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Purpose

Directed polymer model : random walk in a random potential.
Likelihood of path (energy) = Cumulated potential it meets on its way.

• Constant potential =⇒ path spreads over distances O (
√

length).
• For potential with large variability (Strong Disorder), one expects

+ path localizes on a few corridors with small width

+ spreads at "abnormally" large distance lengthξ, ξ > 1/2 (superdiffusivity)

• Recently, explicitely slovable models of planar polymers have been
discovered and used to adress the second effect - typical of the KPZ
universality class.

Our final Aim: use Log-Gamma polymer to get sharp results for localization.
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Generalities: Directed Polymer Model

Environment: (ω(x), x ∈ Z2) real, independent identically distributed r.v.’s

Polymer path: over up-right paths x = (xt ; 0 ≤ t ≤ n), xt − xt−1 ∈ {e1, e2}.
Point-to-line polymer measure of a path of length n is

Qω
n (x) =

1
Zωn

exp
{ n∑

t=1

ω(xt )
}

with Zn = Zωn the sum over all up-right paths x starting at x0 = (0, 0).

• Quenched asymptotics: For a typical realization ω of the environment, what
is the behavior of the polymer of large size n→∞ ?

Assumption: Eerω(x) <∞ for r in a neighborhood of [0, 1].

Then ∃ Quenched free energy limn→∞ n−1 ln Zn.

• The model is well defined and is of interest in arbitrary dimension:
xt = (t ,St ), t ≤ n and S n.n. path in Zd , Qω

n (x) = 1
Zω

n
exp

{∑n
t=1 ω(t ,St )

}
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The KPZ universality class

Polymer models belongs to Kardar-Parisi-Zhang universality class:

Non-gaussian scaling limits and statistics, characterized by a few exponents.

Logarithm of P2P partition fn h = log Zt (x) solves (a version of) KPZ eq’n:

∂

∂t
h(t , x) =

∂2

∂x2 h(t , x) +
∣∣ ∂
∂x

h(t , x)
∣∣2 + Ẇ (t , x)

Many efforts on planar polymer models to understand physics predictions:
• Last passage percolation: Johansson 1998, Prahofer-Spohn 2004,. . . ;
• Alberts-Khanin-Quastel 2014: P2P part’n f’n with diffusive scaling at
intermediate disorder converges to SHE (d=1);
Different for d = 2: Gaussian limit by Caravenna-Sun-Zygouras 2015+

• See Quastel 2012 and Corwin 2012 for recent surveys.

Integrable systems. Main ones for polymers: O’Connell-Yor 2003,
Seppäläinen 2012. . . .
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Log-gamma polymer

Change notations:
Yi,j = eω(i,j)

so that Zn =
∑

x

∏n
t=1 Yxt .

Def. (Seppäläinen 2012): Log-gamma polymer with parameter µ > 0 is when
Y−1

x ∼ Gamma(µ) with density

Y−1
i,j ∼ Γ(µ)−1rµ−1e−r , r > 0.
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Log-gamma polymer is in KPZ class

Seppäläinen 2012 discovered the stationarity property of this model, which
makes it explicitely solvable:

+ Seppäläinen obtains the value of the free energy

n−1 ln Zn
n→∞−→ −Ψ0(µ/2), Ψ0 = Γ′/Γ

and proves that the volume and wandering exponents for fluctuations are
χ = 1/3, ξ = 2/3.

+ Large deviations of the partition function Georgiou-Seppäläinen 2013

+ GUE Tracy-Widom fluctuations for Zn at scale n1/3

Borodin-Corwin-Remenik 2013: for small µ,

n−1/3( ln Zn + nΨ0(µ/2)
) law−→ FGUE

the GUE Tracy-Widom distribution.

+ Explicit formula for the Laplace transform of the partition function at finite
size Corwin-O’Connell-Seppäläinen-Zygouras 2014; integral formula
which can be turned into a Fredholm determinant.
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Weak and Strong disorder

Back to general envir. and dim. 1 + d : Normalized partition function

Wn = Zn/EZn

Weak Disorder Strong Disorder Very Strong Disorder

Wn → W∞ > 0 Wn → 0 Wn ' e−nψ(β)

β < βc , d ≥ 3 β > β′c

polymer diffusive polymer localized

Bolthausen’89, Sinai’92, C-Yoshida’06 See below .

• Speed of convergence:

n
d−2

4
Wn −W∞

Wn
→ N (0, σ2)

in a subregion of (WD). [C-Liu’16+].
• Different from polymer on trees [Derrida-Spohn’88] (Branching Random
Walk): e−cn × Wn−W∞

W 1/2
n

is asymptotically normal.
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Localization in general framework

Can be measured by probability of the "favourite endpoint"
(= largest probability among endpoints)

In = max
x

Qω
n−1{xn = x} ∈ (0, 1).

General fact: Localization ⇐⇒ Very Strong Disorder:

Theorem (Carmona-Hu’02, C-Shiga-Yoshida’03)

lim
n

n−1 ln Zn < lim
n

n−1 lnEZn =⇒ ∃c0 > 0 : lim inf
n

n−1
n∑

k=1

Ik ≥ c0

lim
n

n−1 ln Zn = lim
n

n−1 lnEZn =⇒ lim
n

n−1
n∑

k=1

Ik = 0.

Strong disorder holds for planar models (C-Vargas’06, Lacoin’10). Then,

lim sup
n→∞

In ≥ c0

A sharp contrast with decay O(n−1/2) when ω =Cst.
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General techniques to prove localization

6 Wn = Zn/EZn positive martingale, its logarithm is supermartingale with
Doob decomposition

ln Wn = −An + Mn.

6 Estimate

An �
n∑

k=

Jk , 〈M〉n �
n∑

k=

Jk

with Jk = (Qω
k−1)⊗2{xk = x̃k} and an � bn ⇐⇒ c ≤ an

bn
≤ C.

6 By soft martingale arguments:

lim
n

n−1 ln Zn < lim
n

n−1 lnEZn ⇐⇒ lim inf
n

n−1
n∑

k=1

Jk ≥ c0 > 0.

6 From I2
k ≤ Jk ≤ Ik , conclude that

lim
n

n−1 ln Zn < lim
n

n−1 lnEZn ⇐⇒ lim inf
n

n−1
n∑

k=1

Ik ≥ c0 > 0.
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General techniques

6 In Gaussian environment, integration by parts makes replica overlap
appear in the estimates:

Rn =
1
n

n∑
t=1

(Qω
n−1)⊗2{xt = x̃t}.

Overlap can be compared to Jn.

6 In some models (with IBP), path localization at SSD (C-Cranston’14,
C-Yoshida’14):
∃x∗ : [0, n]→ Zd such that limn→∞ E 1

n

∑n
t=1 1xt =x∗t

= c(β) > 0.

6 In absence of moments, an alternative approach was developped by
Vargas’07 leading directly to In.

- All these methods are indirect.
In the log-gamma model we have explicit computations.
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Our aim here

Our aim is to sharpen localization results for the log-gamma model.
Natural questions for the end-point distribution are:

8 What are the regions which contribute the most to the full measure ?

8 Are they many ? How far are they ? how wide ?
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Simulation by Vu-Lan Nguyen:
Endpoint distribution for log-gamma parameter 100: red > yellow > green.
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Endpoint distribution for log-gamma parameter 1. (Vu-Lan Nguyen)
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Maximal endpoint mass for log-gamma parameter 1. (Vu-Lan Nguyen)
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Maximal endpoint mass for log-gamma parameter 10. (Vu-Lan Nguyen)
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. . . What to do next ???

It [Localization] has yet to receive adequate mathematical
treatment, and one has to resort to the indignity of numerical
simulations to settle even the simplest questions about it.

Philip Anderson, from his Nobel Lecture, 8 December 1977

( Fortunately, much has been done since that time ! )
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Boundary Conditions
Assign distinct weight distributions on the boundaries and in the bulk:

Ui,0 = Yi,0 and V0,j = Y0,j for i, j ∈ N := {1, 2, . . .}.

Model b.c.(θ): For θ ∈ (0, µ), denote by b.c.(θ) the model with{
{Ui,0,V0,j ,Yi,j : i, j ∈ N} are independent with distributions

U−1
i,0 ∼ Gamma(θ), V−1

0,j ∼ Gamma(µ−θ), Y−1
i,j ∼ Gamma(µ).

Recall the point-to-point partition function

Zm,n =
∑

x:07→(m,n)

m+n∏
t=1

Yxt ,

and define new weights on horizontal or vertical edges

Um,n =
Zm,n

Zm−1,n
and Vm,n =

Zm,n

Zm,n−1
.

Facts (Seppäläinen 2012): Along any down-right path the variables U,V ’s
are mutually independent with marginal distributions

U−1 ∼ Gamma(θ), V−1 ∼ Gamma(µ−θ) .
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Random walk representation for ratios of partition functions

Considering the down-right path along the vertices x : x · (e1 + e2) = n, we
deduce the representation

Zk,n−k

Z0,n
= exp(−

k∑
i=0

X n
i ).

with a collection X n
k = − log(

Uk,n−k
Vk−1,n−k+1

) of i.i.d.r.v.’s. The endpoint distribution
is

Qω
n {xn = (k , n − k)} =

Zk,n−k∑n
i=0 Zi,n−i

=
exp(−Sn

k )∑n
i=0 exp(−Sn

i )

with Sn
k =

k∑
i=1

X n
i a random walk; It is centered iff θ = µ/2.

The favorite endpoint is

ln
n = arg min{Sn

k ; 0 ≤ k ≤ n}
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main result for P2L

For every n, consider the end-point distribution centered around favorite
endpoint,

ξ̂
(n)
k = Qω

n
{

xn = (ln
n + k , n − ln

n − k)
}
, k ∈ Z.

Thus, ξ̂(n) = (ξ̂
(n)
k ; k ∈ Z) is a random element ofM1(Z).

Theorem (C-Nguyen 2015+)

For the model b.c.(θ) with θ ∈ (0, µ), we have convergence in law

ξ̂(n) L−→ ξ in the space (M1, ‖ · ‖TV ),

where ‖µ− ν‖TV =
∑

k |µ(k)− ν(k)| is the total variation distance.
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Consequences of main result: answers to our questions

A few consequences:

+ Mass of favourite endpoint converges

In
L−→ max{(ξ(k) + ξ(k + 1))/2; k ∈ Z} > 0.

+ Tightness of the endpoint: Letting
−→
ln = (ln, n−ln),

lim
K→∞

lim sup
n→∞

Qω
n [|xn −

−→
ln | ≥ K ] = 0 in probability

+ Scaling limit of endpoint: For θ = µ/2, Donsker’s invariance principle:
RW Sk ' Wt Brownian Motion, and then

ln
n
L−→ arg min

t∈[0,1]

Wt ,

the arcsine law. (And so does xn
n by previous point.)

+ When θ > µ/2, the limit is 0. (In fact, ln converges in law to a finite limit.)
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Consequences of main result, continued

Large deviations of the polymer endpoint:

+ For θ = µ/2,

Qω
n
{

xn = ([ns], n−[ns])
}
' e−

√
n[W (s)−min[0,1] W ],

+ . . . whereas for θ > µ/2,

Qω
n
{

xn = ([ns], n−[ns])
}
' e−ns|Ψ0(θ)−Ψ0(µ−θ)|.

Observe:

Change of speed in the LDP from equilibrium to non-equilibrium.

Rate function is random in the first case (it depends on the environment),
and deterministic linear in the second one.
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b.c. are crucial

Observe that these results disagree with KPZ scaling, e.g. on where the
polymer localizes (not at distance O(n2/3) from diagonal) !

The disagrement comes from the boundary conditions.

So, what is a general message from this computation ???

We believe that "the trapping at the minimum of a RW" we prove here, enters
in an essential manner the mechanism for localization in general models.
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sketch of proof of main result for θ = µ/2
Recall that

Qω
n {xn = (m, n −m)} =

exp(−Sn
m)∑n

i=0 exp(−Sn
i )

Qω
n {xn = (m, n −m)} =

exp(−(Sn
m − Sn

`n ))∑n
i=0 exp(−(Sn

i − Sn
`n

))

Since we are only interested in the law of Qω
n {xn = (m, n −m)}, we drop the

superscript n in Sn
n ,X n

i , l
n
n , etc. . .

• Splitting a random walk S at its minimum is a well studied [Bertoin’91-94,
Doney’89-94].

• For θ = µ/2 (otherwise, quite different and simpler.): The process
converges to 2 independent pieces on Z+ and Z−, glued at 0,

, (i) S↑ = random walk conditioned to stay non negative forever;
, (ii) S↓ = random walk with jumps −X conditioned to stay strictly positive

forever.
For fixed K ,

(Sln+k − Sln )1≤k≤K
L−→ (S↑k )1≤k≤K ,

(Sln+k − Sln )−1≥k≥−K
L−→ (S↓k )1≤k≤K .
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sketch of proof of main result for θ = µ/2

Since we condition by a null event, (S↑k ) and (S↓k ) are taboo processes and a
correct definition is via Doob’s h-transform.

Ritter’81 allows to control the full (unbounded) sum:

Sk+ln − Sln ' k1/2 for large k .

With the preceeding, we get for m = `n:

1∑n
k=0 exp(−(Sk − Sln ))

L−→ 1∑∞
k=0 exp(−S↑k ) +

∑∞
k=1 exp(−S↓k )

,

which writes also

Qω
n
{

xn = (ln
n , n − ln

n )
}

= ξ̂n
0
L−→ ξ0.
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sketch of proof of main result for θ = µ/2

For general values of k , the same arguments lead to the expression of the
limit of ξn

ln+k = ξ̂n
k , explicitely:

ξk =



exp(−S↑k )

1 +
∞∑
i=1

exp(−S↑i ) +
∞∑
i=1

exp(−S↓i )

, if k ≥ 0

exp(−S↓k )

1 +
∞∑
i=1

exp(−S↑i ) +
∞∑
i=1

exp(−S↓i )

, if k < 0
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Point-to-Point polymer
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Point to point polymer

Fix µ > 0, (p, q) ∈ (Z∗+)2 and for N ∈ N, let RN be the rectangle with diagonal
(0, 0), (pN, qN).

Model P2P-b.c.(θ): Assume

Yi,j : (i, j) ∈ RN \ {0, (pN, qN)} are independent with

Y−1
i,j ∼ Gamma(θ, 1) for j ∈ {0, qN},

Y−1
i,j ∼ Gamma(µ−θ, 1) for i ∈ {0, pN},

Y−1
i,j ∼ Gamma(µ, 1) for 0 < i < pN and 0 < j < qN.

Point-to-point polymer measure is the probability measure

Qω
pN,qN(x) =

1
ZωpN,qN

exp
{ n∑

t=1

ω(xt )
}
.

For a path x denote by t− the "time it crosses the second diagonal". The
transverse coordinate of the crossing point can be described by

F (x) = (xt− + xt−+1) · (qe1 − pe2).
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Middle-point distribution, P2P polymer

Theorem (C-Nguyen 2015+)

For any θ ∈ (0, µ), there exist a random integer mN depending on ω and a
random probability measure ξ̂ on Z such that, as N →∞,(

Qω
pN,qN(F (x) = mN + k); k ∈ Z

)
L−→ ξ̂,

in the space (M1, ‖ · ‖TV ).

, Recall that middle-point localization for the point-to-point measure is not
covered by the usual semi-martingale approach to localization, and this
result is totally new.
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Conclusions:

3 Polymer concentrates around the favourite location and spreads at
distance O(1) around it. No need of scaling.

3 The second high peak does not contribute significantly.

3 Localization comes as a distribution of the form exp{−RW}

Could be a more general phenomenon ! Cf Trapping in Sinaï RWRE .
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