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A Paradigm of non-equilibrium behaviour: ASEP

x 1 1 x 1

Asymmetric Exclusion Process. A Minimal Model for non-equilibrium
Statistical Mechanics.

• EXCLUSION: Hard core-interaction; at most 1 particle per site.

• ASYMMETRIC: External driving; breaks detailed-balance

• PROCESS: Stochastic Markovian dynamics; no Hamiltonian.

The ASEP appears as a building block in many realistic models of 1d
transport and is studied extensively in probability, combinatorics,
statistical physics...
ASEP was invented in 1968 by molecular biologists.
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ORIGINS

• Interacting Brownian Processes (Spitzer, Harris, Liggett).

• Driven diffusive systems (Katz, Lebowitz and Spohn).

• Transport of Macromolecules through thin vessels.
Motion of RNA templates.

• Hopping conductivity in solid electrolytes.

• Directed Polymers in random media. Reptation models.

• Interface dynamics. KPZ equation

SOME RECENT APPLICATIONS

• Traffic flow.

• Sequence matching.

• Brownian motors.

K. Mallick Nonequilibrium fluctuations using macroscopic fluctuation theory



An Elementary Model for Protein Synthesis

C. T. MacDonald, J. H. Gibbs and A.C. Pipkin, Kinetics of
biopolymerization on nucleic acid templates, Biopolymers (1968).

=3
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Single-file Diffusion
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Anomalous diffusion in SEP

Consider the Symmetric Exclusion Process on an infinite one-dimensional
line with a finite density ρ of particles.

Suppose that we tag and observe a particle that was initially located at
site 0 and monitor its position Xt with time.

On the average 〈Xt〉 = 0 but how large are its fluctuations?

• If the particles were non-interacting (no exclusion constraint), each
particle would diffuse normally 〈X 2

t 〉 = Dt .

• Because of the exclusion condition, a particle displays an anomalous
diffusive behaviour:

〈X 2
t 〉 = 2

1− ρ
ρ

√
Dt

π
(Arratia, 1983)

Single-File Diffusion is an important model in soft-condensed matter; for
example, ion transport through cell membranes (cf. experiments by C.
Bechinger).
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ASEP on the infinite line

Consider now the Asymmetric Exclusion Process on an infinite
one-dimensional line with a finite density ρ of particles. Allowed jumps
are performed with rate 1 towards the right and rate x towards the left.

• A tagged particle will display a normal diffusive behaviour

〈X 2
t 〉 − 〈Xt〉2 ' D0t with D0 = (1− x)(1− ρ)

if we take the averages with respect to the initial condition (at density ρ)
and with respect to the history of the process (A. De Masi and P. Ferrari,
1985). This is the annealed average.

• If we consider the quenched average with fixed initial condition

lim
t→∞

〈X 2
t 〉 − 〈Xt〉2

t
= 0

It has been proved rigorously that the quenched diffusion constant
vanishes. More precisely: 〈X 2

t 〉 − 〈Xt〉2 ∼ t2/3.
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Tracer on a ring I

L

N )(Ω =

1

x
L SITES

N  PARTICLES

CONFIGURATIONS

x  asymmetry 

Consider an ASEP on a finite ring with asymmetry parameter x . In the
long time limit, a tagged particle undergoes normal diffusion with
Diffusion Constant:

D = lim
t→∞

〈Y 2
t 〉 − 〈Yt〉2

t
= (1− x)

2L

L− 1

∑
k>0

k2 CN+k
L

CN
L

CN−k
L

CN
L

(
1 + xk

1− xk

)
• Symmetric case x = 1 :

D = 2
L− N

N(L− 1)
' 2

1− ρ
Lρ

where ρ = N/L is the density. The diffusion constant vanishes as 1/L
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Tracer on a ring II

This leads by finite-size scaling to the t1/4 behaviour of SEP on the
infinite line. We write, taking into account that the dynamical exponent
of SEP is z = 2,

〈X 2
t 〉 − 〈Xt〉2 ' L2χΦ

( t

L2

)
Taking t →∞ and L finite: χ = 1/2 and Φ(u) ' 2 1−ρ

ρ u when u →∞ .

For L→∞ and t finite, we must have Φ(u) ∼ u1/2 when u → 0,

〈X 2
t 〉 − 〈Xt〉2 ∼ t1/2

• Asymmetric case x < 1 :

D ' (1− x)

√
π(1− ρ)3/2

2ρ1/2

1√
L

For ASEP, the dynamical exponent is z = 3/2 and Finite-Size scaling
implies

〈X 2
t 〉 − 〈Xt〉2 ∼ t2/3

(Recall quenched average on the infinite line.)
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Open questions about SEP on the infinite line

In present talk, we shall focus on SEP on the infinite line.

We are interested in the quantitative behaviour of the higher
cumulants of Xt . Can we calculate the cumulant generating function
log[〈eλXT〉] or the full distribution of Xt?

What is the robustness of the t1/4? Can tagged particle statistics be
determined for more general systems, without having to use
integrability or rely on some combinatorial trick?

What is the influence of the initial setting?

Statistical properties of the tagged particle trajectory? Multiple-time
correlations?
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Macroscopic Fluctuation Theory: Fundamental
Formula

Study the system at a coarse-grained hydrodynamical level.

For a weakly-driven diffusive system, the probability to observe a current
j(x , t) and a density profile ρ(x , t) during a time T takes a large
deviation form:

Pr{j(x , t), ρ(x , t)} ∼ e− SMFT (j,ρ)

where

SMFT (j , ρ) =

∫ T

0

dt

∫ +∞

−∞

(j − νσ(ρ) + D(ρ)∇ρ)2 dx

2σ(ρ)

with the constraint: ∂tρ = −∇.j (L. Bertini, D. Gabrielli, A. De Sole, G.
Jona-Lasinio and C. Landim).

The transport coefficients D(ρ) (Diffusivity) and σ(ρ) (Conductivity)
carry the relevant information from the microscopic level to the
macroscopic stage. They must be calculated using the microscopic
dynamical rules.
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The Hydrodynamic Limit: deterministic case

E = ν/2L

ρ ρ
21

L

Starting from the microscopic level, define local density ρ(x , t) and
current j(x , t) with macroscopic space-time variables x = i/L, t = s/L2

(diffusive scaling).
The average hydrodynamic evolution of the system is given by:

∂tρ(x , t) = −∇J(x , t) with J = −D(ρ)∇ρ+ νσ(ρ)

How can Fluctuations be taken into account?
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Fluctuating Hydrodynamics

Let Yt be the integrated current of particles transferred from the left
reservoir to the right reservoir during time t.

limt→∞
〈Yt〉
t = D(ρ)ρ1−ρ2

L + σ(ρ)νL for (ρ1 − ρ2) small

limt→∞
〈Y 2

t 〉
t =

σ(ρ)

L
for ρ1 = ρ2 = ρ and ν = 0.

Then, the equation of motion is obtained as:

∂tρ = −∂x j with j= −D(ρ)∇ρ+ νσ(ρ)+
√
σ(ρ)ξ(x , t)

where ξ(x , t) is a Gaussian white noise with variance

〈ξ(x ′, t ′)ξ(x , t)〉 =
1

L
δ(x − x ′)δ(t − t ′)

For the symmetric exclusion process, the ‘phenomenological’ coefficients
are given by

D(ρ) = 1 and σ(ρ) = 2ρ(1− ρ)
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Values of Diffusivity and Conductivity

• Independent particles: D = 1, σ = 2ρ

• Simple Exclusion Process: DSEP = 1, σSEP = 2ρ(1− ρ)

• Kipnis-Marchioro-Presutti model: DKMP = 1, σKMP = 2ρ2

• Repulsion Process: Hops increasing the number of nearest neighbourg
pairs are forbidden:

DRP =

{
1

(1−ρ)2 if 0 < ρ < 1
2

1
ρ2 if 1

2 < ρ < 1
σRP =

{
2ρ(1−2ρ)

1−ρ if 0 < ρ < 1
2

2(1−ρ)(2ρ−1)
ρ if 1

2 < ρ < 1

• Exclusion Process with Avalanches:DEPA = 1
(1−2ρ)3 , σEPA = 2ρ(1−ρ)

(1−2ρ)3
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Katz-Lebowitz-Spohn model (Driven Ising Model)

The Katz-Lebowitz-Spohn model is a driven lattice gas where the
hopping rates depend on the neighbouring sites:

0100
1+δ
�
1+δ

0010 1101
1−δ
�

1−δ
1011 1100

1−ε
�
1+ε

1010 0101
1+ε
�
1−ε

0011

σKLS = 2
λ(ρ)[1+δ(1−2ρ)]−2ε

√
ρ(1−ρ)

λ(ρ)3 with λ(ρ) =
1+
√

1−8ερ(1−ρ)/(1+ε)

2
√
ρ(1−ρ)

The diffusivity is given by DKLS(ρ) = 1
2χ(ρ)σKLS(ρ), where χ(ρ) is

obtained by eliminating the parameter h between the two equations:

χ =
1

4

1 + ε

1− ε
cosh h(

sinh2 h + 1+ε
1−ε

)3/2

ρ =
1

2

1 +
sinh h√

sinh2 h + 1+ε
1−ε


(Y. Kafri et al., 2013)
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Tagged particle as a macroscopic observable

How to write the position XT of the Tagged Particle macroscopically? In
Single-File Diffusion, particles can not overtake, i.e. the ordering of the
particle is conserved: ∫ +∞

XT

ρ(x , t) =

∫ +∞

0

ρ(x , 0)

This defined the functional XT [ρ], whose statistics we can study by MFT.

〈eλXT〉 =

∫
Dρ0(x)P[ρ0]

∫
Dρ(x , t)Dj(x , t)eλXT[ρ]−SMFT[j,ρ]δ(∂tρ+∇.j)

The initial profile ρ0, distributed according to P[ρ0] can be fixed
(quenched) or fluctuate w.r.t. some chosen measure (annealed).

Scaling shows that the effective action grows as
√

T → Saddle-Point.

The calculation becomes an optimization problem: Find the optimal path
(j∗, ρ∗) that generates a given fluctuation of XT .
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M. F. T. Equations

Evaluating the effective action at the saddle-point (j∗, ρ∗) gives

〈eλXT〉 ' e
√
4Tµ(λ)

√
4Tµ(λ) being the cumulant generating function: µ(λ) =

∑
n
λn

n!
〈X n

T 〉c√
4T

The optimization is performed by solving Euler-Lagrange equations,
better reformulated as a Hamiltonian structure in terms of two conjugate
variables (p, q) that satisfy coupled PDE’s (setting ν = 0):

∂tq = ∂x [D(q)∂xq]− ∂x [σ(q)∂xp]

∂tp = −D(q)∂xxp − 1

2
σ′(q)(∂xp)2

where q(x , t) is the optimal density-field and p(x , t) is the conjugate field

with Hamiltonian: H[p, q] = −D(q)∂xq∂xp + σ(q)
2 (∂xp)2

The parameter λ appears through the boundary conditions at t = 0 and
t = T .
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Optimal paths

Path of least action

∂tq = −δH

δp
and ∂tp =

δH

δq

Boundary conditions

p(x ,T ) = λ

[
δXT

δq(x ,T )

]

Quenched

q(x , 0) = ρ

Annealed

p(x , 0) = −λ
[

δXT

δq(x , 0)

]
+

δF

δq(x , 0)

The distinction between annealed and quenched comes from the
boundary conditions.
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A Formula for the variance

In the general case, the MFT equations can not be solved analytically but
a perturbative approach w.r.t. λ is possible, providing us with the first
few cumulants of XT .
• Quenched case:

〈X 2
T 〉 =

σ(ρ)

ρ2

√
T

πD(ρ)

• Annealed case:

〈X 2
T 〉 =

σ(ρ)

ρ2

√
2T

πD(ρ)

Note the everlasting effect of the initial conditions.
For SEP, we also obtain a formula for the 4th cumulant:

〈X 4
T 〉c =

[1− ρ][1−
(
4− (8− 3

√
2)ρ
)

(1− ρ) + 12
π (1− ρ)2]

ρ3

√
4T

π
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Interacting Brownian Motions

A special case of Single-File diffusion is a system of Interacting Brownian
Motions with hard-core reflection. It can be obtained as the limit of SEP
in a continuous space with point-particles.

0.0 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

Time

F. Spitzer, Adv. Math. (1970).
In this case: D = 1, σ = 2ρ. The MFT equations can be solved.
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MFT equations for point-like particles

• Path of least-action

∂tp + ∂xxp = − (∂xp)2

∂tq − ∂xxq = −∂x (2q∂xp)

• Boundary condition (Quenched)

q(x , 0) = ρ

p(x ,T ) = B Θ(x − XT ) with B =
λ

q(XT ,T )

Note that the boundary condition depends on the solution.

• How to solve?
Canonical change of variables: P = ep and Q = qe−p

∂tP + ∂xxP = 0 and ∂tQ − ∂xxQ = 0

K. Mallick Nonequilibrium fluctuations using macroscopic fluctuation theory



Solution Procedure

• Step 1 Solve for p and q treating XT and B as parameter.

• Step 2 Determine XT self-consistently via∫ ∞
XT

dz q(z ,T ) =

∫ ∞
0

dz q(z , 0)

• Step 3 Determine B from minimization of Action

µT (λ,B)

dB
= 0
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A Tracer Statistics: annealed case

For Interacting Brownian Motions, the full statistics of the tracer
position, Xt , can be determined. The function µ(λ) is known through a
parametric representation:

µ(λ) =

[
λ+ ρ

1− eB

1 + eB

]
η

λ = ρ
(
1− e−B

) [
1 + 1

2

(
eB − 1

)
erfc(η)

]
e2B = 1 +

2η

π−1/2e−η2 − η erfc(η)

The first few moments are given by

〈X 2
T 〉c =

2

ρ
√
π

√
T ,

〈X 4
T 〉c =

6 (4− π)

(ρ
√
π)

3

√
T

〈X 6
T 〉c =

30
(
68− 30π + 3π2

)
(ρ
√
π)

5

√
T
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A Tracer Statistics: quenched case

The function µ(λ) is even simpler in the quenched case

µ(λ)=
√

Tρ

∫ +∞

−∞
dx log

{
1 + 2 erfc(x)erfc(−x) sinh2

(
λ

2ρ

)}

In both cases (annealed and quenched), the large deviation function of
the tracer, defined, for T →∞, via

Prob

(
XT√

T
= ξ

)
∼ exp

[
−
√

Tφ(ξ)
]

is obtained by taking the Legendre transform of µ(λ).
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Large deviation functions

Quenched: φB (y)

ρ =−
∫∞
y

dx log[1+(eB−1) 1
2 erfc(x)]−

∫∞
−y

dx log[1+(e−B−1) 1
2 erfc(x)]

Annealed: φB (y)

ρ =−(eB−1)
∫∞
y

dx 1
2 erfc(x)−

∫∞
−y

dx (e−B−1) 1
2 erfc(x)

In both cases, B is determined from dφB (y)
dB = 0.

-2 -1 0 1 2
0

2

4

6

8

10

y

Φ
HyL

At large y : φ(y) ' ρ
12 |y |3 (Quenched) and φ(y) ' ρ|y | (Annealed).
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Annealed vs Quenched

Quenched

〈Y 2
T 〉c =

√
2

ρ
√
π

√
T 〈Y 4

T 〉c =
−0.04219

ρ3

√
T

Annealed

〈Y 2
T 〉c =

√
2

[ √
2

ρ
√
π

]√
T 〈Y 4

T 〉c =
0.92495

ρ3

√
T

2 T

Ρ Π
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Shape of the optimal profiles

MFT provides you with the statistical properties but also with an
understanding of the dynamical process leading to a given atypical
fluctuation.

- 4 - 2 0 2 4
0.6

0.8

1.0

1.2

1.4

x

q
Hx,

tL

Quenched case
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Shape of the optimal profiles

MFT provides you with the statistical properties but also with an
understanding of the dynamical process leading to a given atypical
fluctuation.

-40 -20 0 20 40

0.8

0.9

1.0

1.1

1.2

q
@x,

tD

Annealed case
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Two-time correlations

Quenched

〈Y (t1)Y (t2)〉 =
σ(ρ)

ρ2
√
πD(ρ)

1

2

[√
t1 + t2 −

√
|t1 − t2|

]
.

Annealed

〈Y (t1)Y (t2)〉 =
σ(ρ)

ρ2
√
πD(ρ)

1

2

[√
t1 +

√
t2 −

√
|t1 − t2|

]
.

Note that the annealed result can be deduced from quenched: define
Z (tj) = Y (tj + T )− Y (T ). At large T limit, 〈Z (t1)Z (t2)〉 yields the
result for the annealed case.
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Melting of an Ising Crystal
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ASEP as an Interface model

The height of an interface h(x , t) satisfies the generic KPZ equation

∂h

∂t
= ν

∂2h

∂x2
+
λ

2

(
∂h

∂x

)2

+ ξ(x , t)

The ASEP is a discrete version of the KPZ equation in one-dimension.
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Evolution of a quadrant

u

v v

u

Ising spin-flip dynamics at zero temperature

Limiting shape of the interface and its fluctuations?

Observables related to the shape:

Diagonal height, dT

Area of the melted region, AT .
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Variational formulation

y

x

y

x
}hx(t)}hx(0)

(a) (b)

Diagonal height: dT = current through origin.
Melted area: AT = displacement of all particles.

Hydrodynamic limit:
Fluctuating hydrodynamics

∂tρ = ∂x [∂xρ+
√
ρ(1− ρ) η]

Observables

dT =

∫
dx Θ(x)[ρ(x ,T )− ρ(x , 0)]

AT =

∫
dx x [ρ(x ,T )− ρ(x , 0)]

Formulate as a variational problem (macroscopic fluctuation theory).
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Current and Mean-Shape

The calculation of the statistics of dT is found by using the fact that dT

is proportional to the integrated current QT through the origin. Then,
using Derrida-Gershenfeld 2011, the cumulant generating function
χT (λ) = 〈exp[λ dT ]〉 is found to be

χT (λ) =

√
T

π

∫ ∞
0

dξ ln
[
1 +

(
eλ
√

2 − 1
)

e−ξ
2
]

Besides, in the long time limit, the crystal takes a limiting average shape
given by

η = 1√
4π

e−(ξ−η)2 − ξ−η√
π

∫∞
ξ−η dζ e−ζ

2

where ξ = x√
4T
, and η = y√

4T
.

In particular, the diagonal x = y crosses the interface at
ξ = η = (4π)−1/2 and therefore x = y =

√
T/π.
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Expressions of the cumulants

In the limit of a large time T , we have:

• Mean Area: 〈AT 〉 = T

• Variance: 〈A2
T 〉c = T 3/2

[
4
3

√
2
π

]
• Third cumulant (Skewness): 〈A3

T 〉c = T 2
[

6
√

3
π − 2

]
• Forth cumulant (Flatness):

〈A4
T 〉c = T 5/2 32

5
√
π

[
5
√

2− 4 + 3
π

{
4− 4

√
2 arccos

(
5

3
√

3

)
− 3
√

2 arccos
(

1
3

)} ]
Scaling of the n-th cumulant: 〈An

T 〉c ∼ T (n+1)/2

These results have been obtained by a perturbative expansion of the
MFT equations. Although the Bethe Ansatz can be applied to this
system, the MFT approach seems more efficient when comparing the
complexity of the calculations.
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Generalizations

The aim would be to derive the full cumulant generating function of the
Area. Are the MFT equations integrable?

Consider the same Ising ferromagnet with nearest-neighbor interactions,
but in the presence of a magnetic field favoring the majority phase. The
corresponding particle system is the totally asymmetric simple exclusion
process (TASEP).

For the TASEP case, the average area is 〈AT 〉 = T 2/6. It is known that
the limiting shape is the parabola

√
x +
√

y =
√

T .

The variance scales as T 7/3. A precise calculation remains an open
problem. Besides, the MFT scheme can not be applied per se to the
TASEP, which is a non-diffusive system.
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Conclusions

The asymmetric exclusion process is a paradigm for the behaviour of
systems far from equilibrium in low dimensions. The ASEP is important
for theory but also for its multiple applications. The tagged particle plays
the role of a probe for the dynamics. Single-file in 1d is one of the
simplest example of anomalous diffusion.

The Macroscopic Fluctuation Theory is a versatile tool to understand
non-equilibrium properties of interacting particle systems. It generalizes
the Onsager-Machlup theory of fluctuations close to equilibrium. In
particular, it provides us with a physical picture of how a non-reversible
fluctuation can be generated.

The calculation of the full statistics of a tracer in SEP is a difficult and
unsolved problem.

The asymmetric case (with the anomalous scaling t2/3 in the quenched
case) is an open problem.

K. Mallick Nonequilibrium fluctuations using macroscopic fluctuation theory


