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Quantum Circuit model

wire = carrier of quantum information 
(qubit {|0>, |1>}, qudit {|0>, |1>,…., |d>}

gate = time evolution of quantum information

U ( )0T exp ( ) /i t t= −⎡ ⎤⎣ ⎦=U H



1. single qubit gates 
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Universal sets of quantum gates

Theorem: every n-qubit unitary can be decomposed into 
combinations of 1-qubit and 2-qubit operations  

(Barenco et al, 1995)

U

SU(2), rotations on Bloch sphere

•
⊕

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

CNOT

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

00 01 10 112. Two qubit gates

e.g., CNOT



Quantum simulators

• What can we implement, given a physical system?

• What control fields are required? What cost?

• Can we ‘simply’ generate arbitrary quantum operations?

e.g., CPHASE → SWAP

controlled collisions spin-spin exchange

interacting quantum spinsatoms in OL
PRL 91, 027903 (2003)



QIP requires ultra-high level of 
quantum control

• high fidelity quantum operations required for fault-
tolerant quantum computation in standard model

• admissible error threshold 
- generic threshold value ~ .0001 [Aharonov, Gottesman ’02]

- scaling: #levels recursion   #qubits #operations
2                      50       20000
3                     350       4000000

• experimental fidelities ~ .01 
need #qubits, #operations 1-3 orders of 

magnitude larger

• [ Roadmap Goal: recursion level 2 by 2012 ]



quantum control and robustness

• How generate gates and arbitrary quantum 
operations from Hamiltonians?

• Efficiency – various criteria for optimality
– Time
– On/off switching of interactions and external fields
– Energy input from external fields
– Minimal decoherence
– All of the above together, with accurate gates….?



Algebraic approach

• Tunable interactions: 2-qubit gates by 
Weyl chamber steering

• Non-tunable interactions: algebraic 
decoupling for 1-qubit gates

• allows some gate optimization

add optimal control 
• optimize with respect to cost function

- time
- energy
- decoherence



SWAP

Non-local gates
SU(4)\SU(2)    SU(2)

Local gates
SU(2)    SU(2)

CNOT

Perfect Entanglers

SWAP1/2

schematic partition
of SU(4)

all 1- and 2-qubit gates: SU(4)

algebra su(4): σ1
i , σ2

i ,  σ1
iσ2

j , … i, j = x, y, z
Abelian subalgebra: σ1

xσ2
x, σ1

yσ2
y , σ1

zσ2
z

Cartan decomposition

non-local

U = k1 A k2

local
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su(4) algebra = k ⊕ p
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Maximal Abelian subalgebra
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Cartan decomposition:

i 
2

3-Torus

U = k1 A k2 = k1 exp[    (c1 σx
1σx

2 + c2 σy
1σy

2 + c3 σz
1σz

2)] k2

Decomposition of a unitary transformation U in SU(4) 

local local
non-local

su(4) algebra = k ⊕ p



Local gates and local equivalence (~)  

local equivalence can be determined by evaluating 3 invariants 
(Makhlin quant-ph/0002045)

SWAP ~ CNOT

U1 ~ U2 if U1 = k1U2k2, where k1 and k2 are local gates,

e.g., CNOT ~ C-z



Makhlin’s local invariants

G1: complex number
G2: real number
3 invariants

Given a two-qubit operation U

0i/4
-3-1SWAP
10CNOT
31Local gates
G2G1

Claim: If G1(U1)=G1(U2) and 
G2(U1)=G2(U2), then U1 ~ U2

Makhlin, QIP 1, 243 (2002)



Cartan decomposition on su(4)

any U ∈ SU(4) can be 
decomposed as:

→ invariants are periodic in c1, c2, c3



U  = k1 A k2 = k1 exp[    (c1 σx
1σx

2 + c2 σy
1σy

2 + c3 σz
1σz

2)] k2
i 

2
c1, c2, c3 periodic → 3-Torus

G1,G2 and G3 are invariant on permuting c1, c2, and c3
with/without sign flips

Weyl tetrahedron

CNOT
DCNOT

SWAP

→ one-to-one correspondence
between the points inside the tetrahedron 
and local equivalence classes (except on 
base)

J. Zhang et al., 
PRA 67, 042313 
(2003)

Cartan decomposition

G1 =     cos c1 cos c2 cos c3

G3 =  2 (cos2 c1 + cos2 c2 + cos2 c3) - 3

G2 =     sin c1 sin c2 sin c3

Local invariants

Geometric Theory of Non-local Gates

cartesian representation

symmetry 
reduction

•

B



Tetrahedral representation of local equivalence classes

Applications:
• physical generation of non-local gates, arbitrary 2-

qubit operations
• optimally efficient quantum circuits
• characterization of perfect entanglers

Implications of geometric analysis



Generation of non-local gates as a steering problem 
in the Weyl tetrahedron

CNOT

SWAP

reduction

15 dimensional control 
problem on U(4)

3 dimensional steering 
problem in Weyl
tetrahedron

quotient space



Weyl tetrahedron trajectory

System dynamics:

For any t,         determines a point in the tetrahedron via the

Makhlin invariants for the non-local equivalence classes, i.e.,

( ) ( ) ( )
i i

U t G t c t→ →



I (t=0)

Weyl tetrahedron trajectory



Weyl tetrahedron trajectory

U1 (t=t1)
I (t=0)



Weyl tetrahedron trajectory

U1 (t=t1)

U2 (t=t2)

I (t=0)



Weyl tetrahedron trajectory

U1 (t=t1)

U2 (t=t2)

I (t=0)

As time evolves, we can obtain a 
continuous trajectory in the Weyl
tetrahedron



Pure nonlocal Hamiltonian

[cx, cy, cz]

Consider



New directions: [cx, -cy, -cz], [-cx, cz, -cy], [cx, cz, cy], [-cx, -cz, cy], …

Pure nonlocal Hamiltonian

, where k ⊂ Weyl group

[cx, cy, cz]

Consider

[cx, -cy, -cz] [-cx, cz, -cy]

Reflections of [cx, cy, cz] w.r.t. diagonal planes



Steering a Weyl chamber trajectory

Piece two segments together:

we can reach anywhere in the 
plane spanned by [cx, cy, cz] and 
[cx, -cy, -cz].

Changing direction twice suffices:

the trajectory defines a quantum circuit

→ Theorem: the following circuit can implement any two-qubit gate



Minimum bound for Controlled-Unitary

For a Controlled-U gate           , minimum applications needed to 

implement any arbitrary two-qubit gate is        .

J. Zhang et al, PRA 69 042309 (2004)

The most efficient 
among Controlled-U

CNOT



Quantum Circuits for arbitrary 2-qubit operations

CNOT
3 applications suffice

Double-CNOT
3 applications suffice

CNOT

SWAP

DCNOT

SWAP

J. Zhang, J. Vala, S.Sastry, K.B. Whaley
PRA 69, 042309 (2004)



Two applications of the B gate suffice to implement any
arbitrary two-qubit gate: explicit solutions for β1 and β2 as 
functions of c2 and c3

on the computational basis B acts as:

∼

J. Zhang et al., PRL 93, 020502 (2004)

B = (π/2, π/4,0)



Example: SWAP gate and quantum wire

SWAP
1  0  0  0
0  0  1  0
0  1  0  0
0  0  0  1

SWAP [(c0|0>k+c1|1> k)|0>k+1] = |0> k (c0|0> k+1+c1|1> k+1)

only two B gates needed
compared to three CNOTs

for each step of the wire

Oskin et al.,
Proc. ISCA 20021 2 3 n-1 n

|Ψ> |0> |0> |0> |0>
time

qubit state transfer via a sequence of SWAP gates:

•B



Example: QFT on two qubits
computer science implementation of two-qubit QFT:

FIVE CNOT gates in total

in matrix representation:

three CNOT gates can implement this*:

B gate needs only two applications:

* J. Zhang et al., quant-ph/0308167

in n-qubit case, the B gate is slightly better than the 
CNOT gate

~



switch            together
→ 2 qubit operations

switch      independently
→ 1 qubit operations

I. Josephson junction charge-coupled qubits

Y. Makhlin et al., RMP 73, 357 (2001)

charge qubit with tunable coupling: for 2 qubits
1 2

1 2

1,2 1,2

1 1
2 2

i i i J J
z z J x y y

i i L

E EH B E
E

σ σ σ σ
= =

= − −∑ ∑

i
JE 1 2,J JE E

( )()z gBV t ( )()J xE tΦtune

100 , 1 100J LE mK E mK−∼ ∼



interaction between Josephson junction qubits:

Hint = -(αEL/2) (σx
1 + σx

2) + α2 EL σy
1 σy

2

Weyl chamber trajectory

curvature translation

J. Zhang et al., PRA 67, 042313 (2003)

[CNOT]

perfect 
entanglers

time optimal parameters for CNOT, α = 1.1991, t=2.73

(α=EJ/EL)



tune α to implement various gates in minimum time

CNOT B

- no CNOT from single application of  Hint

- but B can be implemented directly

B

scaled parameters EJ=αEL, EL=1:

• time optimal solution for CNOT has α > 1
• no CNOT solution for α <1
• B gate has solution for all α regimes

• realistic SC circuit, α ≤ 1

α < 1

α > 1

Zhang et al. PRL 93, 020502 (2004)



II. inductively coupled SC flux qubits

( ) ( )1 ( )
2

i i
i i z i xH tε σ σ⎡ ⎤= + Δ⎣ ⎦single flux qubit

0 / 2aΦ = Φ
Flux qubit: Chiorescu et al. Science (2003)



inductive coupling:

B. Plourde, T. Robinson, F. Wilhelm, J. Clarke, et al.

natural interaction via flux:
e.g., screening flux of qubit 1 
changes flux bias ε of qubit 2
→ σz

(1)σz
(2) interaction

( )( ) ( ) (1) (2)

1,2

1 ( )
2

i i
i z i x z z

i
H t Kε σ σ σ σ

=

= + Δ +∑

• coupling via mutual inductance: K fixed
• new - magnetic flux J in the outer loop couples 
the two qubits: K tunable and can be switched off



Entangling operation with variable inductance

Switch magnetic flux in outer loop on/off with bias 
current, couples two qubits

( )( ) ( ) (1) (2)

1,2

(0)

1 ( ) ( )
2

( ) cos( ) ( )

i i
i z i x z z

i

xtalk
i i i i i i

H t K t

t A t t

ε ε σ σ σ σ

ε ε ω φ δε
=

= + Δ +

= + + +

∑

2-qubit operations: Weyl trajectory
1-qubit operations: external control fields ωi (off resonant)



Implementation of CNOT

CNOT

scale up → …
B. Plourde et al, PRB 70 140501 (2004)



Non-tunable interactions: 
how generate 1-qubit gates? 

direct approach: exact algebraic decoupling of two-qubit Hamiltonian

J. Zhang and K. B. Whaley, PRA 73 022306 (2006)

J is the always-on and untunable coupling strength, ωj and φj  the amplitudes 
and phases of the external control fields

Target: generate any arbitrary single-qubit operation in each qubit



Simplified problem

It is easy to prove that to implement any arbitrary one-qubit operation, we 
only need to generate an arbitrary local unitary operation:

from the Hamiltonian:

Now observe that iσx
1/2, iσx

2/2, and iσz
1σz

2/2 generate the following Lie algebra:

It is straightforward to show that      satisfies the same commutation relations 
as so(4), where so(4) denotes the Lie algebra formed by all the 4x4 real skew 
symmetric matrices.



Lie algebra isomorphism

Let

we have the following commutation relations:

Therefore,      is isomorphic to                     . This isomorphism allows 
simplification for the generation of single-qubit operation, because it provides an 
algebraic way to decouple the entangling Hamiltonian into two unentangled
single-qubit Hamiltonians.



Two sub-problems

Now the original problem of generating                          from

We can now rewrite the Hamiltonian as

and the target operation as

becomes generating                                           from

We only need to implement the following two one-qubit operations:

(1) Generate                      from the Hamiltonian              ; and

(2) Generate                      from the Hamiltonian              .



Time optimal

Energy optimal

Also have analytic approximate implementation with 

Solution of ω(t) to exactly implement a target one-qubit operation                       
is possible with simultaneous minimization of a cost function

One-qubit sub-operations: optimal control

0

1
T

J dt= ∫
2

0

1 ( )
2

T

J t dtω= ∫

Consider a general one-qubit system:

( )cos , 2 /J Jt T n J
n
γω π
π

= =



Control functions that generate             . (A) Dashed line: approximate control; solid line: fidelity 
optimized control; (B) the difference between fidelity optimized control and minimum energy control

Let J=200 Hz in the Hamiltonian and              be the desired target 1-qubit 
operation. Choosing                    and n=1, we obtain an approximate solution

The corresponding pulse time is T=31.4 ms. 

Numerical optimization via the maximization of the fidelity leads to the improved 
solution parameters

with corresponding pulse time T=31.911 ms and fidelity error 4.104 x 10-11.

Simple example:



Optimal control Optimal control of of 11--qubit operationsqubit operations
subject subject to to random telegraph noiserandom telegraph noise

Noise!

0

1
M. Möttönen, R. de Sousa, J. Zhang, 
K. B. Whaley, PRA 73, 022332 (2006)

) ( )( x zaH t t σησ +=

Bounded control
maxa a≤

Random 
telegraph 
noise

Solution for given noise correlation time
via numerical optimization of 
unitary quantum trajectory formulation of fidelity



→ broad route to optimal feasible control of coupled qubits …

• Geometric approach to non-local gates
- steering approach to generation of 2-qubit gates
- analytic construction of quantum circuits

• How implement an arbitrary 2-qubit operation?
- starting from given Hamiltonian

→ steering in Weyl chamber (tetrahedron)
- starting from given gate, e.g., CNOT

→ gate B is optimal, only 2 applications
• Constraints

- physical feasibility of H
- minimal switchings, time optimization

• Algebraic decoupling for 1-qubit operations when 
non-tunable interactions present
- optimization with respect to general cost function
- time, energy, decoherence …

Summary of Part I



→ broad route to optimal feasible control of coupled qubits …

• Geometric approach to non-local gates
- steering approach to generation of 2-qubit gates
- analytic construction of quantum circuits

• How implement an arbitrary 2-qubit operation?
- starting from given Hamiltonian

→ steering in Weyl chamber (tetrahedron)
- starting from given gate, e.g., CNOT

→ gate B is optimal, only 2 applications
• Constraints

- physical feasibility of H
- minimal switchings, time optimization

• Algebraic decoupling for 1-qubit operations when 
non-tunable interactions present
- optimization with respect to general cost function
- time, energy, decoherence …

Part II



Optimal control Optimal control of of 11--qubit operationsqubit operations
subject subject to to random telegraph noiserandom telegraph noise

Noise!

0

1
M. Möttönen, R. de Sousa, J. Zhang, 
K. B. Whaley, PRA 73, 022332 (2006)

) ( )( x zaH t t σησ +=

Bounded control
maxa a≤

Random 
telegraph 
noise

Solution for given noise correlation time
via numerical optimization of 
unitary quantum trajectory formulation of fidelity



Random telegraph noiseRandom telegraph noise
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Random telegraph noise (RTN)Random telegraph noise (RTN)

Described by the correlation time Described by the correlation time ττcc and the noise strength and the noise strength ΔΔ
The noise amplitude jumps between values The noise amplitude jumps between values ΔΔ and and ––ΔΔ
Probability of no jumps in time t is Probability of no jumps in time t is 
Jump time instants and the noise amplitude are given byJump time instants and the noise amplitude are given by
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Trapping center noise on charge Trapping center noise on charge qubitsqubits

• Effective only if trap energy level is close to Fermi level;

• High temperature, kBT>>γ: Lorentzian spectrum, semiclassical RTN;

• Low temperature, kBT<<γ : QUANTUM REGIME f-noise, Ohmic

R. de Sousa, K.B. Whaley, 
F.K. Wilhelm, J. von Delft,
PRL 95, 247006 (2005)γω /=



System dynamicsSystem dynamics

Let Let kk index the sample paths of RTNindex the sample paths of RTN
The dynamics of the system density matrix is given by The dynamics of the system density matrix is given by 
an average over all different noise samples asan average over all different noise samples as



Example operationsExample operations

Bit flip |0> Bit flip |0> →→ |1>|1>

FidelityFidelity

NOTNOT gategate = target gate = target gate UUtt

FidelityFidelity



Gradient ascent pulse engineering Gradient ascent pulse engineering 
(GRAPE)(GRAPE)

Optimizes the fidelity with respect to the control pulse Optimizes the fidelity with respect to the control pulse 
by a gradient methodby a gradient method
Solution not uniqueSolution not unique
We used a constant control pulse as an initial conditionWe used a constant control pulse as an initial condition
Convergence of fidelity much faster than convergence Convergence of fidelity much faster than convergence 
of the pulse shapeof the pulse shape
Compare with standard pulse sequences for correction Compare with standard pulse sequences for correction 
of systematic (static) error, CORPSE and SCORPSEof systematic (static) error, CORPSE and SCORPSE



Composite pulse sequencesComposite pulse sequences

ππ--pulse:pulse:
Compensation of offCompensation of off--resonence with a pulse sequence resonence with a pulse sequence 

CORPSE:CORPSE:

short CORPSE:short CORPSE:

Best short pulse sequences correcting for systematic static error



CORPSECORPSE and and short CORPSEshort CORPSE
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Composite Composite pulses andpulses and numerical optimizationnumerical optimization

2
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7 5 4
6 6 6
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e e e Fidelity 1 0.065
zx x xz zi i i
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Short CORPSE
max

e e e Fidelity 1 2.7
z z zx x xi i i

U
a

π π πησ ησσ σ σ ησ η
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Large number of composite pulses ⇒ Numerical 
optimization (Gradient Ascent Pulse Engineering)

N. Khaneja et al, J. Magn. Reson. 172, 296 (2005)

CORPSE and SCORPSE: Cummins, Llewellyn, Jones, PRA 67, 042308 (2003)



Fidelity Fidelity vs noise correlation time forvs noise correlation time for
thethe state transformation state transformation |0> |0> →→ ||1>1>

CORPSE

short CORPSE

π-pulse

GRAPE

Fi
de

lit
y



Fidelity Fidelity vs noise correlation time forvs noise correlation time for NOT NOT gategate

GRAPE

short CORPSE

CORPSE

π-pulse

Fi
de

lit
y



Optimized operation timesOptimized operation times

Δ=0.25 amax                              =5

Bit flip |0> →|1>

Δ=0.125 amax                                  =30

NOT gate



OVERALL SUMMARY:OVERALL SUMMARY:

• High fidelity quantum gate operations from Hamiltonians

• Weyl chamber steering for 2-qubit (non-local) gates

• Algebraic decoupling for 1-qubit (local) gates in presence of

untunable interactions

• Efficiency issues – implementation specific

• Decoherence suppression using bounded controls for broad

range of noise correlation times

• current/future: combined methodologies for optimal feasible 
quantum control tailored to specific qubit systems


