Large deviations of additive observables in simple interacting particle systems: of equilibrium, non-equilibrium (& XXZ spin chains)

Marc Cheneau¹, Juan P. Garrahan², Frédéric van Wijland³, Cécile Appert-Rolland⁴, Bernard Derrida⁵, Alberto Imparato⁶

 1 Institut d'Optique, Palaiseau $\ ^2$ Nottingham University $\ ^3$ MSC, Paris $\ ^4$ LPT, Orsay $\ ^5$ LPS, ENS, Paris $\ ^6$ Aarhus University

Santa-Barbara – February 21th 2016

Vivien Lecomte (LPMA – Paris VI-VII)

LDF in IPS & quantum mechanics

Classical and quantum dynamics

What one gains from forgetting probabilities and turning to the quantum world

- Correspondence
 - $\cdot\,$ generator of stochastic classical system

[particles hopping]

· Hamiltonian of **quantum** XXZ chain

(Well known at least in the stat. mech. community.)

Motivations

Classical and quantum dynamics

What one gains from forgetting probabilities and turning to the quantum world

- Correspondence
 - · generator of **stochastic** classical system

[particles hopping]

· Hamiltonian of quantum XXZ chain

(Well known at least in the stat. mech. community.)

- Use: dictionary between
 - · regimes of large deviations of dynamical (i.e. additive) observables
 - · phases across a Quantum Phase Transition

Motivations

Classical and quantum dynamics

What one gains from forgetting probabilities and turning to the quantum world

- Correspondence
 - generator of stochastic classical system

[particles hopping]

Hamiltonian of guantum XXZ chain

(Well known at least in the stat. mech. community.)

- Use: dictionary between
 - regimes of large deviations of dynamical (*i.e.* additive) observables
 - phases across a Quantum Phase Transition
- Perspectives opened ; questions raised
 - finite-size effects
 - large-/small-scale spectrum
 - import/export techniques from/to stat. mech.
 - (I will ask questions to you.)

Vivien Lecomte (LPMA - Paris VI-VII)

KITP - Feb 21th 2016 2 / 30

[hidden

symmetries]

System

Exclusion Processes – generic settings

- Configurations: occupation numbers {n_i}
- Exclusion rule: $0 \le n_i \le N$
- Markov evolution for the **probability** $P(\{n_i\}, t)$ $\partial_t P(\{n_i\}, t) = \sum \left[W(n_i' \to n_i) P(\{n_i'\}, t) - W(n_i \to n_i') P(\{n_i\}, t) \right]$
- Large deviation function of "additive" observables A

System

Exclusion Processes – generic settings

- Configurations: occupation numbers {n_i}
- Exclusion rule: $0 \le n_i \le N$
- Markov evolution for the **probability** $P(\{n_i\}, t)$ $\partial_t P(\{n_i\}, t) = \sum \left[W(n'_i \to n_i) P(\{n'_i\}, t) - W(n_i \to n'_i) P(\{n_i\}, t) \right]$

• Large deviation function of "additive" observables A

System

Exclusion Processes – generic settings

- Configurations: occupation numbers {n_i}
- Exclusion rule: $0 < n_i < N$
- Markov evolution for the **probability** $P(\{n_i\}, t)$ $\partial_t P(\{n_i\}, t) = \sum_i \left[W(n_i' \to n_i) P(\{n_i'\}, t) - W(n_i \to n_i') P(\{n_i\}, t) \right]$
- Large deviation function of "additive" observables A

$$\langle e^{-sA} \rangle \sim e^{t \psi(s)}$$
 (\Leftrightarrow determining $P(A, t)$)
 $A = \text{total current } Q \text{ on time window } [0, t] = \#j \overrightarrow{\text{umps}} - j \overrightarrow{\text{umps}}$
 $A = \text{total activity } K \text{ on time window } [0, t] = \#j \text{umps} + j \text{umps}$

Operator representation

[Schütz & Sandow PRE 49 2726]

Evolution of probability vector P:

$$\begin{split} \partial_t P &= \mathbb{W} P \\ \mathbb{W} &= \sum_{1 \leq k \leq L-1} \left[S_k^+ S_{k+1}^- + S_k^- S_{k+1}^+ - \hat{n}_k \check{n}_{k+1} - \hat{n}_{k+1} \check{n}_k \right] \\ &+ \alpha \left[S_1^+ - \check{n}_1 \right] + \gamma \left[S_1^- - \hat{n}_1 \right] \\ &+ \delta \left[S_L^+ - \check{n}_L \right] + \beta \left[S_L^- - \hat{n}_L \right] \qquad [\check{n} = N - \hat{n}] \end{split}$$

 $S^{\pm}=S^{x}\pm iS^{y}$ and $S^{z}=\hat{n}-\frac{N}{2}$ are spin operators (of "spin" $j=\frac{N}{2}$)

Operator representation

[Schütz & Sandow PRE 49 2726]

Evolution of probability vector P:

$$\partial_t P = \mathbb{W} P$$

$$\mathbb{W} = \sum_{1 \le k \le L-1} \left[S_k^+ S_{k+1}^- + S_k^- S_{k+1}^+ - \hat{n}_k \check{n}_{k+1} - \hat{n}_{k+1} \check{n}_k \right]$$

$$+ \alpha \left[S_1^+ - \check{n}_1 \right] + \gamma \left[S_1^- - \hat{n}_1 \right]$$

$$+ \delta \left[S_L^+ - \check{n}_L \right] + \beta \left[S_L^- - \hat{n}_L \right] \qquad [\check{n} = N - \hat{n}]$$

$$S_{k+1}^{X} = S_{k-1}^{X} \text{ and } S_{k-1}^{Z} = \hat{n} \quad N \text{ are spin operators (of "spin" } i = N)$$

 $S^{\pm} = S^{x} \pm iS^{y}$ and $S^{z} = \hat{n} - \frac{N}{2}$ are spin operators (of "spin" $j = \frac{N}{2}$) densities $\rho_{0} = \frac{\alpha}{\alpha + \gamma}$; $\rho_{1} = \frac{\delta}{\delta + \beta}$; contact rates $a_{0} = \frac{\alpha}{\gamma}$; $a_{1} = \frac{\delta}{\beta}$

Operator representation

[Schütz & Sandow PRE 49 2726]

Evolution of probability vector P:

$$\begin{split} \partial_t P &= \mathbb{W} P \\ \mathbb{W} &= \sum_{1 \leq k \leq L-1} \left[S_k^+ S_{k+1}^- + S_k^- S_{k+1}^+ - \hat{n}_k \check{n}_{k+1} - \hat{n}_{k+1} \check{n}_k \right] \\ &+ \alpha \left[S_1^+ - \check{n}_1 \right] + \gamma \left[S_1^- - \hat{n}_1 \right] \\ &+ \delta \left[S_L^+ - \check{n}_L \right] + \beta \left[S_L^- - \hat{n}_L \right] \qquad [\check{n} = N - \hat{n}] \end{split}$$

 $S^{\pm} = S^{x} \pm iS^{y}$ and $S^{z} = \hat{n} - \frac{N}{2}$ are spin operators (of "spin" $j = \frac{N}{2}$) **XXX spin chain Hamiltonian** (up to boundary terms and constants).

Operator representation for large deviations

 $\left< \mathsf{e}^{-\mathsf{s}\mathsf{K}} \right> \ \sim \ \mathsf{e}^{t\,\psi(\mathsf{s})} \qquad \text{ with } \qquad \psi(\mathsf{s}) = \max \operatorname{Sp} \, \mathbb{W}_{\mathsf{s}}$

$$\mathbb{W}_{s} = \sum_{1 \le k \le L-1} \left[e^{-s} S_{k}^{+} S_{k+1}^{-} + e^{-s} S_{k}^{-} S_{k+1}^{+} - \hat{n}_{k} \check{n}_{k+1} - \hat{n}_{k+1} \check{n}_{k} \right] \\ + \alpha \left[e^{-s} S_{1}^{+} - \check{n}_{1} \right] + \gamma \left[e^{-s} S_{1}^{-} - \hat{n}_{1} \right] \\ + \delta \left[e^{-s} S_{L}^{+} - \check{n}_{L} \right] + \beta \left[e^{-s} S_{L}^{-} - \hat{n}_{L} \right]$$

for the activity K: XXZ spin chain Hamiltonian

Operator representation for large deviations

+ $\alpha \left[e^{-s} S_1^+ - \check{n}_1 \right] + \gamma \left[e^{+s} S_1^- - \hat{n}_1 \right]$ + $\delta \left[e^{+s} S_L^+ - \check{n}_L \right] + \beta \left[e^{-s} S_L^- - \hat{n}_L \right]$

for the current Q: "asymmetric" XXZ spin chain Hamiltonian

Example 1: use of rotational symmetry

map non-equilibrium current fluctuations to equilibrium current fluctuations

Mapping non-eq to eq

[Imparato, VL, van Wijland, PTPS 184 276]

Large deviations of the current

$$\psi(\mathbf{s}) = \max \operatorname{Sp} \, \mathbb{W}(\mathbf{s})$$

$$\mathbb{W}(\mathbf{s}) = \underbrace{\sum_{1 \le k \le L-1} \vec{S}_k \cdot \vec{S}_{k+1}}_{1 \le k \le L-1} + \operatorname{constant}_{1 \le k \le L-1} + \alpha \left[S_1^+ - \check{n}_1\right] + \gamma \left[S_1^- - \hat{n}_1\right]_{1 \le k \le L-1} + \delta \left[S_L^+ \mathbf{e}^{\mathbf{s}} - \check{n}_L\right] + \beta \left[S_L^- \mathbf{e}^{-\mathbf{s}} - \hat{n}_L\right]$$

Mapping non-eq to eq

[Imparato, VL, van Wijland, PTPS 184 276]

Large deviations of the current

 $\mathbb{W}(\mathbf{s}) = \sum \vec{S}_k \cdot \vec{S}_{k+1}$

invariant by rotation

$$\psi(\mathbf{s}) = \max \operatorname{Sp} \, \mathbb{W}(\mathbf{s})$$

[non-Hermitian due to boundaries]

$$\sum_{\substack{1 \le k \le L-1 \\ + \alpha \left[S_1^+ - \check{n}_1 \right] + \gamma \left[S_1^- - \hat{n}_1 \right] \\ + \delta \left[S_L^+ e^s - \check{n}_L \right] + \beta \left[S_L^- e^{-s} - \hat{n}_L \right] }$$

Local transformation

$$\mathcal{Q}^{-1}\mathbb{W}(\mathbf{s})\mathcal{Q} = \sum_{1 \le k \le L-1} \vec{S}_k \cdot \vec{S}_{k+1} \\ + \alpha' \left[S_1^+ - \check{n}_1 \right] + \gamma' \left[S_1^- - \hat{n}_1 \right] \\ + \delta' \left[S_L^+ \mathbf{e}^{\mathbf{s}'} - \check{n}_L \right] + \beta' \left[S_L^- \mathbf{e}^{-\mathbf{s}'} - \hat{n}_L \right]$$

describes contact with reservoirs of same densities

Vivien Lecomte (LPMA - Paris VI-VII)

LDF in IPS & guantum mechanics

SO(3) symmetry

[Imparato, VL, van Wijland, PTPS 184 276]

Detailed transformation:

(on **one** site)

 $Q = 1 + xS^{x} - iyS^{y} + zS^{z}$ (invertible)

performs a **rotation** of the vector $\mathbf{S} = (S^x, S^y, S^z)$ of spin operators

 $\mathcal{Q}^{-1}S^{\mathsf{x}}\mathcal{Q} = (R\mathbf{S})_1 \qquad \mathcal{Q}^{-1}S^{\mathsf{y}}\mathcal{Q} = (R\mathbf{S})_2 \qquad \mathcal{Q}^{-1}S^{\mathsf{z}}\mathcal{Q} = (R\mathbf{S})_3$

for some SO(3) rotation matrix R.

SO(3) symmetry

Detailed transformation:

$$Q = 1 + xS^{x} - iyS^{y} + zS^{z}$$
 (invertible)

[Imparato, VL, van Wijland, PTPS 184 276]

performs a **rotation** of the vector $\mathbf{S} = (S^x, S^y, S^z)$ of spin operators

 $\mathcal{Q}^{-1}\mathcal{S}^{\mathsf{x}}\mathcal{Q} = (\mathcal{R}\mathbf{S})_1 \qquad \mathcal{Q}^{-1}\mathcal{S}^{\mathsf{y}}\mathcal{Q} = (\mathcal{R}\mathbf{S})_2 \qquad \mathcal{Q}^{-1}\mathcal{S}^{\mathsf{z}}\mathcal{Q} = (\mathcal{R}\mathbf{S})_3$

for some SO(3) rotation matrix R. Form of the matrix:

(Cayley form)

$$R = (I+A)(I-A)^{-1}$$
$$A = \begin{pmatrix} 0 & -iz & y \\ iz & 0 & -ix \\ -y & ix & 0 \end{pmatrix}$$

Large deviations

[Imparato, VL, van Wijland, PTPS 184 276]

Result:

(transforming **all** sites)

$$\mathcal{Q}^{-1}\mathbb{W}_{\mathsf{res}}(\mathbf{s};
ho_0,
ho_1;\mathbf{a}_0,\mathbf{a}_1)\mathcal{Q}=\mathbb{W}_{\mathsf{res}}(\mathbf{s}';
ho_0',
ho_1';\mathbf{a}_0,\mathbf{a}_1)$$

with "primed" variables

$$\begin{split} \rho_0' &= \frac{(1+x)\rho_0 - x - z}{1-x} \\ \rho_1' &= (x + e^{-s} - z(1 - e^{-s})) \; \frac{\left[x + e^s + z(1 - e^s)\right]\rho_1 - x - z}{1-x^2} \\ e^{-s'} &= \frac{x + e^{-s} + z(e^{-s} - 1)}{1+xe^{-s} + z(e^{-s} - 1)} \end{split}$$

[Only at $s \neq 0$.]

Local rotation

Summary

[Imparato, VL, van Wijland, PRE 80 011131]

Probabilistic interpretation

Probabilistic interpretation

Question:

What is the mathematical embedding (in terms of process&prob.)? (Duality, Radon-Nykodym? **caveat**: prob. not preserved)

Generalizations:

- ★ higher dimensions
- ★ generic network and current
- ★ more than two reservoirs
- \star see also: Derrida & Gerschenfeld (ω variable) Akkermans, Bodineau, Derrida & Shpielberg (1d LDF for d > 1)

Vivien Lecomte (LPMA – Paris VI-VII)

Example 2: exclusion process on a ring

Focus on a simple situation

Simple exclusion process (SSEP): max. occupation N = 1; spins $S \mapsto \sigma$ Periodic boundary conditions

Focus on a simple situation

Simple exclusion process (SSEP): max. occupation N = 1; spins $S \mapsto \sigma$ Periodic boundary conditions Fixed total particle number N_0 density: $\rho_0 = N_0/L$

Focus on a simple situation

$$s \leftrightarrow$$
activity K

Simple exclusion process (SSEP): max. occupation N = 1; spins $S \mapsto \sigma$ Periodic boundary conditions Fixed total particle number N_0 density: $\rho_0 = N_0/L$

$$\begin{split} \mathbb{W}_{s} &= \sum_{k=1}^{L-1} \left[e^{-s} \left(\sigma_{k}^{+} \sigma_{k+1}^{-} + \sigma_{k}^{-} \sigma_{k+1}^{+} \right) - \hat{n}_{k} (1 - \hat{n}_{k+1}) - (1 - \hat{n}_{k}) \hat{n}_{k+1} \right] \\ &= \frac{L-1}{2} - \frac{e^{-s}}{2} \mathbb{H}_{\Delta} \\ \mathbb{H}_{\Delta} &= -\sum_{k=1}^{L-1} \left[\sigma_{k}^{x} \sigma_{k+1}^{x} + \sigma_{k}^{y} \sigma_{k+1}^{y} + \Delta \sigma_{k}^{z} \sigma_{k+1}^{z} \right] \quad \text{with} \quad \Delta = e^{s} \end{split}$$

Classical/Quantum dictionary

SSEP	Quantum Spin Chain
local occupation number n_k $(1 \le k \le L)$	local spin $\sigma^z_k~(1\leq k\leq L)$
$n_k = 0, 1 \equiv \circ, \bullet$	$\sigma_k^z=1,-1\equiv\uparrow,\downarrow$
(fixed) total occupation $N_0\equiv ho_0 L$	(fixed) total magnetization $M\equiv m_0L$
(mesoscopic) density $ ho(x)$ ($0 \le x \le 1$)	(mesoscopic) magnet. $m(x)$ $(0 \le x \le 1)$

Classical/Quantum dictionary

SSEP	Quantum Spin Chain
local occupation number n_k $(1 \le k \le L)$	local spin σ_k^z $(1 \le k \le L)$
$n_k = 0, 1 \equiv \circ, \bullet$	$\sigma_k^z=1,-1\equiv\uparrow,\downarrow$
(fixed) total occupation $N_0\equiv ho_0 L$	(fixed) total magnetization $M\equiv m_0L$
(mesoscopic) density $ ho(x)$ ($0\leq x\leq 1$)	(mesoscopic) magnet. $m(x)$ $(0 \le x \le 1)$
evolution operator $s \leftrightarrow$ activity K	ferromagnetic XXZ Hamiltonian ($J_{xy}=-1$)
$\mathbb{W}_{s} = \frac{L-1}{2} - \frac{e^{-s}}{2} \mathbb{H}_{\Delta}$	$\mathbb{H}_{\Delta} = \sum_{k=1}^{L-1} \left[J_{xy} \left(\sigma_k^x \sigma_{k+1}^x + \sigma_k^y \sigma_{k+1}^y \right) + J_z \sigma_k^z \sigma_{k+1}^z \right]$ $= -\sum_{k=1}^{L-1} \left[\sigma_k^x \sigma_{k+1}^x + \sigma_k^y \sigma_{k+1}^y + \Delta \sigma_k^z \sigma_{k+1}^z \right]$
counting factor $\Delta = e^{s}$ of the activity K	anisotropy $\Delta = -J_z$ along direction z
cumulant generating function	ground state energy
$\psi(\mathbf{s}) = \max \operatorname{Sp} \mathbb{W}_{\mathbf{s}} = \frac{L-1}{2} - \frac{e^{-\mathbf{s}}}{2} E_L(\mathbf{s})$	$E_L(\mathbf{s}) = \min \operatorname{Sp} \mathbb{H}_\Delta$

Vivien Lecomte (LPMA – Paris VI-VII)

Microscopic solution

Bethe Ansatz

[Appert, Derrida, VL, van Wijland, PRE 78 021122]

Vivien Lecomte (LPMA – Paris VI-VII) LDF in IPS & quantum mechanics

Bethe Ansatz

[Appert, Derrida, VL, van Wijland, PRE 78 021122]

Coordinate Bethe Ansatz: Integrability known from long ; difficulty: $L \rightarrow \infty$ • eigenvector of components

$$\sum_{\mathcal{P}} \mathcal{A}(\mathcal{P}) \prod_{i=1}^{N_0} \left[\zeta_{\mathcal{P}(i)} \right]^{x_i}$$

eigenvalue

$$\psi(\mathbf{s}) = -2\mathbf{N}_0 + \mathbf{e}^{-\mathbf{s}} \big[\zeta_1 + \ldots + \zeta_{\mathbf{N}_0} \big] - \mathbf{e}^{-\mathbf{s}} \left[\frac{1}{\zeta_1} + \ldots + \frac{1}{\zeta_{\mathbf{N}_0}} \right]$$

Bethe equations

$$\zeta_i^L = \prod_{\substack{j=1\\j\neq i}}^{N_0} \left[-\frac{1 - 2\mathbf{e}^{\mathsf{s}}\zeta_i + \zeta_i\zeta_j}{1 - 2\mathbf{e}^{\mathsf{s}}\zeta_j + \zeta_i\zeta_j} \right]$$

Microscopic solution

Bethe Ansatz

[Appert, Derrida, VL, van Wijland, PRE 78 021122]

Repartition of Bethe roots in the complex plane

Finite-size effects

[Appert, Derrida, VL, van Wijland, PRE 78 021122]

large deviation function

$$\psi(s) = \underbrace{-2L\rho_0(1-\rho_0)s}_{\text{minimal order}} + \underbrace{L^{-2}\mathcal{F}(u)}_{\text{finite-size}} + \dots \quad \text{with} \quad u = L^2\rho_0(1-\rho_0)s$$

• universal function (singular in $u = \frac{\pi^2}{2}$)

$$\mathcal{F}(u) = \sum_{k \ge 2} \frac{(-2u)^k \mathcal{B}_{2k-2}}{\Gamma(k) \Gamma(k+1)}$$

Finite-size effects

[Appert, Derrida, VL, van Wijland, PRE 78 021122]

• large deviation function

$$\psi(s) = \underbrace{-2L\rho_0(1-\rho_0)s}_{\text{minimal order}} + \underbrace{L^{-2}\mathcal{F}(u)}_{\text{finite-size}} + \dots \quad \text{with} \quad u = L^2\rho_0(1-\rho_0)s$$

• universal function (singular in $u = \frac{\pi^2}{2}$)

Finite-size effects

[Appert, Derrida, VL, van Wijland, PRE 78 021122]

• large deviation function

$$\psi(s) = \underbrace{-2L\rho_0(1-\rho_0)s}_{\text{minimal order}} + \underbrace{L^{-2}\mathcal{F}(u)}_{\text{finite-size}} + \dots \quad \text{with} \quad u = L^2\rho_0(1-\rho_0)s$$

• universal function (singular in $u = \frac{\pi^2}{2}$)

non-analyticity
$$\rightarrow$$

dynamical phase transition
at $s_{c} = \frac{\pi^{2}}{2L^{2}\rho_{0}(1-\rho_{0})}$

[Tailleur, Kurchan, VL, JPA 41 505001]

For exclusion processes Using SU(2) coherent states:

$$\langle \rho_{\mathsf{f}} | \boldsymbol{e}^{t \mathbb{W}} | \rho_{\mathsf{i}} \rangle = \int_{\boldsymbol{\rho}(0) = \rho_{\mathsf{i}}}^{\boldsymbol{\rho}(t) = \rho_{\mathsf{f}}} \mathcal{D}\boldsymbol{\rho} \mathcal{D}\hat{\boldsymbol{\rho}} \exp\{L\underbrace{\mathcal{S}[\hat{\boldsymbol{\rho}}, \boldsymbol{\rho}]}_{\mathsf{action}}\}$$

[Tailleur, Kurchan, VL, JPA 41 505001]

For exclusion processes Using SU(2) coherent states:

$$\begin{split} \langle \rho_{\rm f} | e^{t \mathbb{W}} | \rho_{\rm i} \rangle &= \int_{\rho(0)=\rho_{\rm i}}^{\rho(t)=\rho_{\rm f}} \mathcal{D}\rho \mathcal{D}\hat{\rho} \; \exp\{L\underbrace{\mathcal{S}[\hat{\rho},\rho]}_{\rm action}\} \\ \langle e^{-s\mathcal{K}} \rangle &\sim \langle \rho_{\rm f} | e^{t \mathbb{W}_{\rm S}} | \rho_{\rm i} \rangle = \int_{\rho(0)=\rho_{\rm i}}^{\rho(t)=\rho_{\rm f}} \mathcal{D}\rho \mathcal{D}\hat{\rho} \; \exp\{L\underbrace{\mathcal{S}_{\rm s}[\hat{\rho},\rho]}_{\rm action}\} \end{split}$$

Use saddle-point to handle the large *L* limit.

 $[L = \hbar^{-1}]$

[Tailleur, Kurchan, VL, JPA 41 505001]

For exclusion processes Same $S_s[\hat{\rho}, \rho]$ as the MSR action of the Langevin evolution:

$$\partial_t \rho(\mathbf{x}, t) = -\partial_{\mathbf{x}} \left[-\partial_{\mathbf{x}} \rho(\mathbf{x}, t) + \xi(\mathbf{x}, t) \right]$$
$$\langle \xi(\mathbf{x}, t) \xi(\mathbf{x}', t') \rangle = \frac{1}{L} \rho(\mathbf{x}, t) \left(1 - \rho(\mathbf{x}, t) \right) \delta(\mathbf{x}' - \mathbf{x}) \delta(t' - t)$$

One recovers the action of fluctuating hydrodynamics $[L \rightarrow \infty]$ [Spohn; Bertini, De Sole, Gabrielli, Jona-Lasinio, Landim]

[Tailleur, Kurchan, VL, JPA 41 505001]

For exclusion processes Same $S_s[\hat{\rho}, \rho]$ as the MSR action of the Langevin evolution:

$$\partial_t \rho(\mathbf{x}, t) = -\partial_x \left[-\partial_x \rho(\mathbf{x}, t) + \xi(\mathbf{x}, t) \right]$$
$$\langle \xi(\mathbf{x}, t)\xi(\mathbf{x}', t') \rangle = \frac{1}{L} \rho(\mathbf{x}, t) \left(1 - \rho(\mathbf{x}, t) \right) \delta(\mathbf{x}' - \mathbf{x}) \delta(t' - t)$$

One recovers the action of fluctuating hydrodynamics $[L \rightarrow \infty]$ [Spohn; Bertini, De Sole, Gabrielli, Jona-Lasinio, Landim]

And obtains non-trivial finite-size corrections [lattice contribs.] (those affecting the saddle, not the fluctuations around it) $\psi(\mathbf{s})$: again

[Appert, Derrida, VL, van Wijland, PRE 78 021122]

Periodic boundary conditions More general fluctuating hydrodynamics

$$\frac{1}{Lt} \langle Q \rangle \propto D(\rho)$$
 (Fourier's law)
$$\frac{1}{Lt} \langle Q^2 \rangle_c = \sigma(\rho)$$
 (For the SSEP, $\sigma(\rho) = \rho(1-\rho)$)

 $\psi(s)$: again

[Appert, Derrida, VL, van Wijland, PRE 78 021122]

Periodic boundary conditions More general fluctuating hydrodynamics

$$\frac{1}{Lt} \langle Q \rangle \propto D(\rho)$$
 (Fourier's law)
$$\frac{1}{Lt} \langle Q^2 \rangle_c = \sigma(\rho)$$
 (For the SSEP, $\sigma(\rho) = \rho(1-\rho)$)

21 / 30

Saddle point evaluation

$$\langle e^{-sK} \rangle \sim \int \mathcal{D}\rho \mathcal{D}\hat{\rho} \exp\{L S_{s}[\hat{\rho},\rho]\}$$

 $\psi(s)$: again

[Appert, Derrida, VL, van Wijland, PRE 78 021122]

Periodic boundary conditions More general fluctuating hydrodynamics

$$\frac{1}{Lt} \langle Q \rangle \propto D(\rho)$$
 (Fourier's law)
$$\frac{1}{Lt} \langle Q^2 \rangle_c = \sigma(\rho)$$
 (For the SSEP, $\sigma(\rho) = \rho(1-\rho)$)

Saddle point evaluation

$$\langle e^{-\mathsf{sK}} \rangle \sim \int \mathcal{D}\rho \mathcal{D}\hat{\rho} \, \exp\{\mathcal{LS}_{\mathsf{s}}[\hat{\rho},\rho]\}$$

Large deviation function

[assuming **uniform** profile $\rho(x) = \rho$]

$$\psi(\mathbf{s}) = \underbrace{-\mathbf{s}\frac{\langle K \rangle_c}{t}}_{\text{at saddle-point}} + \underbrace{L^{-2}D\mathcal{F}(u)}_{\int_{\mathbf{s}} \text{of quadratic}} \quad \text{with} \quad u = L^2 \mathbf{s}\frac{\sigma(\rho_0)\sigma''(\rho_0)}{8D^2}$$

fluctuations

Correspondence between the (Gaussian) integration of small fluctuations AND discreteness of Bethe root repartition.

More general?

Correspondence between the (Gaussian) integration of small fluctuations AND discreteness of Bethe root repartition.

More general?

Repartition of Bethe roots for $s > s_c$?

Correspondence between the (Gaussian) integration of small fluctuations AND discreteness of Bethe root repartition.

More general?

Repartition of Bethe roots for $s > s_c$?

Fluctuating hydrodynamics for quantum chains?

Dynamical phase transition [VL, Garrahan, van Wijland, JPA 45 175001]

Rescaling of the large deviation function [singularity at $\lambda_c > 0$ as $L \to \infty$]

$$\varphi(\lambda) = \lim_{L \to \infty} L\psi(\underline{\lambda/L^2})$$

Using the correct *non-uniform* saddle-point profile for $\lambda > \lambda_c$

Dynamical phase transition [VL, Garrahan, van Wijland, JPA 45 175001]

Rescaling of the large deviation function [singularity at $\lambda_c > 0$ as $L \to \infty$]

$$\varphi(\lambda) = \lim_{L \to \infty} L\psi(\underline{\lambda/L^2})$$

Using the correct *non-uniform* saddle-point profile for $\lambda > \lambda_c$

Dynamical phase transition [VL, Garrahan, van Wijland, JPA 45 175001]

Optimal

Sketch of derivation [VL, Garrahan, van Wijland, JPA 45 175001]

Saddle-point equations for the profile $\rho(x)$ take the form

 $\left(\partial_{\mathbf{x}}\rho(\mathbf{x})\right)^{2} + E_{P}(\rho(\mathbf{x})) = 0$

25 / 30

Scaling

Sketch of derivation [VL, Garrahan, van Wijland, JPA 45 175001]

Saddle-point equations for the profile $\rho(x)$ take the form

$$(\partial_x \rho(x))^2 + E_P(\rho(x)) = 0$$

Motion in "time" x of a particle of "position" ρ in a

Scaling

Sketch of derivation [VL, Garrahan, van Wijland, JPA 45 175001]

Saddle-point equations for the profile $\rho(x)$ take the form

$$(\partial_x \rho(x))^2 + E_P(\rho(x)) = 0$$

Motion in "time" x of a particle of "position" ρ in a

Excitations

[Cheneau, VL, work in progress]

What about solutions with more than one kink+anti-kink?

Smaller sizes

Small sizes: the ground state

Aim: experimental realizations with cold atoms \rightarrow non-periodic (but isolated, 1D) system \rightarrow smaller sizes & finite-temperature & excited state

Vivien Lecomte (LPMA - Paris VI-VII)

Small sizes: the full spectrum

L = 9 sites $N_0 = 3$ particles

Small sizes: the full spectrum

Vivien Lecomte (LPMA – Paris VI-VII)

Small sizes: the full spectrum

[preliminary!]

L = 9 sites $N_0 = 3$ particles infinite-size ground state infinite-size excited states

[preliminary!]

L = 9 sites

Small sizes: the full spectrum

 $N_0 = 3$ particles

infinite-size ground state infinite-size excited states

gathering(?) of microscopic eigenvalues \longrightarrow macroscopic ($L = \infty$) states

Summary

Microscopic approach:

★ operator formalism

⋆ XXZ spin chain ★ Bethe Ansatz

Macroscopic approach:

* MFT, saddle-point method, dynamical phase transition

Summary

Microscopic approach:

★ operator formalism

★ XXZ spin chain ★ Bethe Ansatz

Macroscopic approach:

 \star MFT, saddle-point method, dynamical phase transition

Questions:

- $\star\,$ Finite-size crossover around a quantum phase transition? Between:
 - · Luttinger Liquid (s $\rightarrow -\infty$)
 - $\cdot\,$ Phase-separated ferromagnet (${\color{black} s \rightarrow +\infty})$
- $\star\,$ Across the transition: continuum spectrum \rightarrow gaped spectrum?
- \star XXZ transition not at $\Delta=1$ but at $\Delta=1+\mathcal{O}(L^{-2})$
- ★ Are scaling exponents/functions known? Are they interesting?
- ★ Hydrodynamics approaches for quantum questions?
- \star Non-Hermitian operators \longleftrightarrow dissipation in Lindblad?

Thank you for your attention!

References:

- Marc Cheneau, Vivien Lecomte et al. work in progress (2014-)
- Vivien Lecomte, Juan P. Garrahan, Frédéric van Wijland
 J. Phys. A 45 175001 (2012)
- Vivien Lecomte, Alberto Imparato, Frédéric van Wijland PTPS 184 276 (2010)
- Cécile Appert-Rolland, Bernard Derrida, Vivien Lecomte, Frédéric van Wijland Phys. Rev. E **78** 021122 (2008)