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• Eigenvector and eigenvalue statistics are linked:

The U(N) symmetry matrix models are endowed with  

can be spontaneously broken

• Similar ideas introduced before: 

 Moshe, Neuberger, Shapiro; PRL ’94

 Canali, Kravtsov; PRE ’95

 Bonnet, David, Eynard; JPA ‘00 …

• Peculiar SSB: thermodynamic limit also takes 

symmetry’s rank to infinity

My Claim
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1. Physical motivation: Anderson Model

2. Spontaneous Symmetry Breaking:

 Geometrical argument

 Symmetry  Breaking term

 Numerical finite size detection

4. Weakly Confined Matrix Models

 Spectral Statistics (known)

 Energy landscape (new)

5. Conclusions & Outlook

Outline
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Introduction 

on 

Localization 

due to Disorder
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Part 1



• Anderson Model:

• Tight-binding model (nearest neighbor hopping) 

• Random on-site energies:

• 1 (& 2) Dimensions: localized for any 

• Higher D:

• Hard problem (uncontrolled perturbation expansion) 

Disorder & Localization
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 Small : conducting 

(weak loc., Random Matrices) 

 : insulating

(localized at low energies)

(Anderson. ‘58)

Extended

Localized



Metal/Insulator Transition
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Extended

Localized

• Mobility Edge 

separates extended 

from localized states

• Transition as Intermediate 

state  (multifractal)
Van Tiggelen group (PRL 2009)



• At each height , the wavefunction’s amplitude

draws a “curve” with a different fractal dimension

• Behavior at mobility edge known in “perturbative” regimes

 long-standing open problem

Multifractality

Ergodicity Loss in Invariant Matrix Models n. 7 Fabio Franchini



• Localization/extendedness of wavefunctions is a   

basis-dependent property

Motivating Question for this work
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Localized

Extended



• Localization/extendedness of wavefunctions is a   

basis-dependent property

• However, level spacing statistics characterizes 

insulating/conducting systems

Motivating Question for this work

Localized Extended

Poisson  Localized

Wigner Dyson  Extended
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• Spectral signature hints toward localization as 

basis independent property

• Random Matrix Theory ideal to test this hypothesis

• However: lack of analytical tools to study 

eigenstate behavior in RMT

• Need to develop new machinery: abstract setting  

to study relation between eigenvalues and 

eigenvectors

• Seeking for fundamental structure of insulators

My Approach

Ergodicity Loss in Invariant Matrix Models n. 10 Fabio Franchini

(Allez & Bouchaud ’11-’12; Allez & Guionnet ‘13)



Spontaneous Breaking      

of Rotational Symmetry

in Invariant Multi-Cuts

Matrix Model

Part 2
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• Take W(M) real: statistical model

• Consider M as a Hamiltonian:

 M: Hermitian Matrix

 Matrix entries randomly from a distribution

 Interaction between every degree of freedom    

(no preconceived notion of locality)

• Common wisdom: RMT describes delocalized systems

Random Matrix Theory
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matrix-valued action



• Action invariant under rotations:

• Switch to eigenvalues/eigenvectors:

Invariant Ensembles

Van der Monde Determinant:

(from Jacobian)

Eigenvectors uniformly

distributed over the      

N-dimensional sphere  

(Hilbert space):

independent from V(l)
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• Entries of Unitary matrix follow the Porther-Thomas

Distribution:

The Haar Measure
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• Jacobian introduces interaction between eigenvalues

• Coulomb gas picture:

• Eigenvalues as 1-D particles with

 logarithmic repulsion

 external confining potential V(l)

• Universal level spacing distribution

• Valid for any polynomial V(l) 

Wigner-Dyson Universality

(distance between n.n. eigenvalues)
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• Wigner Dyson distribution & level repulsion: 

Jacobian introduces interaction between eigenvalues

• Extended states/conducting phases:               

uniform distribution means eigenvectors typically 

have all non-vanishing entries

• Eigenvalues interact through their eigenvectors:  

Invariant Ensembles

WD  extended states
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• To study localization problems, introduce non-invariant 
random matrix ensembles (Random Banded Matrices)

• Limited analytical tools (SUSY, cluster expansion…)

Non-Invariant Ensembles

 Localized states (Poisson statistics)

 Multi-Fractal states (Critical Statistics)

(Mirlin et al. ’96; …)

(Evers & Mirlin, ’00; …)
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• Invariant models are endowed with superior  

(non-perturbative) analytical techniques

• Can invariant models spontaneously break rotational 

symmetry and realize non-trivial eigenvector statistics 

like non-invariant ensembles? If so,

 Invariant machinery for localization problems!

• Recall a ferromagnet: 

 From partition function, rotational invariance

 no spontaneous magnetization

 Need, e.g., a symmetry breaking term 

Loophole: Spontaneous Breaking      

of Rotational Invariance
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• V(x) with several, well separated, minima

 disconnected support for 

eigenvalues (multi-cuts)

• For example: double well potential

(2-cuts for          )

Level Density:

Multi-Cut Solutions
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• Geometrical argument: line element

• Angular degrees of freedom live on 

spheres of radii

Understanding the matrix SSB
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• Geometrical argument: line element

• Angular degrees of freedom live on 

spheres of radii

Understanding the matrix SSB
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Small 

Small

Small 

if overshoot

Large 

Large

Large 

if overshoot

http://www.math.nus.edu.sg/~matrw/string/fig/rough_ener.gif



• Geometrical argument: line element

• For large , 

rotations generate large

 move to far point in 

configuration space

• Entropic (fine tuning) origin of 

SSB (same as level repulsion)

Understanding the matrix SSB
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• Geometrical argument: line element

 Two lengths scales:

• Multi-cut solutions:

Eigenvectors of eigenvalues 

in different cuts cannot mix

Understanding the matrix SSB

Eigenvalues spacing:

Support of distribution:
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• Gaussian Models:

 each matrix entries sampled independently

• One-Cut Models: 

 entries correlated: generated as perturbation of 

Gaussian case in a Metropolis scheme

• Multi-Cut Solutions: Gaussian case unstable

 start from initial seed and evolve it to equilibrium

 SSB: final configuration has memory of 

eigenvectors of initial seed

Generating a Random Matrix
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• Level repulsion resolves degeneracy: 

 each of the     cuts contains       eigenvalues

• Gap between cuts breaks rotational 

invariance:

• Three Arguments:

Brownian motion;

Numerical finite size analysis;

Symmetry Breaking Term

Multi-Cuts SSB

F.F. arXiv:1412.6523

Double well 

(assume N even)
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• To detect SSB introduce symmetry breaking term

• Most natural one is , but too hard to handle

• We introduce:

Symmetry Breaking Term
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: given Hermitian Matrix

Favors alignment of eigenvectors

: source strength

Absolute value can be removed by 
sorting eigenvalues in increasing order



• Double well:

(assume N even)

• Take    with 2 sets of N/2-degenerate eigenvalues:      

to induce correct symmetry breaking

• Use (regularized) Itzykson-Zuber formula:

Symmetry Breaking: Double Well
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(Itzykson & Zuber, ‘80)

Sum over ways to partition eigenvalues 
of M according to degeneracies of S



• Calculate (dis-)order parameter:

Symmetry Breaking Term

Symmetry is Broken!

Eigenvectors 
misaligned Finite N:


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• Calculate (dis-)order parameter:

Symmetry Breaking Term

 Finite N:



Ergodicity Loss in Invariant Matrix Models n. 29 Fabio Franchini

Instantons:

 Pairs of eigenvalues 
tunneling between cuts

 Restore broken 
symmetries



• Without preferred, reference basis; localization means 

rigidity of eigenvectors under perturbations

• Take double well matrix model:

• Generate a representative matrix: 

• Apply perturbation (sparse Gaussian Matrix)

• Find eigenvectors of perturbed matrix:

• Consider eigenvectors of perturbed matrix in original 

eigenvector basis (rotation due to perturbation): 

Finite Size Analysis
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t=4, N=1000, sparse matrix with n=200 

non zero elements, drawn from Gaussian 

with zero mean and variance N)

Finite Size Analysis
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Finite Size Analysis
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Off-diagonal blocks suppressed as 1/N compared to diagonal ones

Onset of localizations!

Overlaps between 

eigenstates



• Gap in the eigenvalue distribution 

 Deviation from WD universality

 Spontaneous breaking of rotational symmetry

 Eigenvectors localized in patch of Hilbert space 

spanned by the other eigenvectors in the same cut

• Broken symmetries restored by instantons

• Not “localization” in usual meaning, but loss of ergodicity

• Proof that eigenvectors of invariant matrix models 

encode non-trivial information!

• Relevant for MBL?

Multi-Cuts SSB: Conclusions
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Weakly Confined 

Matrix Models

&

The Metal/Insulator

Transition 
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Part 3



• Family of “Muttalib” ensemble

• Soft confinement sets them apart from usual 

polynomial potentials 

 WD universality does not apply

 Indeterminate moment problem

• Solvable through orthogonal polynomials:

q-deformed Hermite/Laguerre Polynomials

• Arise in localization limit of Chern-Simons/ABJM:

Weakly Confined Invariant Models
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(Muttalib et al. ’93; Tierz’04 )

(Marino ’02; Kapustin et a. ’10; …)

(Muttalib et al. ’93 )



Weakly 

Confined 

Matrix 

Models

&

their

applica-

tions
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• Intermediate level 

spacing statistics

• Same eigenvalue 

correlations as 

Critical Random 

Banded Matrices

Weakly Confined Matrix Models

k
k
k

k
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(Muttalib et al. ‘93)

• Critical level statistics signals fractal eigenstates?

• Critical Spontaneous Breaking of U(N) Invariance?
(Canali, Kravtsov, ‘95)



• Same spectral signatures as c-RBM :

• C-RBM toy model for the Anderson Transition:

reproduce multifractal spectrum (analytical for )

• Conjecture: SSB of WCMM to calculate analytically

multifractal spectrum of Anderson MIT

WCMM and Anderson Transition
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• Take exactly log-normal ensemble (positive eigenvalues)

• Exponential mapping:

• Each term of the Van der Monde shifts the equilibrium 

of the parabolic potential: different effective potential 

felt by each eigenvalue for each term for the VdM

New: WCMM Energy Landscape
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F.F. arXiv:1503.03341



New: Energy Landscape
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F.F. arXiv:1503.03341

• Partition function has a large number of saddle points!

• Inclusion of all saddle contributions correctly reproduces 

orthogonal polynomials result (Tierz ‘04)



New: Energy Landscape
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F.F. arXiv:1503.03341

• Partition function has a large number of saddle points!

• Each term of the expansion of the product 

 Corresponds to a different saddle (equilibrium conf.)

 Has the same leading energy (differ in powers of q)

 fugacity of the instantons

 Saddles in 1-to-1 correspondence with ways of breaking 

U(N) in its components! 



• Limit              selects one saddle

corresponds to breaking of            into

• At finite    , instantons connect to other saddles by 

progressively restoring the broken symmetries

• Critical eigenvalue statistics from complex landscape

Landscape Interpretation
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F.F. arXiv:1503.03341

(Bogomolny et al. ‘97)

(Pato, ‘00)



• Conjecturing form of                from landscape structure

• Inverse Participation Ratios of     scale with fractional 

powers of N (unfortunately, wrong ones…)

 Multi-fractal spectrum from invariant matrix model!

Multi-fractal Spectrum
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HaarMultiFractal



• From conjectured , reconstruct hermitian

matrix 

• Distribution of entries in      similar to power-law 

critical random banded matrix!

Connection to C-RBM
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HaarMultiFractal



• Invariant Matrix Models usually applied only to 

extended/conducting states: eigenvectors discarded

• Eigenvalues deviate from Wigner-Dyson  ergodicity loss:      

gaps in eigenvalues localize their eigenvectors / U(N) broken

• Invariant Models techniques for localization problems!

• WCMM has complex energy landscape  critical SSB

• Critical exponents, machinery for new “eigenvector” observables

• Matrix SSB as Replica Symmetry Breaking?

• WCMM  full RSB as multi-fractal spectrum ?

• Implications of this symmetry 

breaking in string theories related to WCMM

Conclusions & Outlook
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To Do List

Thank you!



• To characterize localization:

 Extended:

 Localized: 

 Critical state:

: fractal dimensions

: multi-fractal spectrum

Multi-fractal Spectrum
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Van Tiggelen group (PRL 2009)



• Level repulsion resolves degeneracy: 

 each of the    cuts contains       eigenvalues

• Gap between cuts breaks rotational 

invariance:

• Dyson Brownian Motion for 

equilibrium distribution shows scale separation:

Brownian Motion Picture
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delta-corr.

stochastic

sources



• Each saddle point corresponds to a different SSB 

• Unitary matrix from Hermitian matrix: 

• saddle has all 

• Conjecture:

Each instanton “turns on” one element: 

SSB Structure
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• Numerical check of conjecture

• Unitary matrix from Hermitian matrix: 

• Generate each element

 MULTIFRACTALITY!

Multi-fractal Spectrum
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takesample

uniformly

with probability



• Qualitative picture on eigenvalue/eigenvector connection

• 2-level system:

Landau Zener Picture
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“Localized” “Extended”



• For e-2p2/k<<1 semiclassical analysis (Canali et al ’95):

Weakly Confined Matrix Model
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• Unfolding to make density constant:



• Numerical check (Canali et al ’95):

Weakly Confined Invariant Ensemble

x'

1
-Y

2
(x

,x
')
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Luttinger theory for RME

• Two-Point function (Kravtsov et al. ’00):

• In flat space: 

Unfolding:

r0 = 1

2-Point Function

for Gaussian RME
(K=1: Unitary)
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Luttinger theory in Rindler space

• Far from the origin:  

Periodic in imaginary time

 finite temperature
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Luttinger Liquid in Rindler Space

• Remind two-Point function:

• With the new coordinates: 
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• We recover exactly the RME correlation ( K=1):

(Anomalous: non-translational invariant)

(Normal: translational invariant)

Luttinger Liquid in Rindler Space
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