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The symmetric KMP model
Lie algebraic approach to duality theory
sug(1,1) algebra : ASIP, ABEP, AKMP

Applications



Non-equilibrium in 1d: particle transport
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Non-equilibrium in 1d: energy transport
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KMP model (1982)

Energies at every site:  z = (z1,...,2n) € RY
LKMPf(Z) —

N
Z/o dp {f(21,---,P(Zi+Zi+1),(1*P)(Zi+2i+1),-~-,ZN)*f(Z)
i—1

— conductivity 0 < k < oo; model solved by duality.



(Stochastic) Duality

Definition
(nt)>0 Markov process on Q with generator L

(&t)t>0 Markov process on Qg4 With generator L4

& is dual to n; with duality function D : Q X Qquar — RifVE> 0

E,(D(nt,€)) = E¢(D(n, &) V(1,8) € QX Qqal

nt is self-dual if Lyyz = L.

In terms of generators:
LD(-,£)(n) = LauarD(n, -)(€)



Duality

» Why is it usefull
» the dual process is simpler: “from many to few”

» duality is a signature of integrability

» Questions
» how to find a dual process & duality function?

» how to construct processes with duality?



Lie algebraic approach

to duality theory



Algebraic approach

1. The Markov generator, in abstract form, is an element of a
(quantum) Lie algebra.

2. Duality is related to a change of representation.
Duality functions are the intertwiners.

3. Self-duality is associated to symmetries.

Conversely, the approach can be turned into a constructive method.



Duality

Abstract generator
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Original generator Dual generator



Trivial self-duality

Consider Markov chains with countable state space Q2
and with a reversible measure L.

A trivial (i.e. diagonal) self-duality function is
1

d(n,§) = mdn,é

Indeed

> L n)d(, ) = L& E)d®n,€)

n'eQ £eQ



Trivial self-duality

Consider Markov chains with countable state space Q2
and with a reversible measure L.

A trivial (i.e. diagonal) self-duality function is
1

d(n,¢) = mdn,é
Indeed
L(n,¢) - / / _ / N L(¢,m)




Trivial self-duality

Consider Markov chains with countable state space Q2
and with a reversible measure L.

A trivial (i.e. diagonal) self-duality function is
1

d(n,¢) = mdn,é
Indeed
L(n,¢) - / / _ / N L(¢,m)
Thus

Ld =dL’




Symmetries and self-duality

S: symmetry of the Markov generator, i.e. [L,S] =0
d: trivial self-duality function

— D = Sd is a self-duality function

Indeed

LD = LSd = SLd = SdL” = DL’



Construction of Markov generators
with algebraic structure

Ingredients:
» (Algebra): Start from a Lie algebra g.

» (Casimir): Pick an element C in the center of g, e.g. the Casimir.

» (Co-product): Consider a co-product A : g — g ® g conserving
the commutation relations.

Steps:
(i) (Quantum Hamiltonian): Compute H = A(C).

(i) (Symmetries): S = A(X) with X € g
[H,S] = [A(C), A(X)] = A([C, X]) = A(0) = 0.

(iii)y (Markov generator): Apply a “positive ground state
transformation” to turn H into a Markov generator L.



Quantum suy(1, 1) algebra



g-numbers

For g € (0,1) and n € Ny introduce the g-number

qn o q—ﬂ
n = —
[ ]q q-— q_1

Remark: limg_.1[n]q = n.

The first g-number’s are:

[0]g =0, Mlg=1, [2lg = g+q ", 8l = ¢*+1+q 72,



Quantum Lie algebra sug(1,1)

For g € (0, 1) consider the generators K+, K—, K° with

(KO K*]=£K*,  [K' K']=-[2K]
h
where 0 quO _ q—2K°
2K g = ———
[ ]q q-— q71

Irreducible representations are infinite dimensional. E.g., for n € N

KteW = \/In+2K]q[n+ 1]q ™)
K=e™ = /[nlgln+ 2k —1]q e
Koelm = (n+k) e

Casimir element

C = [Kg[K® — 1]g — KtK~

In this representation
C el = [Klqk — 1]g €™ keR,



Co-product
A co-product A : Ug(su(1,1)) — Ug(su(1,1))®?
AKE) = KFeog K +dC ok
AK?) = K°@1+1@K°
and it extends via
A[A- B] = A[A] - A[B] A[A+ B] = A[A] + A[B]
The co-product conserves the commutation relations:

[A(K®), A(KF)] = £A(KF) [A(KT), A(K™)] = [2A(K°)]q

lteratively A" : Ug(su(1,1)) — Ug(su(1,1))®™ " ie. for n > 2

An(K:t) _ An—1(K:t) ® q—Kg+1 + qA"*1(;<,.°) ® KE

n+1
A"(K®) = A"YKO) @1+1°" e KD,



Quantum Hamiltonian

AG) = qKP{KiJr © Ky + K- @ Ky = B ® Biys }q_KEH



Quantum Hamiltonian
A(C)=q {K ® K, + K oK, - Bi®B,-+1}q_K/9H

out-of-diagonal: > 0

(@ +q)g + g o . »
Bie Bi+1 - 2(4):](_ q71)2q ) (qK’ —q Ki ) X (qu+1 —-q Kl+1)

(@ —a )" —qg "M ( KO ko

’ 2(q—q7")? q’+q 7 ) & (qu‘Uﬂ + q_Kiqrw)




Quantum Hamiltonian

A(C)=q {K ® K, + K oK, - Bi®B,-+1}q_K/9H

L1
HL) . Z <1®(i—1) ® A(C)) @ 191 4 Cq’k1®L)

i=1

2% _—oky . 2k—1 _ _—(2k—1)
Cqk = (g q (J(i]q_wz 9 ) s.t. H- (®,-L:1ef°)) =0




Symmetries

Lemma
Let a € {+,—,0}, then K& = AL=1(K?) are symmetries:

[HD K3 =0
Explicitly
Lo . o
Kt — Zq’ﬂ ®...®in—1 ®Kii®q_Ki+1 ®...®CI7K
KO — Z1® 1K' ®1®---®1
=1 (/ 1) times (L=7) times
Proof:

For n=2:  [H® K% =[A(Cy), AKE)] = A([Cy, Kf]) = A(0) = 0.
For n>2: induction.



Markov processes

with sug(1,1) symmetry



Ground state transformation

Lemma

Let H be a matrix with H(n, ') > 0if n # 7/'.

Suppose g is a positive ground state, i.e. Hg =0 and g(n) > 0.
Let G be the matrix G(n, ') = 9(n)d(n,n’). Then

L=G'HG
is a Markov generator.
Indeed Her g
L(n. o) = 2\.1)90
(n,1) a0
Therefore



Exponential symmetries

> g=0kL, el(o) is a ground state, i.e. Hg = 0.
» For every symmetry [H, S| = 0 another ground state is gs := Sg.
» The exponential symmetry
n
S* = expa(E) = 3 L g2
>0 [n]q!

with .
E=al(g) Atk

gives a positive ground state

gs: == Stg— Z oL <\/(€/+2€l'<— 1> ‘qz,(1—k+2ki)> olt)
i q

04,001>0




(1): Asymmetric Inclusion Process: ASIP(q,k)

For k € R, the interacting particle system ASIP(q, k) on [1, L]|NZ with
state space {0, 1,...}- is defined by

~

—1

(LAY () = Y (Liiaf)(n)
1

with

(Lijp1F)(n) = gt CRDm 12k + niq]q(F(n" 1) — £(n)
+ g @2k g0 lg(F ) — £(n)

» g =1 — SIP(k): symmetric inclusion
jump right at rate n;(2k + n;11), jump left at rate (2k + 1;)n;1



Properties of ASIP(q,k)

» The ASIP(q, k) on [1,L] NZ has a family (labeled by « > 0) of
inhomogeneous reversible product measures with marginals

o* (x+2k —1 ;
& q

» g = 1: the reversible measure is homogeneous and product of
Negative Binomials (2k, )



(2) Asymmetric Brownian Energy Process: ABEP(o, k)

For o > 0, let (n(9)(t));>0 be the ASIP(1 — eo, k) process initialized
with e~ particles. The scaling limit (weak asymmetry)

Zi(t) == lim en9 (1)

e—0 !

is the diffusion ABEP(o, k) with generator LABEP(2) — St l p,

Ly =
o l o 720’2,‘ 20'2,' 1 _ _ 720’2,‘ o 20’2,' 1 i o 8
. {(1 e %7%) (e —1)+2k (2—e e=7%1) 9z 971

0Zj 14
1 a0 \?
(11— —202z 202,+1 1
T (1-e)(e )(82, Oz,-+1>




Properties of ABEP(o, k)

» 0 —» 0t

0 0 0 0
Lijw1=—2k(zi — zjt1) (82 T 9z > + ZiZj1 <
I I

The reversible measures are given by product of i.i.d.
Gamma(2k; ).

» 0 £0
the process is truly asymmetric, i.e. on the 1-d torus it has a
non-zero current.

On Z. it has inhomogeneous reversible product measures
(labeld by v > —40k) with marginal density

N(Zi) _ 1 (1 - 67202,-)(2k71)ef(4aki+’7)z;

Ziy

82,' aZi+1

;



(3) KMP(k) process

Instantaneous thermalization limit:
11 BEP(K)

KMP(k : i
301 2 i (#5122

1
- /O dp v(p) [F(p(z: + 2)), (1 — p)(zi + 2)) — (2, 2)]

Z
Z;,Zj ~ Gamma (2k,0) iid. =— P= Z —|—IZJ ~ Beta (2k, 2k)

pPk=1(1 — py2k—1
B(2k, 2k)

V) (p) =

For k = %: uniform redistribution, original KMP



AKMP(o, k) process

> AKMP(c, k)
ABEP(ok)
ijKMP(“’k)f(z;,zj):: Jim <etL'%/ — 1> f(zi, zj)

1
- /O dp v (plzi + 2) [(p(zi + 2). (1 - P)(2i + 7)) — (2, 7))

with

OPIE) = 5 P { (27 1) (1= 2P |

> Th-ASIP(q, k)

(n,m) — (Rg,n+ m— Ry)

with Ry a g-deformed Beta-Binomial (n + m, 2k, 2k)



Duality relations



Self-duality of ASIP(q, k)

Theorem [Carinci,G., Redig, Sasamoto (2015)]
The ASIP(q, k) is self-dual on

— 4K O— P n
q 2m=1 " . H(qZsz(n) _ q2N4m+1(17))

- (q2k _ q*2k)n ol
where &) s the configuration with n particles at sites ¢1,..., ¢,
and
L
Ni(n) := Z Nk
k=i

» |t follows from the explicit knowledge of the reversible measure
and from the exponential symmetry S



Duality between ABEP(o, k) and SIP(k)

Theorem [Carinci,G., Redig, Sasamoto (2015)]

» For every o (including 07), the process {z(t)}+>o with generator
LABEP(#:k) and the process {n(t)}+o with generator L5P(¥) are
dual on

e—20’E,'+1 (Z) _ e_QJEi(Z) &
o

HF2k+§, ( 2

with
L
=> z Er11(2)=0
=i

» Same duality holds between AKMP(o, k) and Th-SIP(k)




symmetric case o = 0"

L—1
L= (KK + KK, — 2KPKS -+ 2K2)
i=1
Two representations:
Kl_+e(m) = (n; + 2k) emi+1) /ler =2z
’(I,_e(m) — 77,-6(771_1) ICT = Zj agl —+ 2kaz,.
K,.Oe(m) = (nj + 4k) e(mi) K¢ = 20, + k
[ — [SIP(K) | — | BEP(K)
r(2k) 25
Fr(2k +¢&)°

Duality fct = intertwiner



asymmetric case o # 0

» The ABEP(o, k) can be mapped to BEP(k) via the non-local
transformation

e 20Ei1(2) _ g—20E(2)
20

z—g(2) gi(2) =

Equivalently

[ ABEP(,k) _ Cyo | BEP(K) -
with
(Cgf)(2) = (fog)(2)

» Therefore, despite the asymmetry, the symmetry group of
ABEP(o, k) is the same as for BEP(k), namely su(1,1). The
representation is a non-local conjugation of the differential
operator representation.



Applications



Example1: Current of ABEP(o, k)

Definition
The current J;(t) during the time interval [0, {] across the bond (i —1, /)
is defined as:

Ji(t) = Ei(z(t)) — Ei(2(0))

where

E,'(Z) = Z Zk

k>i

Remark: let £() be the configuration with 1 dual particle:

§(i) 1 iftm=i
m =1 0 otherwise

then
e—20’Ej+1 (2) _ e—20Ei(Z)

D(z,¢0) = o




Example1: Current of ABEP(o, k)
Using duality between ABEP(o, k) and SIP(k)

E,( e—2ch,-(t)) _ o4kt Z e 20(En(2)—Ei(2)) lin—i (4kt)
nez

In(t) modified Bessel function.

The computation requires a single dual SIP particle, which is a simple
symmetric random walk jumping at rate 2k:

Pi(X; =n) = e‘4ktl|,,_,-| (4kt).



o 5 = = £ DA



Example 2: Energy covariance in the boundary driven BEP

If£=(0,...,0,1,0,...,0,1,0,...,0) = D(x,§) = x?x?
sitei  sitej 7
In the dual process we initialize two

SIP walkers (X;, V)0 With (Xo, Yo) = (i.))







Ex'x})=T2 P(e)+ T4 P(3)+ T, To(P(2)+ P(3)

o <o =) «2» =T 9ac



Example 2: Energy covariance in the boundary driven BEP

= (605F) -2 ()2 () = ' sy T~ T

Remark: Long range correlations

Jim N Cov (x5 N X5n) = 251(1 = 82)(TR — T1)?
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