

Quantum Control of Qubits

K. Birgitta Whaley University of California, Berkeley

J. Zhang J. Vala S. Sastry M. Mottonen R. deSousa

Quantum Circuit model

e.g., Quantum Fourier Transform on 3 qubits

wire = carrier of quantum information
 (qubit {|0>, |1>}, qudit {|0>, |1>,..., |d>}

gate = time evolution of quantum information

$$\boldsymbol{U} = \mathrm{T}\left[\exp\left(-i\boldsymbol{H}(t)t_0/\hbar\right)\right]$$

Universal sets of quantum gates

Theorem: every n-qubit unitary can be decomposed into combinations of 1-qubit and 2-qubit operations (Barenco et al, 1995)

Quantum simulators

What can we implement, given a physical system?

- What control fields are required? What cost?
- Can we 'simply' generate arbitrary quantum operations?

QIP requires ultra-high level of quantum control

- high fidelity quantum operations required for faulttolerant quantum computation in standard model
- admissible error threshold
 - generic threshold value ~ .0001 [Aharonov, Gottesman '02]
 - scaling: #levels recursion#qubits#operations25020000
- experimental fidelities ~ .01

need #qubits, #operations 1-3 orders of magnitude larger

350

4000000

• [Roadmap Goal: recursion level 2 by 2012]

3

quantum control and robustness

- How generate gates and arbitrary quantum operations from Hamiltonians?
- Efficiency various criteria for optimality
 - Time
 - On/off switching of interactions and external fields
 - Energy input from external fields
 - Minimal decoherence
 - All of the above together, with accurate gates....?

Algebraic approach

- Tunable interactions: 2-qubit gates by Weyl chamber steering
- Non-tunable interactions: algebraic decoupling for 1-qubit gates
- allows some gate optimization

add optimal control

- optimize with respect to cost function
 - time
 - energy
 - decoherence

all 1- and 2-qubit gates: SU(4)

su(4) algebra = $k \oplus p$

 $\mathfrak{p} = span \frac{1}{2} \{ \sigma_x^{\ 1} \sigma_x^{\ 2}, \sigma_x^{\ 1} \sigma_y^{\ 2}, \sigma_x^{\ 1} \sigma_z^{\ 2}, \sigma_y^{\ 1} \sigma_x^{\ 2}, \sigma_y^{\ 1} \sigma_y^{\ 2}, \sigma_y^{\ 1} \sigma_z^{\ 2}, \sigma_z^{\ 1} \sigma_x^{\ 2}, \sigma_z^{\ 1} \sigma_y^{\ 2}, \sigma_z^{\ 1} \sigma_z^{\ 2}, \sigma_z^{\ 1} \sigma_z^{\ 2}, \sigma_z^{\ 1} \sigma_z^{\ 2}, \sigma_z^{\ 1} \sigma_z^{\ 2} \}$

$$\sigma_{\mathbf{x}}^{1}\sigma_{\mathbf{x}}^{2} = \begin{pmatrix} 0 & \sigma_{\mathbf{x}}^{2} \\ \sigma_{\mathbf{x}}^{2} & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

Commutation relation, e.g.: $[\sigma_y^2, \sigma_y^1 \sigma_z^2] \sim -\sigma_y^1 \sigma_x^2$

Cartan decomposition: su(4) algebra = $\& \oplus \&$ $\& = span \frac{i}{2} \{ \sigma_x^1, \sigma_y^1, \sigma_z^1, \sigma_x^2, \sigma_y^2, \sigma_z^2 \}$

 $\mathfrak{p} = span \frac{i}{2} \{ \sigma_x^{\ 1} \sigma_x^{\ 2}, \sigma_x^{\ 1} \sigma_y^{\ 2}, \sigma_x^{\ 1} \sigma_z^{\ 2}, \sigma_y^{\ 1} \sigma_x^{\ 2}, \sigma_y^{\ 1} \sigma_y^{\ 2}, \sigma_y^{\ 1} \sigma_z^{\ 2}, \sigma_z^{\ 1} \sigma_x^{\ 2}, \sigma_z^{\ 1} \sigma_y^{\ 2}, \sigma_z^{\ 1} \sigma_z^{\ 2}, \sigma_z^{\ 2} \sigma_z^{\ 2}, \sigma_z^{\$

Maximal Abelian subalgebra

$$\mathfrak{a} = span \frac{i}{2} \{ \sigma_x^{\ 1} \sigma_x^{\ 2}, \sigma_y^{\ 1} \sigma_y^{\ 2}, \sigma_z^{\ 1} \sigma_z^{\ 2} \}$$

Decomposition of a unitary transformation U in SU(4)

$$U = k_1 \mathbf{A} k_2 = k_1 \exp[((\mathbf{c}_1 \sigma_x^{\ 1} \sigma_x^{\ 2} + \mathbf{c}_2 \sigma_y^{\ 1} \sigma_y^{\ 2} + \mathbf{c}_3 \sigma_z^{\ 1} \sigma_z^{\ 2})] k_2$$

local local non-local

Local gates and local equivalence (~)

$$\mathsf{SWAP} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \mathsf{CNOT} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \quad \mathsf{C-z} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

 $U_1 \sim U_2$ if $U_1 = k_1 U_2 k_2$, where k_1 and k_2 are local gates,

e.g., CNOT ~ C-z

$$CNOT = \frac{1}{\sqrt{2}}(I \otimes H) \cdot C - z \cdot \frac{1}{\sqrt{2}}(I \otimes H)$$

SWAP & CNOT

local equivalence can be determined by evaluating 3 invariants (Makhlin quant-ph/0002045)

Makhlin's local invariants

Given a two-qubit operation U

$$m = (Q^{\dagger}UQ)^{T}(Q^{\dagger}UQ), \quad Q = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & i \\ 0 & i \\ 1 & 0 \end{pmatrix}$$

$G_1(U) =$ $G_2(U) =$	$= \frac{\operatorname{tr}^2 m}{16 \det U}$ $= \frac{\operatorname{tr}^2 m - \operatorname{tr} m^2}{4 \det U}$	
	<i>G</i> ₁	G_2
Local gates	1	3
CNOT	0	1
SWAP	-1	-3
√SWAP	i/4	0

 G_1 : complex number G_2 : real number 3 invariants

/1

Claim: If $G_1(U_1)=G_1(U_2)$ and $G_2(U_1) = G_2(U_2)$, then $U_1 \sim U_2$

 $\begin{array}{cccc}
1 & 0 \\
-1 & 0 \\
0 & -i \end{array}$

Makhlin, QIP 1, 243 (2002)

Cartan decomposition on *su*(4)

any $U \in SU(4)$ can be decomposed as: $U = e^{i\alpha} \cdot k_1 \cdot \exp\{\frac{i}{2}(c_1\sigma_x^1\sigma_x^2 + c_2\sigma_y^1\sigma_y^2 + c_3\sigma_z^1\sigma_z^2)\} \cdot k_2$

 $G_1 = \cos^2 c_1 \cos^2 c_2 \cos^2 c_3 - \sin^2 c_1 \sin^2 c_2 \sin^2 c_3 + \frac{i}{4} \sin 2c_1 \sin 2c_2 \sin 2c_3$ $G_2 = 4\cos^2 c_1 \cos^2 c_2 \cos^2 c_3 - 4\sin^2 c_1 \sin^2 c_2 \sin^2 c_3 - \cos 2c_1 \cos 2c_2 \cos 2c_3$

 \rightarrow invariants are periodic in c₁, c₂, c₃

Geometric Theory of Non-local Gates

Implications of geometric analysis

Tetrahedral representation of local equivalence classes

Applications:

- physical generation of non-local gates, arbitrary 2qubit operations
- optimally efficient quantum circuits
- characterization of perfect entanglers

Generation of non-local gates as a steering problem in the Weyl tetrahedron

15 dimensional control problem on U(4)

$$\dot{U} = -iH(v)U, \quad U(0) = I$$

3 dimensional steering problem in Weyl tetrahedron

System dynamics: $\dot{U} = -iH(v)U$

For any t, U(t) determines a point in the tetrahedron via the Makhlin invariants for the non-local equivalence classes, i.e.,

$$U(t) \to G_i(t) \to c_i(t)$$

 $\dot{U} = -iH(v)U$

$$t = 0, \quad U(0) = I$$

$$\dot{U} = -iH(v)U$$

$$t = 0, \quad U(0) = I$$

 $t = t_1, \quad U(t_1) = U_1$

 $\dot{U} = -iH(v)U$

$$t = 0, \quad U(0) = I$$

 $t = t_1, \quad U(t_1) = U_1$
 $t = t_2, \quad U(t_2) = U_2$

 $\dot{U} = -iH(v)U$

$$t = 0, \quad U(0) = I$$

 $t = t_1, \quad U(t_1) = U_1$
 $t = t_2, \quad U(t_2) = U_2$

As time evolves, we can obtain a continuous trajectory in the Weyl tetrahedron

Pure nonlocal Hamiltonian

Pure nonlocal Hamiltonian

 $k \cdot \exp(-iHt) \cdot k^{\dagger}$, where $k \subset$ Weyl group

Reflections of $[c_x, c_y, c_z]$ w.r.t. diagonal planes

New directions: $[c_x, -c_y, -c_z]$, $[-c_x, c_z, -c_y]$, $[c_x, c_z, c_y]$, $[-c_x, -c_z, c_y]$, ...

Steering a Weyl chamber trajectory

Piece two segments together:

we can reach anywhere in the plane spanned by $[c_x, c_y, c_z]$ and $[c_x, -c_y, -c_z]$.

the trajectory defines a quantum circuit

 \rightarrow Theorem: the following circuit can implement any two-qubit gate

$$k_0 = \exp(-iHt_1) = k_1 = \exp(-iHt_2) = k_2 = \exp(-iHt_3) = k_3$$

Minimum bound for Controlled-Unitary

For a Controlled-U gate $e^{\gamma \frac{i}{2} \sigma_z^1 \sigma_z^2}$, minimum applications needed to $\frac{3\pi}{2\gamma}$ implement any arbitrary two-qubit gate is 14 12 10 **CNOT** The most efficient among Controlled-U 2 0 $\frac{3\pi}{16}$ $\frac{3\pi}{14}$ $\frac{\pi}{4}$ $\frac{3\pi}{10}$ $\frac{3\pi}{8}$ $\frac{\pi}{2}$ 0 γ

J. Zhang et al, PRA 69 042309 (2004)

Quantum Circuits for arbitrary 2-qubit operations **CNOT** 3 applications suffice 0 **CNO** $e^{c_1 \frac{i}{2}\sigma_y}$ $e^{c_2 \frac{i}{2} \sigma_x}$ $[\frac{\pi}{2}, 0, 0]$ $e^{rac{\pi}{2}rac{i}{2}\sigma_z^1\sigma_z^2}$ $e^{rac{\pi}{2}rac{i}{2}\sigma_z^1\sigma_z^2}$ $e^{\frac{\pi}{2}\frac{i}{2}\sigma_z^1\sigma_z^2}$ $[\pi, 0, 0]$ $e^{\frac{\pi}{2}\frac{i}{2}(\sin c_3\sigma_x+\cos c_3\sigma_y)}$ $e^{\frac{\pi}{2}\frac{i}{2}\sigma_y}$ $\underset{[\frac{\pi}{2},\frac{\pi}{2},\frac{\pi}{2}]}{\text{SWAP}}$ **Double-CNOT** 3 applications suffice $[\frac{\pi}{2}, \frac{\pi}{2}, 0]$ O **DCNOT** $[\pi, 0, 0]$ $e^{\left(\frac{\pi}{2}-c_1\right)\frac{i}{2}\sigma_y}$ $e^{\frac{\pi}{2}\frac{i}{2}\sigma_y}e^{(\frac{\pi}{2}-c_3)\frac{i}{2}\sigma_z}$ $e^{\frac{\pi}{2}\frac{i}{2}\sigma_x^1\sigma_x^2+\frac{\pi}{2}\frac{i}{2}\sigma_y^1\sigma_y^2}$ $e^{\frac{\pi}{2}\frac{i}{2}\sigma_x^1\sigma_x^2+\frac{\pi}{2}\frac{i}{2}\sigma_y^1\sigma_y^2}$ $e^{\frac{\pi}{2}\frac{i}{2}\sigma_x^1\sigma_x^2+\frac{\pi}{2}\frac{i}{2}\sigma_y^1\sigma_y^2}$ $\left(\frac{3\pi}{2}-c_2\right)\frac{i}{2}\sigma_y \frac{\pi}{2}\frac{i}{2}\sigma_z$ $e^{\frac{\pi}{2}\frac{i}{2}\sigma_y}$

J. Zhang, J. Vala, S.Sastry, K.B. Whaley PRA **69**, 042309 (2004)

J. Zhang et al., PRL **93**, 020502 (2004)

Two applications of the B gate suffice to implement any arbitrary two-qubit gate: explicit solutions for β_1 and β_2 as functions of c_2 and c_3

on the computational basis B acts as: $|m\rangle \otimes |n\rangle \rightarrow e^{\frac{\pi}{4}i\sigma_x(m\oplus n)}|m\rangle \otimes |m\oplus n\rangle$

Example: SWAP gate and quantum wire

qubit state transfer via a sequence of SWAP gates:

SWAP $[(c_0|0>_k+c_1|1>_k)|0>_{k+1}] = |0>_k (c_0|0>_{k+1}+c_1|1>_{k+1})$

only two B gates needed compared to three CNOTs for each step of the wire

Example: QFT on two qubits

computer science implementation of two-qubit QFT:

in matrix representation: $QFT_2 = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & i & i^2 & i^3 \\ 1 & i^2 & i^4 & i^6 \\ 1 & i^3 & i^6 & i^9 \end{pmatrix} \sim [\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{4}]$

three CNOT gates can implement this*:

B gate needs only two applications:

in n-qubit case, the B gate is slightly better than the CNOT gate

* J. Zhang et al., quant-ph/0308167

I. Josephson junction charge-coupled qubits

Y. Makhlin et al., RMP **73**, 357 (2001)

tune
$$B_{z}(V_{g}(t)) = E_{z}(\Phi_{x}(t))$$

charge qubit with tunable coupling: for 2 qubits

switch E_J^i independently switch E_J^1 , E_J^2 together \rightarrow 1 qubit operations

 \rightarrow 2 qubit operations

 $E_{I} \sim 100 \, mK, E_{I} \sim 1 - 100 \, mK$

interaction between Josephson junction qubits:

time optimal parameters for CNOT, $\alpha = 1.1991$, t=2.73

J. Zhang et al., PRA 67, 042313 (2003)

scaled parameters $E_J = \alpha E_L$, $E_L = 1$:

tune α to implement various gates in minimum time

• time optimal solution for CNOT has $\alpha > 1$

- no CNOT solution for α <1
- B gate has solution for all α regimes
- realistic SC circuit, $\alpha \leq 1$
 - no CNOT from single application of H_{int}
 - but B can be implemented directly

 $\alpha > 1$

$\alpha < 1$

Zhang et al. PRL 93, 020502 (2004)

II. inductively coupled SC flux qubits

 $\Phi_0/2$

Φ.,

Supercurrent

0

 $\Phi_a = \Phi_0 / 2$

Flux qubit: Chiorescu et al. Science (2003)

inductive coupling:

natural interaction via flux: e.g., screening flux of qubit 1 changes flux bias ϵ of qubit 2 $\rightarrow \sigma_z^{(1)} \sigma_z^{(2)}$ interaction

$$H = \frac{1}{2} \sum_{i=1,2} \left(\varepsilon_i(t) \sigma_z^{(i)} + \Delta_i \sigma_x^{(i)} \right) + K \sigma_z^{(1)} \sigma_z^{(2)}$$

• coupling via mutual inductance: K fixed

 new - magnetic flux J in the outer loop couples the two qubits: K tunable and can be switched off

B. Plourde, T. Robinson, F. Wilhelm, J. Clarke, et al.

Entangling operation with variable inductance

$$\varepsilon_i(t) = \varepsilon_i^{(0)} + A_i \cos(\omega_i t + \phi_i) + \delta \varepsilon_i^{xtalk}(t)$$

2-qubit operations: Weyl trajectory

1-qubit operations: external control fields ω_i (off resonant)

Non-tunable interactions: how generate 1-qubit gates?

direct approach: exact algebraic decoupling of two-qubit Hamiltonian

$$H = \frac{\omega_1}{2} (\cos \phi_1 \sigma_x^1 + \sin \phi_1 \sigma_y^1) + \frac{\omega_2}{2} (\cos \phi_2 \sigma_x^2 + \sin \phi_2 \sigma_y^2) + \frac{J}{2} \sigma_z^1 \sigma_z^2$$

J is the always-on and untunable coupling strength, ω_j and ϕ_j the amplitudes and phases of the external control fields

Target: generate any arbitrary single-qubit operation in each qubit

J. Zhang and K. B. Whaley, PRA 73 022306 (2006)

Simplified problem

It is easy to prove that to implement any arbitrary one-qubit operation, we only need to generate an arbitrary local unitary operation:

$$e^{-i\gamma_1\sigma_x/2}\otimes e^{-i\gamma_2\sigma_x/2}$$

from the Hamiltonian:

$$H_{1} = \frac{\omega_{1}}{2}\sigma_{x}^{1} + \frac{\omega_{2}}{2}\sigma_{x}^{2} + \frac{J}{2}\sigma_{z}^{1}\sigma_{z}^{2}$$

Now observe that $i\sigma_x^{1/2}$, $i\sigma_x^{2/2}$, and $i\sigma_z^{1}\sigma_z^{2/2}$ generate the following Lie algebra:

$$\mathfrak{k}_1 = \frac{i}{2} \{ \sigma_x^1, \ \sigma_x^2, \ \sigma_z^1 \sigma_y^2, \ \sigma_y^1 \sigma_z^2, \ \sigma_y^1 \sigma_y^2, \ \sigma_z^1 \sigma_z^2 \}$$

It is straightforward to show that \mathfrak{k}_1 satisfies the same commutation relations as so(4), where so(4) denotes the Lie algebra formed by all the 4x4 real skew symmetric matrices.

Lie algebra isomorphism

Let

$$\begin{split} \epsilon_x^1 &= \frac{\sigma_x^1 - \sigma_x^2}{4}, \ \epsilon_y^1 = \frac{\sigma_y^1 \sigma_y^2 + \sigma_z^1 \sigma_z^2}{4}, \\ \epsilon_z^2 &= \frac{\sigma_x^1 + \sigma_x^2}{4}, \ \epsilon_y^2 = \frac{\sigma_y^1 \sigma_y^2 - \sigma_z^1 \sigma_z^2}{4}, \\ \epsilon_z^2 &= \frac{\sigma_z^1 + \sigma_x^2}{4}, \ \epsilon_y^2 = \frac{\sigma_y^1 \sigma_y^2 - \sigma_z^1 \sigma_z^2}{4}, \\ \epsilon_z^2 &= \frac{\sigma_z^1 \sigma_y^2 + \sigma_y^1 \sigma_z^2}{4}, \\ \epsilon_z^2 &= \frac{\sigma_z^1 \sigma_y^2 + \sigma_y^1 \sigma_z^2}{4}, \\ \epsilon_z^2 &= \frac{\sigma_z^1 \sigma_y^2 - \sigma_z^1 \sigma_z^2}{4}, \\ \epsilon_z^2 &= \frac{\sigma_z^1 \sigma_z^2 - \sigma_z^2 \sigma_z^2}{4}, \\ \epsilon_z^2 &= \frac{\sigma_z^1 \sigma_z^2 - \sigma_z^2 \sigma_z^2}{4}, \\ \epsilon_z^2 &= \frac{\sigma_$$

we have the following commutation relations:

Therefore, \mathfrak{k}_1 is isomorphic to $\mathfrak{su}(2) \otimes \mathfrak{su}(2)$. This isomorphism allows simplification for the generation of single-qubit operation, because it provides an algebraic way to decouple the entangling Hamiltonian into two unentangled single-qubit Hamiltonians.

Two sub-problems

We can now rewrite the Hamiltonian as

$$H_1 = (\omega_1 - \omega_2)\epsilon_x^1 + J\epsilon_y^1 + (\omega_1 + \omega_2)\epsilon_x^2 - J\epsilon_y^2$$

and the target operation as

$$k_2 = e^{-i\gamma_1 \sigma_x/2} \otimes e^{-i\gamma_2 \sigma_x/2} = e^{-i((\gamma_1 - \gamma_2)\epsilon_x^1 + (\gamma_1 + \gamma_2)\epsilon_x^2)}$$

Now the original problem of generating $e^{-i\gamma_1\sigma_x/2}\otimes e^{-i\gamma_2\sigma_x/2}$ from

$$H_{1} = \frac{\omega_{1}}{2}\sigma_{x}^{1} + \frac{\omega_{2}}{2}\sigma_{x}^{2} + \frac{J}{2}\sigma_{z}^{1}\sigma_{z}^{2}$$

becomes generating $e^{-i((\gamma_1-\gamma_2)\sigma_x^1/2+(\gamma_1+\gamma_2)\sigma_x^2/2)}$ from

$$\frac{\omega_1 - \omega_2}{2}\sigma_x^1 + \frac{J}{2}\sigma_y^1 + \frac{\omega_1 + \omega_2}{2}\sigma_x^2 - \frac{J}{2}\sigma_y^2$$

We only need to implement the following two one-qubit operations:

(1) Generate $e^{-i(\gamma_1 - \gamma_2)\sigma_x^1/2}$ from the Hamiltonian $(\omega_1 - \omega_2)\sigma_x^1/2 + J\sigma_y^1/2$; and (2) Generate $e^{-i(\gamma_1 + \gamma_2)\sigma_x^2/2}$ from the Hamiltonian $(\omega_1 + \omega_2)\sigma_x^2/2 - J\sigma_y^2/2$.

One-qubit sub-operations: optimal control

Consider a general one-qubit system:

$$i\dot{U} = \left(\frac{\omega(t)}{2}\sigma_x + \frac{J}{2}\sigma_y\right)U, \quad U(0) = I$$

Solution of $\omega(t)$ to exactly implement a target one-qubit operation $U_T = e^{-i\gamma/2\sigma_x}$ is possible with simultaneous minimization of a cost function

$$J = \int_0^T L(\omega(t)) dt$$

Time optimal

Time optimal
$$J = \int_{0}^{T} 1 dt$$

Energy optimal $J = \frac{1}{2} \int_{0}^{T} \omega^{2}(t) dt$

Also have analytic approximate implementation with $\omega = \frac{\gamma J}{m - 1} \cos(Jt)$, $T = 2n\pi / J$ $n\pi$

Simple example:

Let J=200 Hz in the Hamiltonian and $e^{-i\pi/4\sigma_x^1}$ be the desired target 1-qubit operation. Choosing $\phi_1 = \phi_2 = 0$ and n=1, we obtain an approximate solution $\omega_1 = 100 \cos 200t$, $\omega_2 = 0$. The corresponding pulse time is T=31.4 ms.

Numerical optimization via the maximization of the fidelity leads to the improved solution parameters $\omega_1 = 98.062 \cos 196.900t$, $\omega_2 = 0$,

with corresponding pulse time T=31.911 ms and fidelity error 4.104 x 10^{-11} .

Control functions that generate $e^{-i\pi/4\sigma_x^1}$. (A) Dashed line: **approximate control**; solid line: fidelity optimized control; (B) the difference between fidelity optimized control and minimum energy control

Optimal control of 1-qubit operations subject to random telegraph noise

Summary of Part I

- Geometric approach to non-local gates
 - steering approach to generation of 2-qubit gates
 - analytic construction of quantum circuits
- How implement an arbitrary 2-qubit operation?
 - starting from given Hamiltonian
 - \rightarrow steering in Weyl chamber (tetrahedron)
 - starting from given gate, e.g., CNOT
 - \rightarrow gate B is optimal, only 2 applications
- Constraints
 - physical feasibility of H
 - minimal switchings, time optimization
- Algebraic decoupling for 1-qubit operations when
 - non-tunable interactions present
 - optimization with respect to general cost function
 - time, energy, decoherence ...

 \rightarrow broad route to optimal feasible control of coupled qubits ...

Part II

 Geometric approach to n -local gates - steering approach generation of 2-qubit gates - analytic constructi of quantum circuits How implement an arbitr 2-qubit operation? lamiltonian - starting from give \rightarrow steering ir /eyl chamber (tetrahedron) - starting from give ate, e.g., CNOT \rightarrow gate B is (imal, only 2 applications Constraints Η - physical feasibility - minimal switching me optimization Algebraic decoupling for ubit operations when non-tunable interactions present - optimization with respect to general cost function - time, energy, decoherence ...

→ broad route to optimal feasible control of coupled qubits ...

Optimal control of 1-qubit operations subject to random telegraph noise

Random telegraph noise

Random telegraph noise (RTN)

- Described by the correlation time τ_c and the noise strength Δ
- The noise amplitude jumps between values Δ and $-\Delta$
- Probability of no jumps in time t is $p_0(t) = e^{-t/\tau_c}$
- Jump time instants and the noise amplitude are given by

$$t_i = \sum_{j=1}^i -\tau_c \ln(p_j)$$

$$\eta(t) = (-1)^{\sum_i \Theta(t-t_i)} \eta(0)$$

- Effective only if trap energy level is close to Fermi level;
- High temperature, $k_B T >> \gamma$: Lorentzian spectrum, semiclassical RTN;
- Low temperature, k_BT<<γ : QUANTUM REGIME f-noise, Ohmic

System dynamics

- Let k index the sample paths of RTN
- The dynamics of the system density matrix is given by an average over all different noise samples as

$$\rho(t) = \lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} U_k \rho_0 U_k^{\dagger}$$

$$U_k = \mathcal{T}e^{-i\int_0^t d\tau [a(\tau)\sigma_x + \eta_k(\tau)\sigma_z]/\hbar}$$

Example operations

Bit flip
$$|0> \rightarrow |1>$$

 $\rho_0 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \longrightarrow \rho_t = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

Fidelity

$$\phi(\rho_t, \rho_0) = \operatorname{tr}\{\rho_t^{\dagger} \rho(T)\}$$

$$\phi(\rho_t, \rho_0) = \lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^N \operatorname{tr}\{\rho_t^{\dagger} U_k \rho_0 U_k^{\dagger}\}$$

NOT gate = target gate U_t Fidelity $\Phi(U_t) = \frac{1}{4\pi} \int_{c_x^2 + c_x^2 + c_z^2 = 1} d\Omega \phi(U_t \rho_0 U_t^{\dagger}, \rho_0)$

$$\rho_0 = (I + c_x \sigma_x + c_y \sigma_y + c_z \sigma_z)/2$$

Gradient ascent pulse engineering (GRAPE)

- Optimizes the fidelity with respect to the control pulse by a gradient method
- Solution not unique
- We used a constant control pulse as an initial condition
- Convergence of fidelity much faster than convergence of the pulse shape
- Compare with standard pulse sequences for correction of systematic (static) error, CORPSE and SCORPSE

Composite pulse sequences

a-pulse: $a_{\pi}(t) = a_{\max}$, for $t \in [0, \pi\hbar/a_{\max}]$

Compensation of off-resonance with a pulse sequence

CORPSE:
$$a_{\rm C}(t) = \begin{cases} a_{\rm max}, & \text{for } 0 < t' < \pi/3 \\ -a_{\rm max}, & \text{for } \pi/3 \le t' \le 2\pi \\ a_{\rm max}, & \text{for } 2\pi < t' < 13\pi/3 \end{cases}$$
 $t' = a_{\rm max}t/\hbar$

• short CORPSE:
$$a_{\rm SC}(t) = \begin{cases} -a_{\rm max}, & \text{for } 0 < t' < \pi/3 \\ a_{\rm max}, & \text{for } \pi/3 \le t' \le 2\pi \\ -a_{\rm max}, & \text{for } 2\pi < t' < 7\pi/3 \end{cases}$$

Best short pulse sequences correcting for systematic static error

CORPSE and short **CORPSE**

Composite pulses and numerical optimization

CORPSE and SCORPSE: Cummins, Llewellyn, Jones, PRA 67, 042308 (2003)

$$U_{\pi} = e^{i\left(+\frac{\pi}{2}\sigma_x + \eta\sigma_z\right)} \implies \text{Fidelity} \approx 1 - \left(\frac{\eta}{a_{\text{max}}}\right)^2$$

$$U_{\text{CORPSE}} = e^{i\left(+\frac{7\pi}{6}\sigma_x + \eta\sigma_z\right)} e^{i\left(-\frac{5\pi}{6}\sigma_x + \eta\sigma_z\right)} e^{i\left(+\frac{\pi}{6}\sigma_x + \eta\sigma_z\right)} \Rightarrow \text{Fidelity} \approx 1 - 0.065 \left(\frac{\eta}{a_{\text{max}}}\right)^4$$
$$U_{\text{Short CORPSE}} = e^{i\left(-\frac{\pi}{6}\sigma_x + \eta\sigma_z\right)} e^{i\left(+\frac{5\pi}{6}\sigma_x + \eta\sigma_z\right)} e^{i\left(-\frac{\pi}{6}\sigma_x + \eta\sigma_z\right)} e^{i\left(-\frac{\pi}{6}\sigma_x + \eta\sigma_z\right)} = \text{Fidelity} \approx 1 - 2.7 \left(\frac{\eta}{a_{\text{max}}}\right)^4$$

Large number of composite pulses
$$\Rightarrow$$
 Numerical optimization (Gradient Ascent Pulse Engineering)
N. Khaneja et al, J. Magn. Reson. **172**, 296 (2005)

Fidelity vs noise correlation time for the state transformation $|0\rangle \rightarrow |1\rangle$

Fidelity vs noise correlation time for NOT gate

Optimized operation times

Bit flip $|0\rangle \rightarrow |1\rangle$

NOT gate

OVERALL SUMMARY:

- High fidelity quantum gate operations from Hamiltonians
- Weyl chamber steering for 2-qubit (non-local) gates
- Algebraic decoupling for 1-qubit (local) gates in presence of untunable interactions
- Efficiency issues implementation specific
- Decoherence suppression using bounded controls for broad range of noise correlation times
- current/future: combined methodologies for optimal feasible quantum control tailored to specific qubit systems