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Jointly with Tsai (in equilibrium)
and
with Cabezas, Sarantsev, Sidoravicius (out of equilibrium)



Markov processes & Brownian motions

X(t) = (Xi(t),i > 0) is RN-valued stochastic process.
Markov process: for t > s > 0 and suitable f(-) € S:
E[f(X(£)|FST = [ pe-s(X(s), dy)f(y) =t (pe—sF)(X(s)) -

{pu(+,-)} transition probabilities semi-group:

(-
(a) pu(x,-) probability measure on RY per u, X.
(b) u( A) Borel function, per u, ACR Borel.
(c) Semi-group: purv(x,A) = [ pu(x,dy)p.(y,A), for u,v > 0.

Brownian Motion: t — W;(t) continuous, Markov process

pe(x,A) = [, pr(x — y)dy, heat kernel p:(x) = \/76 % (here N =1).

u(t,x) = (pef)(x) solves HE: ur = 3 Uy
Brownian scaling: WP(t) = bW;(t/b?) @

1

W;(t) for any b > 0.
(W;i(t),t > 0),i > 0 independent BM-s < product measures.
If £(x) = IT; &i(xi) then (p:f)(x) = T1;(prgi)(xi).



Poisson process, Martingales & Ito’s lemma

Zi ~ Exp()) = P(Zk >z)=e7,2z>0,)A>0.

o0
Independent Exponentials Z(/\) = (Zk, k> 1) ~ P\ = ® EXp()\).
k=1

Poisson process has points at Y = (Y, k > 1):

(Yk,kZ 1)NPPP+()\) < Y =0, Yk+1 =Y.+ 2, k>1
Continuous R-valued t — M(t) is [>-MG

= E[M:|FM =M, & E[M?]<oco VYt>s>0.

= M2 —[M]; is MG (for quadratic variation [M];), by Doob-Meyer.
For f € C;*(R) let Lf = f + Lfi.

lto's lemma: M{ := f(t, W(t)) — £(0, W(0)) — [, (LF)(s, W(s))ds is L*>-Mc
[MT]e =[5 £2(s, W(s))ds.



Interacting particles: SSEP; Hydrodynamics

Interacting particles: Markov process R(t) with interaction.
ssep: R(t) € {0,1}Z.

Jumps: Ax(i) € {—1,+1} iid. P(Ak(i) = +1) =1
independent of i.i.d. PPP(1) 'clock’ processes {7« (i)} for i € Z.

Order {7«(i)}, i € Z and k > 2.
Sequentially, if Ri(7x(7)) =1 and Riya,(i)(7k(i)) = 0 exchange these values.
Otherwise, do nothing (exclusion).

Hydrodynamics: be:/g Ri(t/b*) — Qu(t,x) as b —0
Q« non-random solves some PDE (for suitable R(0)).



ATLAS(A) model

Xi(t) = X;(0) + Wi(t) + /Ot Lix(s)=Xos)3 ds, i =0.
(W;(t),t > 0), i > 0 independent BM-s.
X(0) = (Xi(0),i > 0) ~PPP,(A), A€ (0,00),
= Z(0)=2ZW ~py = é Exp(}) .
k=1

Xoy(t) = min;{Xi(t)} left-most particle.

Ranked process Y and spacings process Z:
Zk(t) = Yk+1(t) — Yk(t) = X(k)(t) — X(k—l)(t)a k>1

(Yx(-) and Zk(-) are k-th ranked particle and k-th spacing, resp.).
[Ichiba—Karatzas—Shkolnikov 13, Pal-Pitman 08] 3 unique, rankable weak sol. X.



Reflected Brownian Motion

RBM representation for Z(t) based on
Yie(t) = Yi(0) = t1k=1y + Bi(t) + Li—1(t) — Li(t)

(B(t)) independent BM-s
Lo(t) =0 , Lk(t) local time at {Zx(s) = 0}, k > 1 (collisions).



ATLAS(2) an equilibrium case

[Pal-Pitman 08] A = 2 = Spacings equilibrium (Z(t) @ Z(0)).
(utilizing [Williams 87] work on RBM-s on polyhedra).

[Conj. 2]: Unique invariant measure (Open).

[Conj. 3]: (resolved in [D-Tsai 15]).

t_1/4X(0)(t) @ N(0,c), t—o0, some c € (0,00).

(tagged particle of Harris system [Harris 65, Diirr-Goldstein-Lebowitz 85], and
of sSEP [Arratia 83, Rost-Vares 85, Landim-Volchan 00, De Masi-Ferrari 02]).

By spacing equilibrium, [D-Tsai 15] resolve [Conj. 3, PP08] by showing that

/2 follows ASHE with Neumann BC at 0.

asymptotic fluctuation at scale b™
Question: Out of equilibrium? Expects

X(0)(s) = +oo,  according to  sgn(2 — A).



Hydrodynamics for ATLAS()): Setting

Asymptotics b | 0 of point processes on Ry x R
Q"(t,") == bZ‘St,x.b(t)’ XP(t) = bXi(t/b%), i>0.
i=0
Q"(t,-) € M (R) = {all Borel u > 0 with u((—o0, r]) finite Vr},

C. := {f € Cp(R) eventually zero}-topology, metrizable by d..

Q°(-,-) € € = {all continuous t — u(t,-) : Ry — (M«(R), d.)},

with topology of uniform convergence on compacts in R..



Hydrodynamics for ATLAS,(\): Result

Theorem (CDSS 15)
For ATLASw()) as b — 0 we have Q°(-,-) — Q.(-,) in €.

The Q.-density with respect to Lebesgue
U*(t,X) = [Cl + C2¢(X/\/E):| 1{X>y*(t)} , y*(t) = K:\/E, vVt >0
®(-) cpF of N(0,1) and

27 A0(k) oA=2
VT T o(k)

D=

1—d(k)’
sgn(x) = sgn(2 — \) for k unique such that

K(1-0(0) _, A
(k) 27

Left-most particle X(%)(t) — v«(t) as b — O (uniformly on compacts).

v




Stefan problem for ATLAS,())

y«(t) = inf{x : u.(t,x) > 0} differentiable and u,(t,x) unique,
uniformly bounded and uniformly positive on x > y(t), solution
of 1-sided Stefan problem:

1
ur(t, x) = Euxx(t,x), Vx > y(t). HE

lim u(t, x) = Ao, Vx#£0. IC
im u(t, x) >0 x #
u(t,y(t)") = Jm u(tx) =2, Ve>0. BQLBV

d 1
u(t,y(t)+)d—};(t) + Sux(ty(t)") =0, ¥t >0. FLX-BD



The flux condition: consequences

d 1
d% = —3ux(t.y(t)"), vt > 0. FLX-BD

A—2>0 = k<0 (expanding),
A—2<0 = k>0 (contracting).

Non-random rate of expansion/contraction

Yl(S)

lim =K

S—00 \/g

u.(1,-) as limiting particle density profile:

im Ql/\/g(l,x—l—[—e,e]):/ u(l,x+r)dr, €>0.
$§—00

—€

# of particles at time s >> 1 near \/sx has density u,(1,x).



Stochastic monotonicity and spacing at the edge

€€ o PE2y)<PE>y), VyeR'.

\

Theorem (CDSS 15)
Z(0) = ZW ~ py.

A<2 = ZP=<Zz2(t)=x2(s)=zW, vt>s>0,

and Z(t) — Z® (convergence of f.d.d.).

A>2 = ZW<7(s)=<2(t)=<2®, Vt>s>0.




SSEP versus |to, PDE and the proof

[Landim-Olla-Volchan 98] get same Stefan problem for effect of tagged
asymmetric particle on (truely) doubly-infinite SSEP, by [Arratia 85] transform
of spacings in -SEP to constant rate zero-range process.

Here purely one-sided system. Stochastic monotonicity (RBM theory) plus LD
for i.i.d. BM-s and for PPP. () give pre-compactness/regularity of {Q®, b > 0}
(¢-limit-points Q° as b — 0, with bounded Q°-density and X{)(t) — yqo(t)).

By Ito’s lemma (diminishing martingale term as b — 0), all limit points satisfy
same weak (distributional) form of our Stefan problem. A-priori regularity and

standard PDE tools [Ishii 81] give uniqueness of solution.



Space-time particle fluctuations at A = 2: Setting

Asymptotics b | 0 of re-scaled point processes on Ry x R
Qb(t,-) == \/b/2[26x!,(t) - (2/b)Leb(R+)} . XP(t) = bXi(t/b%), i>0.
i=0

Heat kernel pt(x) = d1(x) for  ®e(x) = ¢(x/Vt) — L.
Neumann kernel pY(y,x) = 8,V:(y,x) for
Ve(y, x) = ey — x) + Oe(y + x).

B(-) Brownian motion, W(t, x) standard white noise are independent.

Wa(x) = /0 "Wy, x)dB(y).

)= [ t [ ottraanty.s).

C(R2;R)-valued Gaussian process U°(t, x) = Wt(x) + My(x), solves the ASHE

(0 — XX)UO(t x) =W(t,x),  U°0,x)=B(x).



Space-time particle fluctuations at A = 2: Result

Equip D(Ri) with uniform convergence on compacts and let

0°(t,x) 1= v/b/2(2X /2y (£/67) — Lx/(2b)] ).

Theorem (D-Tsai 15)

For ATLAS~(2) as b — 0,
Ub(': ) = UO('a ) :

In particular, bfl/zX(o)(t/bz) = (2/7)Y*V(t) a 1/4-FBM.

Ub(t,x) ~ FP(t,x) == ((AQb(t7 ), Ve (4, x + b")) (some 0 < r < 1/2).
Ito's lemma for F>"(t, x):

martingale contribution goes to M;(x),

IC contribution goes in law to Wt(x),

HE and choice of W eliminate LF part.



Thank you!




