The asymmetric KMP model, and its duality.

Cristian Giardinà

joint work with: Gioia Carinci (Delft), Frank Redig (Delft), Tomohiro Sasamoto (Tokyo)

Outline

- The symmetric KMP model
- Lie algebraic approach to duality theory
- $\mathfrak{s u}_{q}(1,1)$ algebra : ASIP, ABEP, AKMP
- Applications

Non-equilibrium in 1d: particle transport

- density reservoirs
- current reservoirs
- asymmetry

Non-equilibrium in 1d: energy transport

Fourier law $\quad J=\kappa \nabla T$

KMP model (1982)
Energies at every site: $\quad z=\left(z_{1}, \ldots, z_{N}\right) \in \mathbb{R}_{+}^{N}$
$L^{K M P} f(z)=$
$\sum_{i=1}^{N} \int_{0}^{1} d p\left[f\left(z_{1}, \ldots, p\left(z_{i}+z_{i+1}\right),(1-p)\left(z_{i}+z_{i+1}\right), \ldots, z_{N}\right)-f(z)\right]$
\rightarrow conductivity $0<\kappa<\infty$; model solved by duality.

(Stochastic) Duality

Definition

$\left(\eta_{t}\right)_{t \geq 0}$ Markov process on Ω with generator L
$\left(\xi_{t}\right)_{t \geq 0}$ Markov process on $\Omega_{\text {dual }}$ with generator $L_{\text {dual }}$
ξ_{t} is dual to η_{t} with duality function $D: \Omega \times \Omega_{\text {dual }} \rightarrow \mathbb{R}$ if $\forall t \geq 0$

$$
\mathbb{E}_{\eta}\left(D\left(\eta_{t}, \xi\right)\right)=\mathbb{E}_{\xi}\left(D\left(\eta, \xi_{t}\right)\right) \quad \forall(\eta, \xi) \in \Omega \times \Omega_{\text {dual }}
$$

η_{t} is self-dual if $L_{\text {dual }}=L$.

In terms of generators:

$$
L D(\cdot, \xi)(\eta)=L_{\text {dual }} D(\eta, \cdot)(\xi)
$$

Duality

- Why is it usefull
- the dual process is simpler: "from many to few"
- duality is a signature of integrability
- Questions
- how to find a dual process \& duality function?
- how to construct processes with duality?

Lie algebraic approach

to duality theory

Algebraic approach

1. The Markov generator, in abstract form, is an element of a (quantum) Lie algebra.
2. Duality is related to a change of representation. Duality functions are the intertwiners.
3. Self-duality is associated to symmetries.

Conversely, the approach can be turned into a constructive method.

Duality

Trivial self-duality

Consider Markov chains with countable state space Ω and with a reversible measure μ.

A trivial (i.e. diagonal) self-duality function is

$$
\mathbf{d}(\eta, \xi)=\frac{1}{\mu(\eta)} \delta_{\eta, \xi}
$$

Indeed

$$
\sum_{\eta^{\prime} \in \Omega} \mathbf{L}\left(\eta, \eta^{\prime}\right) \mathbf{d}\left(\eta^{\prime}, \xi\right)=\sum_{\xi^{\prime} \in \Omega} \mathbf{L}\left(\xi, \xi^{\prime}\right) \mathbf{d}\left(\eta, \xi^{\prime}\right)
$$

Trivial self-duality

Consider Markov chains with countable state space Ω and with a reversible measure μ.

A trivial (i.e. diagonal) self-duality function is

$$
\mathbf{d}(\eta, \xi)=\frac{1}{\mu(\eta)} \delta_{\eta, \xi}
$$

Indeed

$$
\frac{\mathbf{L}(\eta, \xi)}{\mu(\xi)}=\sum_{\eta^{\prime} \in \Omega} \mathbf{L}\left(\eta, \eta^{\prime}\right) \mathbf{d}\left(\eta^{\prime}, \xi\right)=\sum_{\xi^{\prime} \in \Omega} \mathbf{L}\left(\xi, \xi^{\prime}\right) \mathbf{d}\left(\eta, \xi^{\prime}\right)=\frac{\mathbf{L}(\xi, \eta)}{\mu(\eta)}
$$

Trivial self-duality

Consider Markov chains with countable state space Ω and with a reversible measure μ.

A trivial (i.e. diagonal) self-duality function is

$$
\mathbf{d}(\eta, \xi)=\frac{1}{\mu(\eta)} \delta_{\eta, \xi}
$$

Indeed

$$
\frac{\mathbf{L}(\eta, \xi)}{\mu(\xi)}=\sum_{\eta^{\prime} \in \Omega} \mathbf{L}\left(\eta, \eta^{\prime}\right) \mathbf{d}\left(\eta^{\prime}, \xi\right)=\sum_{\xi^{\prime} \in \Omega} \mathbf{L}\left(\xi, \xi^{\prime}\right) \mathbf{d}\left(\eta, \xi^{\prime}\right)=\frac{\mathbf{L}(\xi, \eta)}{\mu(\eta)}
$$

Thus

$$
\mathbf{L d}=\mathbf{d L}^{T}
$$

Symmetries and self-duality

S: symmetry of the Markov generator, i.e. $[\mathbf{L}, \mathbf{S}]=0$
d: trivial self-duality function
$\longrightarrow \quad \mathbf{D}=\mathbf{S d}$ is a self-duality function

Indeed
$\mathbf{L D}=\mathbf{L S d}=\mathbf{S L d}=\mathbf{S d L}^{T}=\mathbf{D L}^{\top}$

Construction of Markov generators with algebraic structure

Ingredients:

- (Algebra): Start from a Lie algebra \mathfrak{g}.
- (Casimir): Pick an element C in the center of \mathfrak{g}, e.g. the Casimir.
- (Co-product): Consider a co-product $\Delta: \mathfrak{g} \rightarrow \mathfrak{g} \otimes \mathfrak{g}$ conserving the commutation relations.

Steps:
(i) (Quantum Hamiltonian): Compute $H=\Delta(C)$.
(ii) (Symmetries): $S=\Delta(X)$ with $X \in \mathfrak{g}$

$$
[H, S]=[\Delta(C), \Delta(X)]=\Delta([C, X])=\Delta(0)=0
$$

(iii) (Markov generator): Apply a "positive ground state transformation" to turn H into a Markov generator L.

Quantum $\operatorname{su}_{q}(1,1)$ algebra

q-numbers

For $q \in(0,1)$ and $n \in \mathbb{N}_{0}$ introduce the q-number

$$
[n]_{q}=\frac{q^{n}-q^{-n}}{q-q^{-1}}
$$

Remark: $\lim _{q \rightarrow 1}[n]_{q}=n$.

The first q-number's are:
$[0]_{q}=0$,
$[1]_{q}=1$,
$[2]_{q}=q+q^{-1}$,
$[3]_{q}=q^{2}+1+q^{-2}, \quad \cdots$

Quantum Lie algebra $\mathfrak{s u}_{q}(1,1)$

For $q \in(0,1)$ consider the generators K^{+}, K^{-}, K^{0} with

$$
\left[K^{0}, K^{ \pm}\right]= \pm K^{ \pm}, \quad\left[K^{+}, K^{-}\right]=-\left[2 K^{0}\right]_{q}
$$

where

$$
\left[2 K^{0}\right]_{q}:=\frac{q^{2 K^{0}}-q^{-2 K^{0}}}{q-q^{-1}}
$$

Irreducible representations are infinite dimensional. E.g., for $n \in \mathbb{N}$

$$
\left\{\begin{array}{l}
K^{+} e^{(n)}=\sqrt{[n+2 k]_{q}[n+1]_{q}} e^{(n+1)} \\
K^{-} e^{(n)}=\sqrt{[n]_{q}[n+2 k-1]_{q}} e^{(n-1)} \\
K^{o} e^{(n)}=(n+k) e^{(n)}
\end{array}\right.
$$

Casimir element

$$
C=\left[K^{o}\right]_{q}\left[K^{o}-1\right]_{q}-K^{+} K^{-}
$$

In this representation

$$
C e^{(n)}=[k]_{q}[k-1]_{q} e^{(n)} \quad k \in \mathbb{R}_{+}
$$

Co-product

A co-product $\Delta: U_{q}(\mathfrak{s u}(1,1)) \rightarrow U_{q}(\mathfrak{s u}(1,1))^{\otimes 2}$

$$
\begin{aligned}
\Delta\left(K^{ \pm}\right) & =K^{ \pm} \otimes q^{-K^{o}}+q^{K^{o}} \otimes K^{ \pm} \\
\Delta\left(K^{o}\right) & =K^{o} \otimes 1+1 \otimes K^{o}
\end{aligned}
$$

and it extends via

$$
\Delta[A \cdot B]=\Delta[A] \cdot \Delta[B] \quad \Delta[A+B]=\Delta[A]+\Delta[B]
$$

The co-product conserves the commutation relations:

$$
\left[\Delta\left(K^{o}\right), \Delta\left(K^{ \pm}\right)\right]= \pm \Delta\left(K^{ \pm}\right) \quad\left[\Delta\left(K^{+}\right), \Delta\left(K^{-}\right)\right]=\left[2 \Delta\left(K^{o}\right)\right]_{q}
$$

Iteratively $\Delta^{n}: U_{q}(\mathfrak{s u}(1,1)) \rightarrow U_{q}(\mathfrak{s u}(1,1))^{\otimes(n+1)}$, i.e. for $n \geq 2$

$$
\begin{aligned}
\Delta^{n}\left(K^{ \pm}\right) & =\Delta^{n-1}\left(K^{ \pm}\right) \otimes q^{-K_{n+1}^{0}}+q^{\Delta^{n-1}\left(K_{i}^{0}\right)} \otimes K_{n+1}^{ \pm} \\
\Delta^{n}\left(K^{0}\right) & =\Delta^{n-1}\left(K^{0}\right) \otimes 1+1^{\otimes n} \otimes K_{n+1}^{0}
\end{aligned}
$$

Quantum Hamiltonian

$$
\Delta\left(C_{i}\right)=q^{K_{i}^{0}}\left\{K_{i}^{+} \otimes K_{i+1}^{-}+K_{i}^{-} \otimes K_{i+1}^{+}-B_{i} \otimes B_{i+1}\right\} q^{-K_{i+1}^{0}}
$$

Quantum Hamiltonian

$$
\Delta\left(C_{i}\right)=q^{K_{i}^{0}}\left\{K_{i}^{+} \otimes K_{i+1}^{-}+K_{i}^{-} \otimes K_{i+1}^{+}-B_{i} \otimes B_{i+1}\right\} q^{-K_{i+1}^{0}}
$$

out-of-diagonal: ≥ 0

$$
\begin{aligned}
B_{i} \otimes B_{i+1} & =\frac{\left(q^{k}+q^{-k}\right)\left(q^{k-1}+q^{-(k-1)}\right)}{2\left(q-q^{-1}\right)^{2}}\left(q^{K_{i}^{0}}-q^{-K_{i}^{0}}\right) \otimes\left(q^{K_{i+1}^{0}}-q^{-K_{i+1}^{0}}\right) \\
& +\frac{\left(q^{k}-q^{-k}\right)\left(q^{k-1}-q^{-(k-1)}\right)}{2\left(q-q^{-1}\right)^{2}}\left(q^{K_{i}^{0}}+q^{-K_{i}^{0}}\right) \otimes\left(q^{K_{i+1}^{0}}+q^{-K_{i+1}^{0}}\right)
\end{aligned}
$$

Quantum Hamiltonian

$$
\begin{gathered}
\Delta\left(C_{i}\right)=q^{K_{i}^{0}}\left\{K_{i}^{+} \otimes K_{i+1}^{-}+K_{i}^{-} \otimes K_{i+1}^{+}-B_{i} \otimes B_{i+1}\right\} q^{-K_{i+1}^{0}} \\
H^{(L)}:=\sum_{i=1}^{L-1}\left(\mathbf{1}^{\otimes(i-1)} \otimes \Delta\left(C_{i}\right) \otimes \mathbf{1}^{\otimes(L-i-1)}+c_{q, k} \mathbf{1}^{\otimes L}\right) \\
c_{q, k}=\frac{\left(q^{2 k}-q^{-2 k}\right)\left(q^{2 k-1}-q^{-(2 k-1)}\right)}{\left(q-q^{-1}\right)^{2}} \quad \text { s.t. } \quad H \cdot\left(\otimes_{i=1}^{L} e_{i}^{(0)}\right)=0
\end{gathered}
$$

Symmetries

Lemma
Let $a \in\{+,-, 0\}$, then $K^{a}=\Delta^{L-1}\left(K_{1}^{a}\right)$ are symmetries:

$$
\left[H^{(L)}, K^{a}\right]=0
$$

Explicitly

$$
\begin{aligned}
K^{ \pm} & :=\sum_{i=1}^{L} q^{K_{1}^{0}} \otimes \cdots \otimes q^{K_{i-1}^{0}} \otimes K_{i}^{ \pm} \otimes q^{-K_{i+1}^{0}} \otimes \ldots \otimes q^{-K_{L}^{0}} \\
K^{0} & :=\sum_{i=1}^{L} \underbrace{1 \otimes \cdots \otimes 1}_{(i-1) \text { times }} \otimes K_{i}^{0} \otimes \underbrace{1 \otimes \cdots \otimes 1}_{(L-i) \text { times }}
\end{aligned}
$$

Proof:
For $n=2: \quad\left[H^{(2)}, K^{a}\right]=\left[\Delta\left(C_{1}\right), \Delta\left(K_{1}^{a}\right)\right]=\Delta\left(\left[C_{1}, K_{1}^{a}\right]\right)=\Delta(0)=0$.
For $n>2$: induction.

Markov processes

with $\mathfrak{s u}_{q}(1,1)$ symmetry

Ground state transformation

Lemma

Let H be a matrix with $H\left(\eta, \eta^{\prime}\right) \geq 0$ if $\eta \neq \eta^{\prime}$. Suppose g is a positive ground state, i.e. $\mathrm{Hg}=0$ and $g(\eta)>0$. Let G be the matrix $G\left(\eta, \eta^{\prime}\right)=g(\eta) \delta\left(\eta, \eta^{\prime}\right)$. Then

$$
L=G^{-1} H G
$$

is a Markov generator.

Indeed

$$
L\left(\eta, \eta^{\prime}\right)=\frac{H\left(\eta, \eta^{\prime}\right) g\left(\eta^{\prime}\right)}{g(\eta)}
$$

Therefore

$$
L\left(\eta, \eta^{\prime}\right) \geq 0 \quad \text { if } \quad \eta \neq \eta^{\prime} \quad \sum_{\eta^{\prime}} L\left(\eta, \eta^{\prime}\right)=0
$$

Exponential symmetries

- $g=\otimes_{i=1}^{L} e_{i}^{(0)}$ is a ground state, i.e. $H g=0$.
- For every symmetry $[H, S]=0$ another ground state is $g_{s}:=S g$.
- The exponential symmetry

$$
S^{+}=\exp _{q^{2}}(E)=\sum_{n \geq 0} \frac{(E)^{n}}{[n]_{q}!} q^{-n(n-1) / 2}
$$

with

$$
E=\Delta^{(L-1)}\left(q^{K_{1}^{0}}\right) \cdot \Delta^{(L-1)}\left(K_{1}^{+}\right)
$$

gives a positive ground state
$g_{S^{+}}:=S^{+} g=\sum_{\ell_{1}, \ldots, \ell_{L} \geq 0} \otimes_{i=1}^{L}\left(\sqrt{\binom{\ell_{i}+2 k-1}{\ell_{i}}_{q}} \cdot q^{\ell_{i}(1-k+2 k i)}\right) e^{\left(\ell_{i}\right)}$

(1): Asymmetric Inclusion Process: ASIP(q,k)

For $k \in \mathbb{R}_{+}$the interacting particle system $\operatorname{ASIP}(q, k)$ on $[1, L] \cap \mathbb{Z}$ with state space $\{0,1, \ldots\}^{\text {L }}$ is defined by

$$
\left(L^{A S I P(q, k)} f\right)(\eta)=\sum_{i=1}^{L-1}\left(L_{i, i+1} f\right)(\eta)
$$

with

$$
\begin{aligned}
\left(L_{i, i+1} f\right)(\eta) & =q^{\eta_{i}-\eta_{i+1}+(2 k-1)}\left[\eta_{i}\right]_{q}\left[2 k+\eta_{i+1}\right]_{q}\left(f\left(\eta^{i, i+1}\right)-f(\eta)\right) \\
& +q^{\eta_{i}-\eta_{i+1}-(2 k-1)}\left[2 k+\eta_{i}\right]_{q}\left[\eta_{i+1}\right]_{q}\left(f\left(\eta^{i+1, i}\right)-f(\eta)\right)
\end{aligned}
$$

- $q=1 \rightarrow \operatorname{SIP}(k)$: symmetric inclusion jump right at rate $\eta_{i}\left(2 k+\eta_{i+1}\right)$, jump left at rate $\left(2 k+\eta_{i}\right) \eta_{i+1}$

Properties of ASIP(q,k)

- The $\operatorname{ASIP}(q, k)$ on $[1, L] \cap \mathbb{Z}$ has a family (labeled by $\alpha>0$) of inhomogeneous reversible product measures with marginals

$$
\mathbb{P}_{\alpha}\left(\eta_{i}=x\right)=\frac{\alpha^{x}}{Z_{i, \alpha}}\binom{x+2 k-1}{x}_{q} \cdot q^{4 k i x}
$$

- $q=1$: the reversible measure is homogeneous and product of Negative Binomials (2k, α)

(2) Asymmetric Brownian Energy Process: $\operatorname{ABEP}(\sigma, k)$

For $\sigma>0$, let $\left(\eta^{(\epsilon)}(t)\right)_{t \geq 0}$ be the $\operatorname{ASIP}(1-\epsilon \sigma, k)$ process initialized with ϵ^{-1} particles. The scaling limit (weak asymmetry)

$$
z_{i}(t):=\lim _{\epsilon \rightarrow 0} \epsilon \eta_{i}^{(\epsilon)}(t)
$$

is the diffusion $\operatorname{ABEP}(\sigma, k)$ with generator $L^{\operatorname{ABEP}(\sigma, k)}=\sum_{i=1}^{L-1} \mathcal{L}_{i, i+1}$

$$
\begin{aligned}
& \mathcal{L}_{i, i+1}= \\
& -\frac{1}{2 \sigma}\left\{\left(1-e^{-2 \sigma z_{i}}\right)\left(e^{2 \sigma z_{i+1}}-1\right)+2 k\left(2-e^{-2 \sigma z_{i}}-e^{2 \sigma z_{i+1}}\right)\right\}\left(\frac{\partial}{\partial z_{i}}-\frac{\partial}{\partial z_{i+1}}\right) \\
& +\frac{1}{4 \sigma^{2}}\left(1-e^{-2 \sigma z_{i}}\right)\left(e^{2 \sigma z_{i+1}}-1\right)\left(\frac{\partial}{\partial z_{i}}-\frac{\partial}{\partial z_{i+1}}\right)^{2}
\end{aligned}
$$

Properties of $\operatorname{ABEP}(\sigma, k)$

- $\sigma \rightarrow 0^{+}$

$$
\mathcal{L}_{i, i+1}=-2 k\left(z_{i}-z_{i+1}\right)\left(\frac{\partial}{\partial z_{i}}-\frac{\partial}{\partial z_{i+1}}\right)+z_{i} z_{i+1}\left(\frac{\partial}{\partial z_{i}}-\frac{\partial}{\partial z_{i+1}}\right)^{2}
$$

The reversible measures are given by product of i.i.d. Gamma(2k; γ).

- $\sigma \neq 0$
the process is truly asymmetric, i.e. on the 1-d torus it has a non-zero current.

On \mathbb{Z}_{+}it has inhomogeneous reversible product measures (labeld by $\gamma>-4 \sigma k$) with marginal density

$$
\mu\left(z_{i}\right)=\frac{1}{\mathcal{Z}_{i, \gamma}}\left(1-e^{-2 \sigma z_{i}}\right)^{(2 k-1)} e^{-(4 \sigma k i+\gamma) z_{i}}
$$

(3) $K M P(k)$ process

Instantaneous thermalization limit:

$$
\begin{aligned}
& \begin{array}{l}
L_{i, j}^{K M P(k)} f\left(z_{i}, z_{j}\right):=\lim _{t \rightarrow \infty}\left(e^{t L_{i, j}^{B E P(k)}}-1\right) f\left(z_{i}, z_{j}\right) \\
=\int_{0}^{1} d p \nu^{(k)}(p)\left[f\left(p\left(z_{i}+z_{j}\right),(1-p)\left(z_{i}+z_{j}\right)\right)-f\left(z_{i}, z_{j}\right)\right] \\
Z_{i}, Z_{j} \sim \operatorname{Gamma}(2 k, \theta) \quad \text { i.i.d. } \quad \Longrightarrow \quad P=\frac{z_{i}}{Z_{i}+Z_{j}} \sim \operatorname{Beta}(2 k, 2 k) \\
\nu^{(k)}(p)=\frac{p^{2 k-1}(1-p)^{2 k-1}}{B(2 k, 2 k)}
\end{array}
\end{aligned}
$$

For $k=\frac{1}{2}$: uniform redistribution, original KMP

$A K M P(\sigma, k)$ process

- $\operatorname{AKMP}(\sigma, k)$

$$
\begin{aligned}
& L_{i, j}^{A K M P(\sigma, k)} f\left(z_{i}, z_{j}\right):=\lim _{t \rightarrow \infty}\left(e^{t L_{i, j}^{A B E P(\sigma, k)}}-1\right) f\left(z_{i}, z_{j}\right) \\
& =\int_{0}^{1} d p \nu_{\sigma}^{(k)}\left(p \mid z_{i}+z_{j}\right)\left[f\left(p\left(z_{i}+z_{j}\right),(1-p)\left(z_{i}+z_{j}\right)\right)-f\left(z_{i}, z_{j}\right)\right]
\end{aligned}
$$

with

$$
\nu_{\sigma}^{(k)}(p \mid E)=\frac{1}{\mathcal{Z}_{\sigma, k}(E)} e^{2 \sigma p E}\left\{\left(e^{2 \sigma p E}-1\right)\left(1-e^{-2 \sigma(1-p) E}\right)\right\}^{2 k-1}
$$

- Th-ASIP (q, k)

$$
(n, m) \rightarrow\left(R_{q}, n+m-R_{q}\right)
$$

with R_{q} a q-deformed Beta-Binomial $(n+m, 2 k, 2 k)$

Duality relations

Self-duality of $\operatorname{ASIP}(q, k)$

Theorem [Carinci,G., Redig, Sasamoto (2015)]
The $\operatorname{ASIP}(q, k)$ is self-dual on

$$
D\left(\eta, \xi^{\left(\ell_{1}, \ldots, \ell_{n}\right)}\right)=\frac{q^{-4 k \sum_{m=1}^{n} \ell_{m}-n^{2}}}{\left(q^{2 k}-q^{-2 k}\right)^{n}} \cdot \prod_{m=1}^{n}\left(q^{2 N_{\ell_{m}}(\eta)}-q^{2 N_{\ell_{m}+1}(\eta)}\right)
$$

where $\xi^{\left(\ell_{1}, \ldots, \ell_{n}\right)}$ is the configuration with n particles at sites $\ell_{1}, \ldots, \ell_{n}$ and

$$
N_{i}(\eta):=\sum_{k=i}^{L} \eta_{k}
$$

- It follows from the explicit knowledge of the reversible measure and from the exponential symmetry S_{+}

Duality between $\operatorname{ABEP}(\sigma, k)$ and $\operatorname{SIP}(k)$

Theorem [Carinci,G., Redig, Sasamoto (2015)]

- For every σ (including 0^{+}), the process $\{z(t)\}_{t \geq 0}$ with generator $L^{A B E P(\sigma, k)}$ and the process $\{\eta(t)\} t \geq 0$ with generator $L^{\operatorname{SIP}(k)}$ are dual on

$$
D(z, \xi)=\prod_{i=1}^{L} \frac{\Gamma(2 k)}{\Gamma\left(2 k+\xi_{i}\right)}\left(\frac{e^{-2 \sigma E_{i+1}(z)}-e^{-2 \sigma E_{i}(z)}}{2 \sigma}\right)^{\xi_{i}}
$$

with

$$
E_{i}(z)=\sum_{l=i}^{L} z_{l} \quad E_{L+1}(z)=0
$$

- Same duality holds between $\operatorname{AKMP}(\sigma, k)$ and $\operatorname{Th}-\operatorname{SIP}(k)$

symmetric case $\sigma=0^{+}$

$$
L=\sum_{i=1}^{L-1}\left(K_{i}^{+} K_{i+1}^{-}+K_{i}^{-} K_{i+1}^{+}-2 K_{i}^{o} K_{i+1}^{o}+2 k^{2}\right)
$$

Two representations:

$$
\left\{\begin{array} { l l }
{ K _ { i } ^ { + } e ^ { (\eta _ { i }) } = (\eta _ { i } + 2 k) e ^ { (\eta _ { i } + 1) } } \\
{ K _ { i } ^ { - } e ^ { (\eta _ { i }) } = \eta _ { i } e ^ { (\eta _ { i } - 1) } } \\
{ K _ { i } ^ { o } e ^ { (\eta _ { i }) } = (\eta _ { i } + 4 k) e ^ { (\eta _ { i }) } }
\end{array} \left\{\begin{array}{l}
\mathcal{K}_{i}^{+}=z_{i} \\
\mathcal{K}_{i}^{-}=z_{i} \partial_{z_{i}}^{2}+2 k \partial_{z_{i}} \\
\mathcal{K}_{i}^{o}=z_{i} \partial_{z_{i}}+k
\end{array}\right.\right.
$$

Duality fct \equiv intertwiner

asymmetric case $\sigma \neq 0$

- The $\operatorname{ABEP}(\sigma, k)$ can be mapped to $B E P(k)$ via the non-local transformation

$$
z \mapsto g(z) \quad g_{i}(z):=\frac{e^{-2 \sigma E_{i+1}(z)}-e^{-2 \sigma E_{i}(z)}}{2 \sigma}
$$

Equivalently

$$
L^{A B E P(\sigma, k)}=C_{g} \circ L^{B E P(k)} \circ C_{g^{-1}}
$$

with

$$
\left(C_{g} f\right)(z)=(f \circ g)(z)
$$

- Therefore, despite the asymmetry, the symmetry group of $\operatorname{ABEP}(\sigma, k)$ is the same as for $B E P(k)$, namely $\mathfrak{s u}(1,1)$. The representation is a non-local conjugation of the differential operator representation.

Applications

Example1: Current of $\operatorname{ABEP}(\sigma, k)$

Definition

The current $J_{i}(t)$ during the time interval $[0, t]$ across the bond $(i-1, i)$ is defined as:

$$
J_{i}(t)=E_{i}(z(t))-E_{i}(z(0))
$$

where

$$
E_{i}(z):=\sum_{k \geq i} z_{k}
$$

Remark: let $\xi^{(i)}$ be the configuration with 1 dual particle:

$$
\xi_{m}^{(i)}= \begin{cases}1 & \text { if } m=i \\ 0 & \text { otherwise }\end{cases}
$$

then

$$
D\left(z, \xi^{(i)}\right)=\frac{e^{-2 \sigma E_{i+1}(z)}-e^{-2 \sigma E_{i}(z)}}{4 k \sigma}
$$

Example1: Current of $\operatorname{ABEP}(\sigma, k)$

Using duality between $\operatorname{ABEP}(\sigma, k)$ and $\operatorname{SIP}(k)$

$$
\mathbb{E}_{z}\left(e^{-2 \sigma J_{i}(t)}\right)=\left.e^{-4 k t} \sum_{n \in \mathbb{Z}} e^{-2 \sigma\left(E_{n}(z)-E_{i}(z)\right)}\right|_{|n-i|}(4 k t)
$$

$I_{n}(t)$ modified Bessel function.

The computation requires a single dual SIP particle, which is a simple symmetric random walk jumping at rate $2 k$:

$$
\mathbb{P}_{i}\left(X_{t}=n\right)=\left.e^{-4 k t}\right|_{|n-i|}(4 k t)
$$

Brownian Momentum Process with reservoirs

Example 2: Energy covariance in the boundary driven BEP

$$
\begin{aligned}
\text { If } \vec{\xi}= & (0, \ldots, 0,1,0, \ldots, 0,1,0, \ldots, 0) \quad \\
& \text { site } i \nearrow \quad \text { site } j \nearrow
\end{aligned}
$$

In the dual process we initialize two SIP walkers $\left(X_{t}, Y_{t}\right)_{t \geq 0}$ with $\left(X_{0}, Y_{0}\right)=(i, j)$

Inclusion Process with absorbing reservoirs

Example 2: Energy covariance in the boundary driven BEP

$$
\mathbb{E}\left(x_{i}^{2} x_{j}^{2}\right)-\mathbb{E}\left(x_{i}^{2}\right) \mathbb{E}\left(x_{j}^{2}\right)=\frac{2 i(N+1-j)}{(N+3)(N+1)^{2}}\left(T_{R}-T_{L}\right)^{2}
$$

Remark: Long range correlations

$$
\lim _{N \rightarrow \infty} N \operatorname{Cov}\left(x_{s_{1} N}^{2}, x_{s_{2} N}^{2}\right)=2 s_{1}\left(1-s_{2}\right)\left(T_{R}-T_{L}\right)^{2}
$$

Some references

- G. Carinci, C. Giardinà, F. Redig, T. Sasamoto
- Asymmetric stochastic transport models with $\mathcal{U}_{q}(\mathfrak{s u}(1,1))$ symmetry, JSP (2016), arxiv.1507.01478
- A generalized Asymmetric Exclusion Process with $\mathcal{U}_{q}(\mathfrak{s u}(2))$ stochastic duality, PTRF (2015), arxiv. 1407.3367
- J. Kuan
- Stochastic duality of ASEP with two particle types via symmetry of quantum groups of rank two, arxiv.1504.07173
- V. Belitsky, G.M. Schütz
- Quantum algebra symmetry of the ASEP with second-class particles, arxiv.1504.06958
- G. Carinci, C. Giardinà, C. Giberti, F. Redig
- Dualities in population genetics: a fresh look with new dualities, SPA (2014), arXiv:1302.3206

