The Atlas model, in and out of equilibrium

Amir Dembo, Stanford University

Jointly with Tsai (in equilibrium) and with Cabezas, Sarantsev, Sidoravicius (out of equilibrium)

Markov processes & Brownian motions

$$\underline{X}(t) = (X_i(t), i \ge 0)$$
 is $\mathbb{R}^{\mathbb{N}}$ -valued stochastic process.

Markov process: for $t \ge s \ge 0$ and suitable $f(\cdot) \in \mathcal{S}$:

$$\mathbb{E}[f(\underline{X}(t))|\mathcal{F}_s^{\boldsymbol{X}}] = \int p_{t-s}(\underline{X}(s),\mathrm{d}\underline{y}) f(\underline{y}) =: (p_{t-s}f)(\underline{X}(s)) \ .$$

 $\{p_u(\cdot,\cdot)\}$ transition probabilities semi-group:

- (a) $p_u(\underline{x}, \cdot)$ probability measure on $\mathbb{R}^{\mathbb{N}}$, per u, \underline{x} .
- (b) $p_u(\cdot, A)$ Borel function, per $u, A \subset \mathbb{R}^{\mathbb{N}}$ Borel.
- (c) Semi-group: $p_{u+v}(\underline{x}, A) = \int p_u(\underline{x}, d\underline{y}) p_v(\underline{y}, A)$, for $u, v \ge 0$.

Brownian Motion: $t \mapsto W_i(t)$ continuous, Markov process

$$p_t(x,A) = \int_A p_t(x-y) \mathrm{d}y$$
, heat kernel $p_t(x) = \frac{1}{\sqrt{2\pi t}} \mathrm{e}^{-\frac{x^2}{2t}}$ (here $\mathbb{N}=1$). $u(t,x) = (p_t f)(x)$ solves HE: $u_t = \frac{1}{2}u_{xx}$.

Brownian scaling: $W_i^b(t) = bW_i(t/b^2) \stackrel{(d)}{=} W_i(t)$ for any b > 0.

$$(W_i(t), t \ge 0), i \ge 0$$
 independent BM-s \Leftrightarrow product measures.

If
$$f(\underline{x}) = \prod_i g_i(x_i)$$
 then $(p_t f)(\underline{x}) = \prod_i (p_t g_i)(x_i)$.

Poisson process, Martingales & Ito's lemma

$$Z_k \sim \operatorname{Exp}(\lambda) \iff \mathbf{P}(Z_k \geq z) = e^{-\lambda z}, \ z \geq 0, \ \lambda > 0.$$

Independent Exponentials $\underline{Z}^{(\lambda)} := (Z_k, k \ge 1) \sim \rho_\lambda = \bigotimes_{k=1}^\infty \mathsf{Exp}(\lambda)$.

Poisson process has points at $\underline{Y} = (Y_k, k \ge 1)$:

$$(Y_k, k \geq 1) \sim ext{PPP}_+(\lambda) \;\; \Leftrightarrow \;\; Y_1 = 0, \;\; Y_{k+1} = Y_k + Z_k \;, \;\; k \geq 1$$

Continuous \mathbb{R} -valued $t \mapsto M(t)$ is L^2 -MG

$$\iff$$
 $\mathbb{E}[M_t|\mathcal{F}_s^{\mathsf{M}}] = M_s$ & $\mathbb{E}[M_t^2] < \infty$ $\forall t \geq s \geq 0$.

$$\implies M_t^2 - [M]_t$$
 is MG (for quadratic variation $[M]_t$), by Doob-Meyer.

For $f \in C_b^{1,2}(\mathbb{R})$ let $\mathcal{L}f = f_t + \frac{1}{2}f_{xx}$.

Ito's lemma:
$$M_t^f := f(t, W(t)) - f(0, W(0)) - \int_0^t (\mathcal{L}f)(s, W(s)) ds$$
 is L^2 -MG $[M^f]_t = \int_0^t f_s^2(s, W(s)) ds$.

Interacting particles: SSEP; Hydrodynamics

Interacting particles: Markov process $\underline{R}(t)$ with interaction.

SSEP:
$$\underline{R}(t) \in \{0,1\}^{\mathbb{Z}}$$
.

Jumps: $\Delta_k(i) \in \{-1, +1\}$ i.i.d. $\mathbf{P}(\Delta_k(i) = +1) = \frac{1}{2}$ independent of i.i.d. $\mathrm{PPP}_+(1)$ 'clock' processes $\{\tau_k(i)\}$ for $i \in \mathbb{Z}$.

Order $\{\tau_k(i)\}$, $i \in \mathbb{Z}$ and $k \geq 2$.

Sequentially, if $R_i(\tau_k(i)) = 1$ and $R_{i+\Delta_k(i)}(\tau_k(i)) = 0$ exchange these values. Otherwise, do nothing (exclusion).

Hydrodynamics: $b\sum_{i=0}^{x/b} R_i(t/b^2) \to Q_\star(t,x)$ as $b\to 0$ Q_\star non-random solves some PDE (for suitable $\underline{R}(0)$).

$_{ m ATLAS}_{\infty}(\lambda)$ model

$$X_i(t) = X_i(0) + W_i(t) + \int_0^t \mathbf{1}_{\{X_i(s) = X_{(0)}(s)\}} \, \mathrm{d}s \,, \quad i \ge 0 \,.$$
 $(W_i(t), t \ge 0), \ i \ge 0 \ \text{independent BM-s}.$

 $\underline{X}(0) = (X_i(0), i \geq 0) \sim PPP_+(\lambda), \quad \lambda \in (0, \infty),$

$$\iff \underline{Z}(0) = \underline{Z}^{(\lambda)} \sim \rho_{\lambda} = \bigotimes_{k=1}^{\infty} \operatorname{Exp}(\lambda).$$

 $X_{(0)}(t) = \min_{i} \{X_i(t)\}$ left-most particle.

Ranked process \underline{Y} and spacings process \underline{Z} :

$$Z_k(t) := Y_{k+1}(t) - Y_k(t) := X_{(k)}(t) - X_{(k-1)}(t), \qquad k \ge 1$$

 $(Y_k(\cdot))$ and $Z_k(\cdot)$ are k-th ranked particle and k-th spacing, resp.). [Ichiba-Karatzas-Shkolnikov 13, Pal-Pitman 08] \exists unique, rankable weak sol. X.

Reflected Brownian Motion

RBM representation for $\underline{Z}(t)$ based on

$$Y_k(t) - Y_k(0) = t\mathbf{1}_{\{k=1\}} + B_k(t) + L_{k-1}(t) - L_k(t)$$

 $(\underline{B}(t))$ independent BM-s

$$L_0(t)=0$$
 , $L_k(t)$ local time at $\{Z_k(s)=0\}$, $k\geq 1$ (collisions).

$_{\rm ATLAS_{\infty}(2)}$ an equilibrium case

[Pal-Pitman 08] $\lambda = 2 \Rightarrow$ Spacings equilibrium $(\underline{Z}(t) \stackrel{(d)}{=} \underline{Z}(0))$. (utilizing [Williams 87] work on RBM-s on polyhedra).

[Conj. 2]: Unique invariant measure (Open).

[Conj. 3]: (resolved in [D-Tsai 15]).

$$t^{-1/4}X_{(0)}(t)\stackrel{(d)}{\to}N(0,c)\,, \qquad t\to\infty\,,\quad \mathrm{some}\ c\in(0,\infty)\,.$$

(tagged particle of Harris system [Harris 65, Dürr-Goldstein-Lebowitz 85], and of SSEP [Arratia 83, Rost-Vares 85, Landim-Volchan 00, De Masi-Ferrari 02]). By spacing equilibrium, [D-Tsai 15] resolve [Conj. 3, PP08] by showing that asymptotic fluctuation at scale $b^{-1/2}$ follows ASHE with Neumann BC at 0.

Question: Out of equilibrium? Expects

$$X_{(0)}(s) \to \pm \infty$$
, according to $\operatorname{sgn}(2 - \lambda)$.

Hydrodynamics for $ATLAS_{\infty}(\lambda)$: Setting

Asymptotics $b\downarrow 0$ of point processes on $\mathbb{R}_+\times\mathbb{R}$

$$Q^b(t,\cdot):=b\sum_{i=0}^\infty \delta_{t,X_i^b(t)}\,,\quad X_i^b(t)=bX_i(t/b^2),\quad i\geq 0\,.$$

$$Q^b(t,\cdot)\in M_*(\mathbb{R})=\{ ext{all Borel }\mu\geq 0 ext{ with }\mu((-\infty,r]) ext{ finite } \forall r\},$$

 $\mathcal{C}_*:=\{f\in\mathcal{C}_b(\mathbb{R}) \text{ eventually zero}\}\text{-topology, metrizable by } d_*.$

$$Q^b(\cdot,\cdot)\in\mathfrak{C}=\{ ext{all continuous }t\mapsto \mu(t,\cdot):\mathbb{R}_+ o (M_*(\mathbb{R}),d_*)\},$$
 with topology of uniform convergence on compacts in \mathbb{R}_+ .

Hydrodynamics for $ATLAS_{\infty}(\lambda)$: Result

Theorem (CDSS 15)

For $ext{ATLAS}_{\infty}(\lambda)$ as b o 0 we have $Q^b(\cdot, \cdot) o Q_*(\cdot, \cdot)$ in \mathfrak{C} .

The Q_* -density with respect to Lebesgue

$$u_*(t,x) := [c_1 + c_2 \Phi(x/\sqrt{t})] \mathbf{1}_{\{x > v_*(t)\}}, \quad y_*(t) := \kappa \sqrt{t}, \quad \forall t > 0$$

 $\Phi(\cdot)$ CDF of N(0,1) and

$$c_1 := rac{2 - \lambda \Phi(\kappa)}{1 - \Phi(\kappa)} \,, \quad c_2 := rac{\lambda - 2}{1 - \Phi(\kappa)} \,.$$

 $\operatorname{sgn}(\kappa) = \operatorname{sgn}(2 - \lambda)$ for κ unique such that

$$\frac{\kappa(1-\Phi(\kappa))}{\Phi'(\kappa)}=1-\frac{\lambda}{2}.$$

Left-most particle $X_{(0)}^b(t) o y_*(t)$ as b o 0 (uniformly on compacts).

Stefan problem for ${ m ATLAS}_{\infty}(\lambda)$

 $y_*(t) = \inf\{x : u_*(t,x) > 0\}$ differentiable and $u_*(t,x)$ unique, uniformly bounded and uniformly positive on x > y(t), solution of 1-sided Stefan problem:

$$\begin{split} u_t(t,x) &= \frac{1}{2} u_{xx}(t,x)\,, \qquad \forall x > y(t)\,. \quad \text{HE} \\ \lim_{t \downarrow 0} u(t,x) &= \lambda \mathbf{1}_{x>0}\,, \qquad \forall x \neq 0\,. \quad \text{IC} \\ u(t,y(t)^+) &:= \lim_{x \downarrow y(t)} u(t,x) = 2\,, \qquad \forall t > 0\,. \quad \text{EQ-LBV} \\ u(t,y(t)^+) \frac{dy}{dt}(t) + \frac{1}{2} u_x(t,y(t)^+) = 0\,, \ \forall t > 0\,. \quad \text{FLX-BD} \end{split}$$

The flux condition: consequences

$$\frac{dy}{dt} = -\frac{1}{4}u_x(t, y(t)^+), \ \forall t > 0.$$
 FLX-BD $\lambda - 2 > 0 \implies \kappa < 0$ (expanding), $\lambda - 2 < 0 \implies \kappa > 0$ (contracting).

Non-random rate of expansion/contraction

$$\lim_{s\to\infty}\frac{Y_1(s)}{\sqrt{s}}=\kappa.$$

 $u_*(1,\cdot)$ as limiting particle density profile:

$$\lim_{s\to\infty}Q^{1/\sqrt{s}}(1,x+[-\epsilon,\epsilon])=\int_{-\epsilon}^{\epsilon}u_*(1,x+r)dr\,,\quad \epsilon>0\,.$$

of particles at time $s \gg 1$ near $\sqrt{s}x$ has density $u_*(1,x)$.

Stochastic monotonicity and spacing at the edge

Definition

$$\underline{\xi} \preceq \underline{\xi}' \quad \Leftrightarrow \quad \mathbf{P}(\underline{\xi} \geq \underline{y}) \leq \mathbf{P}(\underline{\xi}' \geq \underline{y}), \qquad \forall \underline{y} \in \mathbb{R}^{\mathbb{N}}.$$

Theorem (CDSS 15)

$$\underline{Z}(0) = \underline{Z}^{(\lambda)} \sim \rho_{\lambda}.$$

$$\lambda < 2 \implies \underline{Z}^{(2)} \preceq \underline{Z}(t) \preceq \underline{Z}(s) \preceq \underline{Z}^{(\lambda)}, \qquad \forall t \geq s \geq 0,$$

and $\underline{Z}(t) \rightarrow \underline{Z}^{(2)}$ (convergence of f.d.d.).

$$\lambda > 2 \implies \underline{Z}^{(\lambda)} \preceq \underline{Z}(s) \preceq \underline{Z}(t) \preceq \underline{Z}^{(2)}, \quad \forall t \geq s \geq 0.$$

SSEP versus Ito, PDE and the proof

[Landim-Olla-Volchan 98] get same Stefan problem for effect of tagged asymmetric particle on (truely) doubly-infinite SSEP , by [Arratia 85] transform of spacings in $\operatorname{-SEP}$ to constant rate zero-range process.

Here purely one-sided system. Stochastic monotonicity (RBM theory) plus LD for i.i.d. BM-s and for PPP+(λ) give pre-compactness/regularity of { Q^b , b>0} (\mathfrak{C} -limit-points Q^0 as $b\to 0$, with bounded Q^0 -density and $X^b_{(0)}(t)\to y_{Q^0}(t)$).

By Ito's lemma (diminishing martingale term as $b \to 0$), all limit points satisfy same weak (distributional) form of our Stefan problem. A-priori regularity and standard PDE tools [Ishii 81] give uniqueness of solution.

Space-time particle fluctuations at $\lambda = 2$: Setting

Asymptotics $b\downarrow 0$ of re-scaled point processes on $\mathbb{R}_+\times\mathbb{R}$

$$\widehat{Q}^b(t,\cdot) := \sqrt{b/2} \Big[\sum_{i=0}^{\infty} \delta_{X_i^b(t)} - (2/b) \mathrm{Leb}(\mathbb{R}_+) \Big] \,, \quad X_i^b(t) = b X_i(t/b^2), \quad i \geq 0 \,.$$

Heat kernel $p_t(x) = \Phi_t'(x)$ for $\Phi_t(x) = \Phi(x/\sqrt{t}) - 1$.

Neumann kernel $p_t^N(y,x) = \partial_y \Psi_t(y,x)$ for

$$\Psi_t(y,x) := \Phi_t(y-x) + \Phi_t(y+x).$$

 $B(\cdot)$ Brownian motion, $\mathcal{W}(t,x)$ standard white noise are independent.

$$\begin{split} \widehat{W}_t(x) &:= \int_0^\infty \Psi_t(y,x) \mathrm{d}B(y)\,,\\ \widehat{M}_t(x) &:= \int_0^t \int_0^\infty p_{t-s}^N(y,x) \mathrm{d}\mathcal{W}(y,s)\,. \end{split}$$

 $C(\mathbb{R}^2_+;\mathbb{R})$ -valued Gaussian process $\widehat{U}^0(t,x)=\widehat{W}_t(x)+\widehat{M}_t(x)$, solves the ASHE

$$(\partial_t - \frac{1}{2}\partial_{xx})\widehat{U}^0(t,x) = \dot{\mathcal{W}}(t,x), \qquad \widehat{U}^0(0,x) = B(x).$$

Space-time particle fluctuations at $\lambda = 2$: Result

Equip $D(\mathbb{R}^2_+)$ with uniform convergence on compacts and let

$$\widehat{U}^b(t,x) := \sqrt{b/2} \Big(2 X_{\left(\lfloor x/(2b) \rfloor \right)} (t/b^2) - \lfloor x/(2b) \rfloor \Big) \,.$$

Theorem (D-Tsai 15)

For ATLAS $_{\infty}(2)$ as $b \to 0$,

$$\widehat{U}^b(\cdot,\cdot)\Rightarrow \widehat{U}^0(\cdot,\cdot).$$

In particular, $b^{-1/2}X_{(0)}(t/b^2) \Rightarrow (2/\pi)^{1/4}V(t)$ a 1/4-FBM.

$$\widehat{U}^b(t,x) pprox F^{b,r}(t,x) := \langle \widehat{Q}^b(t,\cdot), \Psi_{b^{1+r}}(\cdot,x+b^r)
angle \ (\text{some } 0 < r < 1/2).$$

Ito's lemma for $F^{b,r}(t,x)$:

martingale contribution goes to $\widehat{M}_t(x)$,

IC contribution goes in law to $\widehat{W}_t(x)$,

HE and choice of Ψ eliminate $\mathcal{L}F$ part.

Thank you!