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ASEP, definitions and notation

Partially Asymmetric Exclusion Process (PASEP)

q pα

γ δ

β

It is convenient to make use of parameters κ±α,γ which are solutions of

ακ2 + (p − q − α + γ)κ+ γ = 0.

We will use the notation

a = κ+
α,γ , b = κ+

β,δ, c = κ−α,γ , d = κ−β,δ.
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ASEP, definitions and notation

Features

Denote the probability to find a configuration at time t by Pτ (t) and the transition matrix
by M.

The time evolution is given by the Master Equation:

d
d t

Pτ (t) = −
∑
σ

MτσPσ(t)

Stationary state:
M · P(∞) = 0.

Matrix product formalism:

Pτ1,...,τL (∞) =
1
ZL
〈W |

L∏
i=1

[τiD + (1− τi )E ] |V 〉.
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ASEP, definitions and notation

Revision: Stationary phase diagram

density

a

b

1

1

CL

Maximum
Current

high density

low

CL: Coexistence line
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Bethe’s ansatz

Spectrum

What about the spectral gap (second eigenvalue of M)?

Transition matrix M is equivalent to the Hamiltonian of the XXZ quantum spin
chain with open boundary conditions

Use Yang-Baxter integrability (Bethe’s ansatz) to diagonalise M

Works well for periodic boundary conditions (Gwa & Spohn ’92 and Kim ’95 in
context of growth model)

Difficulty for open boundaries: no particle conservation
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Bethe’s ansatz

Bethe’s ansatz

Example: Single diffusive particle on a ring

(Hψ)(x) = pψ(x − 1) + qψ(x + 1)− (p + q)ψ(x)

= Λψ(x)

Plane wave ansatz:
ψ(x) = zx

Λ = pz−1 + qz − p − q
Periodicity leads to quantization condition:

ψ(L + 1) = ψ(1) ⇒ zL = 1
L solutions⇒ L eigenvalues

Results of Bethe’s Ansatz for m particles:
Each eigenvalue can be expressed in roots of a system of high degree polynomials.

Λ =
m∑

j=1

λ(zj ), PL(zj ; z1, . . . , zm) = 0 (j = 1, . . . ,m).
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Bethe’s ansatz

Open boundaries

Usual Bethe equations for open XXZ have been obtained under a constraint (Cao,
Shi, Lin & Wang ’03; Nepomechie ’03)

ASEP does not have most general XXZ open boundary conditions

Constraint in ASEP parameters:

(QL+2k − 1)(αβ − γδQL−2k−2) = 0, Q =

√
q
p
.

for any choice of k ∈ Z, |k | ≤ L/2.
Need two sets of Bethe equations, all eigenvalues are given by

E1 = E0 +

L/2−k−1∑
j=1

λ({zj}), E2 =

L/2+k∑
j=1

λ({wj}).

Take k = −L/2

One energy level E2 = 0 (stationary state).

All excited states described by E1.
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Spectral gap

Bethe ansatz for ASEP with open boundaries

Λ({zj}) = α + β + γ + δ +
L−1∑
j=1

(q − 1)2zj

(1− zj )(qzj − 1)

[
qzj − 1
1− zj

]2L

K (zj ) =
L−1∏
l 6=j

[
qzj − zl

zj − qzl

] [
q2zjzl − 1
zjzl − 1

]

K (z) =
(z + a)(z + b)(z + c)(z + d)

(qaz + 1)(qbz + 1)(qcz + 1)(qdz + 1)
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Spectral gap

Root distribution

For the first excited state Λ1, Bethe roots lie on a simple curve

-0.4 -0.3 -0.2 -0.1 0.1

-0.2

-0.1

0.1

0.2r−br−a r−cr−d

• Solution depends on locus of a, b, c, d ⇒ Phase transitions are non-analytic points
• Integral equation

K (z) =
(z + a)(z + b)(z + c)(z + d)

(qaz + 1)(qbz + 1)(qcz + 1)(qdz + 1)
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Spectral gap Integral equation

Logarithmic form

[
qzj − 1
1− zj

]2L

K (zj ) =
L−1∏
l 6=j

[
qzj − zl

zj − qzl

] [
q2zjzl − 1
zjzl − 1

]
Taking log gives:

YL(z) := g(z) +
1
L

k(a, b, c, d ; z) +
1
L

L−1∑
l=1

log S(zl , z), Y (zj ) = 2πIj

Now use Cauchy:

1
L

L−1∑
j=1

λ(zj ) =

∮
C1+C2

d z
2πi

λ(z) cot
(

1
2

LYL(z)

)
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Spectral gap Integral equation

Integral equation

-0.4 -0.3 -0.2 -0.1 0.1

-0.2

-0.1

0.1

0.2

ξ∗

ξ

◦zc

Euler-Maclaurin:

iYL(z) = g(z) +
1
L

k(a, b, c, d ; z) +
1

2π

∫ ξ

ξ∗
S(w , z)Y ′L(w) d w +O(L−2).

Solve by expanding
YL(w) = YL(ξ) + Y ′L(ξ)(w − ξ) + . . .

and

YL(w) =
∑
n≥0

L−nyn(w), ξ = zc +
∑
n≥1

L−n(δn + iηn)

(Saddle point when Y ′L(zc) = 0).
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Spectral gap Integral equation

Reminder: Stationary phase diagram

density

a

b

1

1

CL

Maximum
Current

high density

low

CL: Coexistence line
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Spectral gap Integral equation

Low density I

−a,−b < zc

-0.4 -0.3 -0.2 -0.1 0.1

-0.2

-0.1

0.1

0.2r−br−a

λ1 = c1(a, b) +
c2(a, b)

L2 +O(L−3)

Finite gap⇒ exponential relaxation.

Coexistence line:

a = b : λ1 =
c2(a, a)

L2 .

Diffusive relaxation
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Spectral gap Integral equation

Low density II

−a < zc < −b

-0.4 -0.3 -0.2 -0.1 0.1

-0.2

-0.1

0.1

0.2r−br−a

λ1 = c1(a, bc) +
c2(a, bc)

L2 +O(L−3)

bc =
1√
abc

So λ1 only depends on a.
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Spectral gap Integral equation

Maximum current

Saddle point Y ′L(zc) = 0 and need to expand to second order:

YL(w) = YL(zc) + 1
2 Y ′′L (zc)(w − zc)2 + . . .

This leads to an expansion in L−1/2 (like periodic case)

But technical difficulty specific to open boundaries prohibits further analysis

Extremely convincing numerics finds Λ1 ∝ L−3/2.
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Spectral gap Integral equation

(γ = δ = 0) Phase diagram

α

β

I

I

I: λ1 = c1(α, β)

α = β : λ1 = c1(α)L−2

�
�
�

�
�

�
�
�

�
�

�
�

�
�
�

�
�

�
�
�

�
�
�

�
�

II

II: λ1 = c1(α, βc)

III III: λ1 = c1(αc, β)

IV

IV: λ1 ∝ L−3/2

a = (1− α)/α, b = (1− β)/β,

βc = (1 + a−1/3)−1 and αc = (1 + b−1/3)−1
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Spectral gap Integral equation
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Spectral gap Integral equation
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Spectral gap Reversed bias

Reversed bias

-0.4 -0.3 -0.2 -0.1 0.1

-0.2

-0.1

0.1

0.2r−br−a r−cr−d

What happens if −c or −d lies outside?

0.07 0.09 0.11
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-0.02

0

0.02

0.04

(a) c = −0.07
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(b) c = −0.088

0.07 0.09 0.11
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(c) c = −0.1
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Spectral gap Reversed bias

Reversed bias

Isolated roots outside curve:

2. ´ 10-10 4. ´ 10-10 6. ´ 10-10 8. ´ 10-10 1. ´ 10-9

-4´10-11

4´10-11

This is reversed bias boundaries: −qmc < a−1 < −qm−1c and leads to different
asymptotics.

E.g. coexistence line:

λ1 ∝
1

(L− 2m)2 .

Completely different expression if isolated roots dominate
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Current fluctuations

Asymptotic current generating function

Let Q1(t) be the net number of particle jumps between the left reservoir and site 1 after
time t .

Moments are encoded in the generating function 〈eλQ1(t)〉, where the brackets denote
an average over all histories.
Our result is an expression for

E(λ) = lim
L→∞

lim
t→∞

1
t

log〈eλQ1(t)〉.

This implies that the probability P(j1, t) to observe a current j1 = Q1(t)/t at the first site
obeys

P(j1, t) ∼ e−tÊ(j1)

where
Ê(j1) = max

λ
{λj1 − E(λ)}

is the Legendre transform of E(λ).
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Current fluctuations

Diagonalisation

E(λ) is equal to the largest eigenvalue of a generalised “transition matrix” M(λ).

Transition matrix M(λ) can be diagonalised by Bethe ansatz at discrete points:(
qn − eλ

)(
eλ − abcdqL−n−1

)
= 0, 0 ≤ n ≤ L− 1.

Sequence 1: λn = n log q, n = 0, 1, 2 . . ..

Sequence 2: λn = (L− 1− n) log q + log(abcd), n = L− 1, L− 2, . . ..

Recall that ASEP Bethe equations for lowest eigenvalue are different than for excited
states!
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Current fluctuations

Bethe equations

Eigenvalue is expressed in auxiliary variables:

E(λn) =
n∑

j=1

(1− q)2zj

(1− zj )(1− qzj )

that have to satisfy a system of equations:[
1− zj

1− qzj

]2L

K (zj ) =
n∏

l 6=j

[
zj − qzl

zl − qzj

] [
1− qzjzl

1− zjzl

]

with K (z) = K̃ (z, a, c)K̃ (z, b, d) and

K̃ (z, a, c) =
a + qz
1 + az

c + qz
1 + cz

.
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Current fluctuations

Sequence 1

Sequence 1: λn = n log q, n = 0, 1, 2 . . ..

For the low density phase the solution of the Bethe ansatz equations consists of only n
roots (n = 0, 1, 2, . . .)

zj = −q j−1

a
+O

(
e−µj L

)
, j = 1, . . . , n,

leading to

E(λn) = (1− q)

(
a

a + 1
− a

a + qn

)
.
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Current fluctuations

Sequence 2

Sequence 2: λn = (L− 1− n) log q + log(abcd), n = L− 1, L− 2, . . ..

Now the solution of the Bethe ansatz equations consists of L−1−n roots (n = 0, 1, . . .)

-0.3 -0.2 -0.1 0.1

-0.1

0.1

leading (eventually) to

E(λn) = (1− q)

(
a

a + 1
− 1

1 + bcdqL−1−n

)
.
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Current fluctuations

Summarising our results:

E(λ) = (1− q)

(
a

a + 1
− a

a + qn

)
, for λ = qn

E(λ) = (1− q)

(
a

a + 1
− 1

1 + bcdqL−1−n

)
, for λ = abcdqL−1−n

So we conjecture that

E(λ) = (1− q)

(
a

a + 1
− a

a + λ

)
for all values of λ.
(This has been confirmed by MPA calculations)
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Conclusion

Conclusion

ASEP with open boundaries is exactly solvable

Bethe equations allow for determination of spectral gap and asymptotic current
large deviations

Can we go to finite time and size, i.e. KPZ scaling limit t ∝ L3/2

Could there be logarithmic corrections to L−3/2 in maximum current phase due to
boundary effects?

Extend infinite lattice methodology to finite size (duality, random matrix methods,
. . . )?
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