i
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is easy to
implement.

| | 0 |1a bψ 〉 = 〉 + 〉 | | 0 |1 |a b i Vψ ψ〉 = 〉 + 〉 = 〉

| 0 |1i〉 + 〉 | 0〉Measure

Performing the gate V is reduced to the 
task of preparing the software, which 
is achieved by measuring:

| | 0 |1a bψ 〉 = 〉 + 〉 1| | 0 |1 |a i b i Vψ ψ−〉 = 〉 + 〉 = 〉

| 0 |1i〉 + 〉 |1〉Measure
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1 0

0

i
VXV i PX

i
−
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Preparing the software: 
If a gate M can be applied transversally, then it can measured
using a cat state:

| 0 |1n nM⊗ ⊗〉 + 〉

M
M

M
M= M

| 0 |1n n⊗ ⊗〉 + 〉

The phase of the cat is determined by measuring X of each 
qubit and computing the parity of the outcomes. The cat state 
should be verified before use, and the measurement should  
be repeated to improve reliability.



Fault-tolerant quantum gates
Error

Correction
Quantum 

Gate
Error

Correction
X

X Quantum 
Gate

Each gate is fault by an error correction step. The circuit simulation 
fails only if two faults occur in some “extended rectangle.”

Now we have assembled all the ingredients of a fault-tolerant quantum 
circuit simulation. 

Syndrome measurement and a universal gate set are realized through the 
offline preparation and verification of quantum software. 

A single fault during syndrome measurement may cause an error in the 
syndrome. The syndrome measurement can be repeated to ensure its
reliability.

Therefore if faults occur independently with probability ε at each circuit 
location: ( )2

failP O ε=



Recursive simulation
In a fault-tolerant simulation, each (level-
0) ideal gate is replaced by a 1-Rectangle: 
a (level-1) gate gadget followed by (level-
1)  error correction on each output block. 
In a level-k simulation, this replacement is 
repeated k times --- the ideal gate is 
replaced by a k-Rectangle.

A 1-rectangle is built 
from quantum gates.

A 2-rectangle is built 
from 1-rectangles.

A 3-rectangle is built 
from 2-rectangles.

(1) The computation is accurate if the faults in a level-k simulation are sparse.
(2) A non-sparse distribution of faults is very unlikely if the noise is weak.

There is threshold of accuracy. If the fault rate is below the threshold, then an 
arbitrarily long quantum computation can be executed with good reliability.



Recursive simulation

A level-1 simulation based 
on a distance-3 code is 
reliable if each extended 1-
Rectangle (the 1-Rec 
combined with its leading 
error corrections) contains 
no more than one fault (or 
faults at a benign set of 
locations).

In a fault-tolerant simulation, each (level-
0) ideal gate is replaced by a 1-Rectangle: 
a (level-1) gate gadget followed by (level-
1)  error correction on each output block. 
In a level-k simulation, this replacement is 
repeated k times --- the ideal gate is 
replaced by a k-Rectangle.

If a 1-exRec is good (contains at most one fault, or faults at a benign set of 
locations), then the 1-Rec is correct (an ideal decoding of its output gives the 
same result as an ideal decoding of its input followed by an ideal execution of 
the simulated gate). 



Recursive simulation
Definition:

A level-1 extended rectangle is good if it 
contains no more than one fault; otherwise it is 
bad.

An level-k extended rectangle is good if it 
contains no more than one bad level-(k-1) 
extended rectangle; otherwise it is bad. 

A level-k recursive simulation will be successful 
if every level-k extended rectangle is good.

X

X

Goodness implies correctness not just at level 1, but also at higher levels of 
the recursive hierarchy, as can be seen by an inductive argument.

We can move ideal 1-encoders from the back of a noisy level-(k+1) circuit 
toward the front of the circuit, transforming the 1-rectangles in good level-1 
extended rectangles to ideal level-0 gates, and transforming the 1-rectangles 
in bad level-1 extended rectangles to faulty level 0-gates.  

Thus a good level-(k+1) simulation is seen to be equivalent to a good level-k
simulation, which is correct by the induction hypothesis. 

Extends to codes that can correct t errors, and to non-Markovian noise.



Overlapping rectangles
Successive 1-exRecs are not independent 
of one another because they overlap: a 
trailing error correction of the earlier 
exRec is also a leading error correction of 
the later exRec. 

In the “threshold dance,” decoders 
moving left make a “long hop” over 
the later bad exRec, followed by a 
“short hop” over the Ga contained 
in the earlier truncated exRec.

That way, moving the decoder left transforms the two successive exRecs to 
two faults only if both fail independently (both the later exRec and the earlier 
truncated exRec both must contain faults at a malignant set of locations). 



Recursive simulation
Lemma: The k -rectangle contained in a good 

extended k -rectangle is correct.

The level-k circuit simulation succeeds if all extended k-rectangles are 
good. How likely is a bad extended k-rectangle?

( )2(1) 2 ( ) ( 1)
bad bad bad; k kP A P A Pε −≤ ≤

( )2( ) 1
bad

k
kP A Aε−⇒ ≤ (double exponential scaling in k)

Therefore, for a circuit with L locations (including “identity gates”)
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Recursive simulation
Quantum Accuracy Threshold Theorem: Suppose that  
faults occur independently at the locations within a quantum 
circuit, where the probability of a fault at each location is no
larger than ε. Then there exists ε0 >0 such that for a fixed ε < ε0 
and fixed δ > 0, any circuit of size L can be simulated by a 
circuit of size L* with accuracy greater than 1-δ, where, for 
some constant c, 

( )* log cL O L L =  
The numerical value of the accuracy threshold ε0 is of practical 
interest!



Essential asumptions:
• Constant fault rate (independent of number of  qubits).

• Weakly correlated faults (both in space and in time).

• Parallelism (to correct errors in all blocks simultaneously.)

• Reusable memory (to refresh ancillas that carry away entropy 
introduced by errors).

Helpful assumptions (used in threshold estimates):
• Fast measurements (to read out error syndromes -- without 
measurement, threshold is more demanding). 

• Fast classical processing (to interpret error syndromes).

• Nonlocal gates (with local gates, threshold is more 
demanding).

• No “leakage” (e.g., loss of qubits).



Lower bound on the accuracy threshold

A good gadget (one 
with sparse faults) is 
correct (simulates the 
ideal gate accurately).

For each of the level-1 extended Rectangles in a universal set, e.g. for the 
[[7,1,3]] (Steane) code, we can count the number of pairs of malignant 
locations; the CNOT 1-exRec dominates the threshold estimate. We find a 
rigorous lower bound on the accuracy threshold for adversarial 
independent stochastic noise:

ε0 > 2.73 × 10-5

(assuming parallelism, fresh ancillas, nonlocal gates, fast measurements, 
fast and accurate classical processing, no leakage).



Fault-tolerant recursive simulation

A hierarchy of “gadgets 
within gadgets” is reliable 

if the faults are sparse.

Non-Markovian noise with a nonlocal bath. 

System Bath System BathH H H H −= + +
Quantum error correction works as long as the 
coupling of the system to the bath is local (only a 
few system qubits are jointly coupled to the bath) 
and weak (sum of terms, each with a small 
norm). Arbitrary (nonlocal) couplings among the 
bath degrees of freedom are allowed.

We find a rigorous upper bound on the norm of the sum of all “bad” diagrams (such 
that the faults are not sparsely distributed in spacetime). Actually, this works even for 
interactions among the system qubits that decay algebraically with distance…
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Numerical value of the accuracy threshold
The value is of great practical importance, as it provides a target for the 
quantum hardware designer. The lower bound (for adversarial independent 
stochastic noise)

ε0 > 7.55 × 10-5

(Aliferis, Cross, Svore) is the best that has so far been rigorously established. 

However, Knill has estimated that, by using error-detecting codes for the  
the preparation of suitable encoded ancillas, the noise threshold can be 
much improved, perhaps to better than 1% (though at a higher overhead 
cost). We are working on making his estimate rigorous.

What if we (more realistically) assume that all gates are local in space, let’s 
say in a two-dimensional array? Various estimates (e.g., by Svore, Terhal, 
and DiVincenzo) indicate that the threshold worsens by less than a factor of 
10. 

In the Hamiltonian model, faults cannot be treated probabilistically (different 
“fault paths” might interfere). What needs to be small is 7 HSB 7 t0 (the 
norm of the system-bath coupling responsible for the noise in a particular 
gate, times the time needed to execute the gate). 



A realization of quantum error correction
J. Chiaverini et al., [Nature 432, 602-605 (2004)] implemented a three-qubit
quantum repetition code using trapped ions. They prepared the encoded 

state, simulated noise that flips each qubit with probability 
ε, measured the error syndrome, and corrected the error. 
| | 0 | 1a bψ 〉 = 〉 + 〉

The probability P of an encoded 
error was found to be

2 22.6 | |P c ab ε= +
… i.e., quadratic in ε.



Quantum Hardware
Two-level ions in a Paul trap, coupled to “phonons.”

Two-level atoms in a high-finesse microcavity, strongly 
coupled to  cavity modes of the electromagnetic field.

Charge in a Cooper-pair box; fluxons through a 
superconducting loop.

Electron spin (or charge) in quantum dots.

Cold atoms in optical lattices.

Nuclear spins in semiconductors, and in liquid state 
NMR.

Linear optics with efficient single-photon sources and 
detectors. 

Electrons floating on liquid He, etc.

Kimble Wineland

BlattDevoret



Quantum error correction
1. Error models and error correction
2. Quantum error-correcting codes
3. Stabilizer codes
4. 5-qubit code and 7-qubit code
5. Fault-tolerant quantum computation
6. Accuracy threshold



Quantum fault tolerance: Topological vs. “Brute force”

• Error correction and fault tolerance will be essential in the operation of 
large-scale quantum computers.

• The “brute force” approach to fault-tolerant quantum computing uses clever 
circuit design to overcome the deficiencies of quantum hardware. It works in 
principle, if the noise is weak enough, but achieving it in practice will be 
challenging.

• Topological quantum computing is a more elegant approach, in which the 
“hardware” is intrinsically robust due to principles of local quantum physics (if 
operated at a temperature well below the mass gap). 

• The topological approach also looks daunting from the perspective of 
current technology (and might need assistance from “brute force” fault-
tolerant constructions). But it is an attractive long-term path toward realistic 
quantum computing. 

• The “standard” theory is pretty, but the theory of topological quantum 
computing seems especially rich, making connections with deep problems in 
mathematics and in condensed matter physics. And, it’s fun!
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