The asymmetric KMP model, and its duality.

Cristian Giardinà

joint work with: Gioia Carinci (Delft), Frank Redig (Delft), Tomohiro Sasamoto (Tokyo)

Outline

- ► The symmetric KMP model
- Lie algebraic approach to duality theory
- su_q(1,1) algebra : ASIP, ABEP, AKMP
- Applications

Non-equilibrium in 1d: particle transport

density reservoirs

current reservoirs

asymmetry

Non-equilibrium in 1d: energy transport

Fourier law $J = \kappa \nabla T$

KMP model (1982)

Energies at every site: $z = (z_1, ..., z_N) \in \mathbb{R}_+^N$

$$L^{KMP} f(z) = \sum_{i=1}^{N} \int_{0}^{1} dp \left[f(z_{1}, \dots, p(z_{i} + z_{i+1}), (1 - p)(z_{i} + z_{i+1}), \dots, z_{N}) - f(z) \right]$$

 \rightarrow conductivity $0 < \kappa < \infty$; model solved by duality.

(Stochastic) Duality

Definition

 $(\eta_t)_{t\geq 0}$ Markov process on Ω with generator L

 $(\xi_t)_{t\geq 0}$ Markov process on Ω_{dual} with generator L_{dual}

 ξ_t is dual to η_t with duality function $D: \Omega \times \Omega_{dual} \to \mathbb{R}$ if $\forall t \geq 0$

$$\mathbb{E}_{\eta}(\textit{D}(\eta_t,\xi)) = \mathbb{E}_{\xi}(\textit{D}(\eta,\xi_t)) \qquad \qquad \forall (\eta,\xi) \in \Omega \times \Omega_{\textit{dual}}$$

 η_t is self-dual if $L_{dual} = L$.

In terms of generators:

$$LD(\cdot,\xi)(\eta) = L_{dual}D(\eta,\cdot)(\xi)$$

Duality

- ► Why is it usefull
 - the dual process is simpler: "from many to few"
 - duality is a signature of integrability
- Questions
 - how to find a dual process & duality function?
 - how to construct processes with duality?

Lie algebraic approach

to duality theory

Algebraic approach

- 1. The Markov generator, in abstract form, is an element of a (quantum) Lie algebra.
- 2. Duality is related to a change of representation. Duality functions are the intertwiners.
- 3. Self-duality is associated to symmetries.

Conversely, the approach can be turned into a constructive method.

Duality

Trivial self-duality

Consider Markov chains with countable state space Ω and with a reversible measure μ .

A trivial (i.e. diagonal) self-duality function is

$$\mathbf{d}(\eta,\xi) = rac{1}{\mu(\eta)} \delta_{\eta,\xi}$$

Indeed

$$\sum_{\eta' \in \Omega} \mathbf{L}(\eta, \eta') \mathbf{d}(\eta', \xi) = \sum_{\xi' \in \Omega} \mathbf{L}(\xi, \xi') \mathbf{d}(\eta, \xi')$$

Trivial self-duality

Consider Markov chains with countable state space Ω and with a reversible measure μ .

A trivial (i.e. diagonal) self-duality function is

$$\mathbf{d}(\eta,\xi) = rac{1}{\mu(\eta)} \delta_{\eta,\xi}$$

Indeed

$$\frac{\mathbf{L}(\eta,\xi)}{\mu(\xi)} = \sum_{\eta' \in \Omega} \mathbf{L}(\eta,\eta') \mathbf{d}(\eta',\xi) = \sum_{\xi' \in \Omega} \mathbf{L}(\xi,\xi') \mathbf{d}(\eta,\xi') = \frac{\mathbf{L}(\xi,\eta)}{\mu(\eta)}$$

Trivial self-duality

Consider Markov chains with countable state space Ω and with a reversible measure μ .

A trivial (i.e. diagonal) self-duality function is

$$\mathbf{d}(\eta,\xi) = rac{1}{\mu(\eta)}\delta_{\eta,\xi}$$

Indeed

$$\frac{\mathbf{L}(\eta,\xi)}{\mu(\xi)} = \sum_{\eta' \in \Omega} \mathbf{L}(\eta,\eta') \mathbf{d}(\eta',\xi) = \sum_{\xi' \in \Omega} \mathbf{L}(\xi,\xi') \mathbf{d}(\eta,\xi') = \frac{\mathbf{L}(\xi,\eta)}{\mu(\eta)}$$

Thus

$$Ld = dL^T$$

Symmetries and self-duality

S: symmetry of the Markov generator, i.e. $[\mathbf{L}, \mathbf{S}] = 0$ d: trivial self-duality function $\longrightarrow \mathbf{D} = \mathbf{Sd} \text{ is a self-duality function}$

Indeed

$$LD = LSd = SLd = SdL^T = DL^T$$

Construction of Markov generators with algebraic structure

Ingredients:

- ▶ (*Algebra*): Start from a Lie algebra g.
- ▶ (*Casimir*): Pick an element C in the center of g, e.g. the Casimir.
- (*Co-product*): Consider a co-product $\Delta : \mathfrak{g} \to \mathfrak{g} \otimes \mathfrak{g}$ conserving the commutation relations.

Steps:

- (i) (*Quantum Hamiltonian*): Compute $H = \Delta(C)$.
- (ii) (*Symmetries*): $S = \Delta(X)$ with $X \in \mathfrak{g}$

$$[H,S] = [\Delta(C),\Delta(X)] = \Delta([C,X]) = \Delta(0) = 0.$$

(iii) (*Markov generator*): Apply a "positive ground state transformation" to turn *H* into a Markov generator *L*.

Quantum $\mathfrak{su}_q(1,1)$ algebra

q-numbers

For $q \in (0,1)$ and $n \in \mathbb{N}_0$ introduce the q-number

$$[n]_q = \frac{q^n - q^{-n}}{q - q^{-1}}$$

Remark: $\lim_{q\to 1} [n]_q = n$.

The first *q*-number's are:

$$[0]_q = 0,$$
 $[1]_q = 1,$ $[2]_q = q + q^{-1},$ $[3]_q = q^2 + 1 + q^{-2},$...

Quantum Lie algebra $\mathfrak{su}_q(1,1)$

For $q \in (0,1)$ consider the generators K^+, K^-, K^0 with

$$[K^0,K^\pm] = \pm K^\pm, \qquad [K^+,K^-] = -[2K^0]_q$$

where

$$[2K^0]_q := rac{q^{2K^0} - q^{-2K^0}}{q - q^{-1}}$$

Irreducible representations are infinite dimensional. E.g., for $n \in \mathbb{N}$

$$\begin{cases} K^{+}e^{(n)} &= \sqrt{[n+2k]_{q}[n+1]_{q}} e^{(n+1)} \\ K^{-}e^{(n)} &= \sqrt{[n]_{q}[n+2k-1]_{q}} e^{(n-1)} \\ K^{o}e^{(n)} &= (n+k) e^{(n)} \end{cases}$$

Casimir element

$$C = [K^o]_q [K^o - 1]_q - K^+ K^-$$

In this representation

$$C e^{(n)} = [k]_q [k-1]_q e^{(n)}$$
 $k \in \mathbb{R}_+$

Co-product

A co-product $\Delta: U_q(\mathfrak{su}(1,1)) \to U_q(\mathfrak{su}(1,1))^{\otimes 2}$

$$\Delta(K^{\pm}) = K^{\pm} \otimes q^{-K^{o}} + q^{K^{o}} \otimes K^{\pm}$$

$$\Delta(K^{o}) = K^{o} \otimes 1 + 1 \otimes K^{o}$$

and it extends via

$$\Delta[A \cdot B] = \Delta[A] \cdot \Delta[B]$$
 $\Delta[A + B] = \Delta[A] + \Delta[B]$

The co-product conserves the commutation relations:

$$[\Delta(\mathcal{K}^o),\Delta(\mathcal{K}^\pm)]=\pm\Delta(\mathcal{K}^\pm) \qquad \quad [\Delta(\mathcal{K}^+),\Delta(\mathcal{K}^-)]=[2\Delta(\mathcal{K}^o)]_q$$

Iteratively $\Delta^n: U_q(\mathfrak{su}(1,1)) \to U_q(\mathfrak{su}(1,1))^{\otimes (n+1)}$, i.e. for $n \geq 2$

$$\Delta^{n}(K^{\pm}) = \Delta^{n-1}(K^{\pm}) \otimes q^{-K_{n+1}^{0}} + q^{\Delta^{n-1}(K_{i}^{0})} \otimes K_{n+1}^{\pm}$$

$$\Delta^{n}(K^{0}) = \Delta^{n-1}(K^{0}) \otimes 1 + 1^{\otimes n} \otimes K_{n+1}^{0}$$

Quantum Hamiltonian

$$\Delta(\textit{C}_{i}) = \textit{q}^{\textit{K}_{i}^{0}} \Big\{ \textit{K}_{i}^{+} \otimes \textit{K}_{i+1}^{-} + \textit{K}_{i}^{-} \otimes \textit{K}_{i+1}^{+} - \textit{B}_{i} \otimes \textit{B}_{i+1} \Big\} \textit{q}^{-\textit{K}_{i+1}^{0}}$$

Quantum Hamiltonian

$$\Delta(\textit{C}_{i}) = q^{\textit{K}_{i}^{0}} \Big\{ \textit{K}_{i}^{+} \otimes \textit{K}_{i+1}^{-} + \textit{K}_{i}^{-} \otimes \textit{K}_{i+1}^{+} - \textit{B}_{i} \otimes \textit{B}_{i+1} \Big\} q^{-\textit{K}_{i+1}^{0}}$$

out-of-diagonal: ≥ 0

$$\begin{array}{lcl} B_{i}\otimes B_{i+1} & = & \frac{(q^{k}+q^{-k})(q^{k-1}+q^{-(k-1)})}{2(q-q^{-1})^{2}}\left(q^{\mathcal{K}_{i}^{0}}-q^{-\mathcal{K}_{i}^{0}}\right)\otimes\left(q^{\mathcal{K}_{i+1}^{0}}-q^{-\mathcal{K}_{i+1}^{0}}\right) \\ & + & \frac{(q^{k}-q^{-k})(q^{k-1}-q^{-(k-1)})}{2(q-q^{-1})^{2}}\left(q^{\mathcal{K}_{i}^{0}}+q^{-\mathcal{K}_{i}^{0}}\right)\otimes\left(q^{\mathcal{K}_{i+1}^{0}}+q^{-\mathcal{K}_{i+1}^{0}}\right) \end{array}$$

Quantum Hamiltonian

$$\Delta(\textit{C}_{i}) = q^{\textit{K}_{i}^{0}} \Big\{ \textit{K}_{i}^{+} \otimes \textit{K}_{i+1}^{-} + \textit{K}_{i}^{-} \otimes \textit{K}_{i+1}^{+} - \textit{B}_{i} \otimes \textit{B}_{i+1} \Big\} q^{-\textit{K}_{i+1}^{0}}$$

$$H^{(L)} := \sum_{i=1}^{L-1} \left(\mathbf{1}^{\otimes (i-1)} \otimes \Delta(\mathcal{C}_i) \otimes \mathbf{1}^{\otimes (L-i-1)} + c_{q,k} \mathbf{1}^{\otimes L}
ight)$$

$$c_{q,k} = \frac{(q^{2k} - q^{-2k})(q^{2k-1} - q^{-(2k-1)})}{(q - q^{-1})^2} \qquad s.t. \qquad H \cdot \left(\bigotimes_{i=1}^{L} e_i^{(0)} \right) = 0$$

Symmetries

Lemma

Let $a \in \{+, -, 0\}$, then $K^a = \Delta^{L-1}(K_1^a)$ are symmetries:

$$[H^{(L)}, K^a] = 0$$

Explicitly

$$K^{\pm} := \sum_{i=1}^{L} q^{K_{1}^{0}} \otimes \cdots \otimes q^{K_{i-1}^{0}} \otimes K_{i}^{\pm} \otimes q^{-K_{i+1}^{0}} \otimes \cdots \otimes q^{-K_{L}^{0}}$$

$$K^{0} := \sum_{i=1}^{L} \underbrace{1 \otimes \cdots \otimes 1}_{(i-1) \text{ times}} \otimes K_{i}^{0} \otimes \underbrace{1 \otimes \cdots \otimes 1}_{(L-i) \text{ times}}$$

Proof:

For n = 2: $[H^{(2)}, K^a] = [\Delta(C_1), \Delta(K_1^a)] = \Delta([C_1, K_1^a]) = \Delta(0) = 0.$

For n > 2: induction.

Markov processes

with $\mathfrak{su}_q(1,1)$ symmetry

Ground state transformation

Lemma

Let H be a matrix with $H(\eta,\eta')\geq 0$ if $\eta\neq\eta'$. Suppose g is a positive ground state, i.e. Hg=0 and $g(\eta)>0$. Let G be the matrix $G(\eta,\eta')=g(\eta)\delta(\eta,\eta')$. Then

$$L = G^{-1}HG$$

is a Markov generator.

Indeed

$$L(\eta, \eta') = \frac{H(\eta, \eta')g(\eta')}{g(\eta)}$$

Therefore

$$L(\eta,\eta')\geq 0 \quad ext{if} \quad \eta
eq \eta' \qquad \qquad \sum_{\eta'} L(\eta,\eta') = 0$$

Exponential symmetries

- $g = \bigotimes_{i=1}^{L} e_i^{(0)}$ is a ground state, i.e. Hg = 0.
- ▶ For every symmetry [H, S] = 0 another ground state is $g_S := Sg$.
- ► The exponential symmetry

$$S^+ = \exp_{q^2}(E) = \sum_{n \ge 0} \frac{(E)^n}{[n]_q!} q^{-n(n-1)/2}$$

with

$$E = \Delta^{(L-1)}(q^{K_1^0}) \cdot \Delta^{(L-1)}(K_1^+)$$

gives a positive ground state

$$g_{S^+} := S^+g = \sum_{\ell_1,\dots,\ell_L \geq 0} \otimes_{i=1}^L \left(\sqrt{\binom{\ell_i + 2k - 1}{\ell_i}_q} \cdot q^{\ell_i(1-k+2ki)} \right) \mathrm{e}^{(\ell_i)}$$

(1): Asymmetric Inclusion Process: ASIP(q,k)

For $k \in \mathbb{R}_+$ the interacting particle system $\mathsf{ASIP}(q,k)$ on $[1,L] \cap \mathbb{Z}$ with state space $\{0,1,\ldots\}^L$ is defined by

$$(L^{ASIP(q,k)}f)(\eta) = \sum_{i=1}^{L-1} (L_{i,i+1}f)(\eta)$$

with

$$\begin{array}{lcl} (L_{i,i+1}f)(\eta) & = & q^{\eta_i-\eta_{i+1}+(2k-1)}[\eta_i]_q[2k+\eta_{i+1}]_q(f(\eta^{i,i+1})-f(\eta)) \\ & + & q^{\eta_i-\eta_{i+1}-(2k-1)}[2k+\eta_i]_q[\eta_{i+1}]_q(f(\eta^{i+1,i})-f(\eta)) \end{array}$$

▶ $q = 1 \rightarrow SIP(k)$: symmetric inclusion jump right at rate $\eta_i(2k + \eta_{i+1})$, jump left at rate $(2k + \eta_i)\eta_{i+1}$

Properties of ASIP(q,k)

▶ The ASIP(q, k) on $[1, L] \cap \mathbb{Z}$ has a family (labeled by $\alpha > 0$) of inhomogeneous reversible product measures with marginals

$$\mathbb{P}_{\alpha}(\eta_{i}=x)=\frac{\alpha^{x}}{Z_{i,\alpha}}\binom{x+2k-1}{x}_{q}\cdot q^{4kix}$$

 q = 1: the reversible measure is homogeneous and product of Negative Binomials (2k, α)

(2) Asymmetric Brownian Energy Process: ABEP (σ, k)

For $\sigma > 0$, let $(\eta^{(\epsilon)}(t))_{t \geq 0}$ be the $ASIP(1 - \epsilon \sigma, k)$ process initialized with ϵ^{-1} particles. The scaling limit (weak asymmetry)

$$z_i(t) := \lim_{\epsilon \to 0} \epsilon \, \eta_i^{(\epsilon)}(t)$$

is the diffusion ABEP(σ , k) with generator $L^{ABEP(\sigma,k)} = \sum_{i=1}^{L-1} \mathcal{L}_{i,i+1}$

$$\begin{split} &\mathcal{L}_{i,i+1} = \\ &-\frac{1}{2\sigma} \left\{ (1 - e^{-2\sigma z_i})(e^{2\sigma z_{i+1}} - 1) + 2k\left(2 - e^{-2\sigma z_i} - e^{2\sigma z_{i+1}}\right) \right\} \left(\frac{\partial}{\partial z_i} - \frac{\partial}{\partial z_{i+1}}\right) \\ &+ \frac{1}{4\sigma^2} (1 - e^{-2\sigma z_i})(e^{2\sigma z_{i+1}} - 1) \left(\frac{\partial}{\partial z_i} - \frac{\partial}{\partial z_{i+1}}\right)^2 \end{split}$$

Properties of ABEP(σ , k)

 $ightharpoonup \sigma
ightarrow 0^+$

$$\mathcal{L}_{i,i+1} = -2k(z_i - z_{i+1})\left(\frac{\partial}{\partial z_i} - \frac{\partial}{\partial z_{i+1}}\right) + z_i z_{i+1}\left(\frac{\partial}{\partial z_i} - \frac{\partial}{\partial z_{i+1}}\right)^2$$

The reversible measures are given by product of i.i.d. $Gamma(2k; \gamma)$.

• $\sigma \neq 0$ the process is truly asymmetric, i.e. on the 1-d torus it has a non-zero current.

On \mathbb{Z}_+ it has inhomogeneous reversible product measures (labeld by $\gamma > -4\sigma k$) with marginal density

$$\mu(z_i) = \frac{1}{\mathcal{Z}_{i,\gamma}} (1 - e^{-2\sigma z_i})^{(2k-1)} e^{-(4\sigma ki + \gamma)z_i}$$

(3) KMP(k) process

Instantaneous thermalization limit:

$$L_{i,j}^{KMP(k)} f(z_i, z_j) := \lim_{t \to \infty} \left(e^{tL_{i,j}^{BEP(k)}} - 1 \right) f(z_i, z_j)$$

$$= \int_0^1 dp \ \nu^{(k)}(p) \left[f(p(z_i + z_j), (1 - p)(z_i + z_j)) - f(z_i, z_j) \right]$$

$$Z_i, Z_j \sim \text{Gamma}(2k, \theta)$$
 i.i.d. $\Longrightarrow P = \frac{Z_i}{Z_i + Z_i} \sim \text{Beta}(2k, 2k)$

$$\nu^{(k)}(p) = \frac{p^{2k-1}(1-p)^{2k-1}}{B(2k,2k)}$$

For $k = \frac{1}{2}$: uniform redistribution, original KMP

$AKMP(\sigma, k)$ process

ightharpoonup AKMP (σ, k)

$$L_{i,j}^{AKMP(\sigma,k)} f(z_i, z_j) := \lim_{t \to \infty} \left(e^{tL_{i,j}^{ABEP(\sigma,k)}} - 1 \right) f(z_i, z_j)$$

$$= \int_0^1 d\rho \ \nu_{\sigma}^{(k)}(\rho | z_i + z_j) \left[f(\rho(z_i + z_j), (1 - \rho)(z_i + z_j)) - f(z_i, z_j) \right]$$
with

$$\nu_{\sigma}^{(k)}(\rho|E) = \frac{1}{\mathcal{Z}_{\sigma,k}(E)} e^{2\sigma pE} \left\{ \left(e^{2\sigma pE} - 1 \right) \left(1 - e^{-2\sigma(1-\rho)E} \right) \right\}^{2k-1}$$

► Th-ASIP(q, k)

$$(n,m) \rightarrow (R_a, n+m-R_a)$$

with R_a a q-deformed Beta-Binomial (n + m, 2k, 2k)

Duality relations

Self-duality of ASIP(q, k)

Theorem [Carinci, G., Redig, Sasamoto (2015)]

The ASIP(q, k) is self-dual on

$$D(\eta, \xi^{(\ell_1, \dots, \ell_n)}) = \frac{q^{-4k \sum_{m=1}^n \ell_m - n^2}}{(q^{2k} - q^{-2k})^n} \cdot \prod_{m=1}^n (q^{2N_{\ell_m}(\eta)} - q^{2N_{\ell_{m+1}}(\eta)})$$

where $\xi^{(\ell_1,\dots,\ell_n)}$ is the configuration with n particles at sites ℓ_1,\dots,ℓ_n and

$$N_i(\eta) := \sum_{k=i}^L \eta_k$$

► It follows from the explicit knowledge of the reversible measure and from the exponential symmetry *S*₊

Duality between $ABEP(\sigma, k)$ and SIP(k)

Theorem [Carinci, G., Redig, Sasamoto (2015)]

▶ For every σ (including 0^+), the process $\{z(t)\}_{t\geq 0}$ with generator $L^{ABEP(\sigma,k)}$ and the process $\{\eta(t)\}_{t\geq 0}$ with generator $L^{SIP(k)}$ are dual on

$$D(z,\xi) = \prod_{i=1}^{L} \frac{\Gamma(2k)}{\Gamma(2k+\xi_i)} \left(\frac{e^{-2\sigma E_{i+1}(z)} - e^{-2\sigma E_{i}(z)}}{2\sigma} \right)^{\xi_i}$$

with

$$E_i(z) = \sum_{l=i}^{L} z_l$$
 $E_{L+1}(z) = 0$

▶ Same duality holds between $AKMP(\sigma, k)$ and Th-SIP(k)

symmetric case $\sigma = 0^+$

$$L = \sum_{i=1}^{L-1} \left(K_i^+ K_{i+1}^- + K_i^- K_{i+1}^+ - 2K_i^o K_{i+1}^o + 2k^2 \right)$$

Two representations:

$$\begin{cases} K_{i}^{+}e^{(\eta_{i})} = (\eta_{i} + 2k) e^{(\eta_{i}+1)} \\ K_{i}^{-}e^{(\eta_{i})} = \eta_{i}e^{(\eta_{i}-1)} \\ K_{i}^{o}e^{(\eta_{i})} = (\eta_{i} + 4k) e^{(\eta_{i})} \end{cases} \qquad \begin{cases} \mathcal{K}_{i}^{+} = z_{i} \\ \mathcal{K}_{i}^{-} = z_{i} \partial_{z_{i}}^{2} + 2k\partial_{z_{i}} \\ \mathcal{K}_{i}^{o} = z_{i} \partial_{z_{i}} + k \end{cases}$$

$$L = L^{SIP(k)} \qquad \qquad L = L^{BEP(k)}$$

Duality fct ≡ intertwiner

asymmetric case $\sigma \neq 0$

► The $ABEP(\sigma, k)$ can be mapped to BEP(k) via the non-local transformation

$$z\mapsto g(z)$$

$$g_i(z):=\frac{e^{-2\sigma E_{i+1}(z)}-e^{-2\sigma E_i(z)}}{2\sigma}$$

Equivalently

$$L^{ABEP(\sigma,k)} = C_g \circ L^{BEP(k)} \circ C_{g-1}$$

with

$$(C_g f)(z) = (f \circ g)(z)$$

▶ Therefore, despite the asymmetry, the symmetry group of $ABEP(\sigma, k)$ is the same as for BEP(k), namely $\mathfrak{su}(1, 1)$. The representation is a non-local conjugation of the differential operator representation.

Applications

Example1: Current of ABEP(σ , k)

Definition

The current $J_i(t)$ during the time interval [0, t] across the bond (i-1, i) is defined as:

$$J_i(t) = E_i(z(t)) - E_i(z(0))$$

where

$$E_i(z) := \sum_{k > i} z_k$$

Remark: let $\xi^{(i)}$ be the configuration with 1 dual particle:

$$\xi_m^{(i)} = \begin{cases} 1 & \text{if } m = i \\ 0 & \text{otherwise} \end{cases}$$

then

$$D(z, \xi^{(i)}) = \frac{e^{-2\sigma E_{i+1}(z)} - e^{-2\sigma E_{i}(z)}}{4k\sigma}$$

Example1: Current of ABEP(σ , k)

Using duality between ABEP(σ , k) and SIP(k)

$$\mathbb{E}_{z}(e^{-2\sigma J_{i}(t)}) = e^{-4kt} \sum_{n \in \mathbb{Z}} e^{-2\sigma(E_{n}(z) - E_{i}(z))} I_{|n-i|}(4kt)$$

 $I_n(t)$ modified Bessel function.

The computation requires a single dual SIP particle, which is a simple symmetric random walk jumping at rate 2k:

$$\mathbb{P}_{i}(X_{t}=n)=e^{-4kt}I_{|n-i|}(4kt).$$

Brownian Momentum Process with reservoirs

Example 2: Energy covariance in the boundary driven BEP

If
$$\vec{\xi} = (0, \dots, 0, 1, 0, \dots, 0, 1, 0, \dots, 0)$$
 \Rightarrow $D(x, \vec{\xi}) = x_i^2 x_j^2$ site $i \nearrow$ site $j \nearrow$

In the dual process we initialize two SIP walkers $(X_t, Y_t)_{t>0}$ with $(X_0, Y_0) = (i, j)$

$$\mathbf{E}(x_i^2 x_j^2) = T_L^2 \mathbf{P}(\bullet) + T_R^2 \mathbf{P}(\bullet) + T_L T_R(\mathbf{P}(\bullet) + \mathbf{P}(\bullet))$$

Example 2: Energy covariance in the boundary driven BEP

$$\mathbb{E}\left(x_i^2 x_j^2\right) - \mathbb{E}\left(x_i^2\right) \mathbb{E}\left(x_j^2\right) = \frac{2i(N+1-j)}{(N+3)(N+1)^2} (T_R - T_L)^2$$

Remark: Long range correlations

$$\lim_{N \to \infty} N \, Cov(x_{s_1 N}^2, x_{s_2 N}^2) = 2s_1(1 - s_2)(T_R - T_L)^2$$

Some references

- ► G. Carinci, C. Giardinà, F. Redig, T. Sasamoto
 - Asymmetric stochastic transport models with $U_q(\mathfrak{su}(1,1))$ symmetry, JSP (2016), arxiv.1507.01478
 - A generalized Asymmetric Exclusion Process with $U_q(\mathfrak{su}(2))$ stochastic duality, PTRF (2015), arxiv.1407.3367

J. Kuan

- Stochastic duality of ASEP with two particle types via symmetry of quantum groups of rank two, arxiv.1504.07173
- V. Belitsky, G.M. Schütz
 - Quantum algebra symmetry of the ASEP with second-class particles, arxiv.1504.06958
- ► G. Carinci, C. Giardinà, C. Giberti, F. Redig
 - ► Dualities in population genetics: a fresh look with new dualities, SPA (2014), arXiv:1302.3206