Low temperature dynamics of the one-dimensional discrete nonlinear Schrödinger equation (joint work with Herbert Spohn)

Christian B. Mendl

Stanford University, USA

February 23, 2016

KITP, UC Santa Barbara "New approaches to non-equilibrium and random systems"

Discrete nonlinear Schrödinger equation (DNLS)

$$i \frac{d}{dt} \psi_j = -\frac{1}{2m} \Delta \psi_j + g |\psi_j|^2 \psi_j$$
$$H = \sum_{j=0}^{N-1} \frac{1}{2m} |\psi_{j+1} - \psi_j|^2 + \frac{1}{2} g |\psi_j|^4$$

with $j \in \mathbb{Z}$; here: defocusing case g > 0.

Applications:

- nonlinear optical wave guides
- Bose-Einstein condensates
- electronic transport

Discrete (lattice) NLS is non-integrable!

Conservation laws

Polar coordinates: $\psi_j = \sqrt{\rho_j} e^{i\varphi_j}$

density $\rho_j = |\psi_j|^2$ phase difference $r_j = \varphi_{j+1} - \varphi_j$ (almost conserved at low T) energy $e_j = \frac{1}{2m} |\psi_{j+1} - \psi_j|^2 + \frac{1}{2} g |\psi_j|^4$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conservation laws

Polar coordinates:
$$\psi_j = \sqrt{\rho_j} e^{i\varphi_j}$$

density
$$\rho_j = |\psi_j|^2$$

phase difference $r_j = \varphi_{j+1} - \varphi_j$ (almost conserved at low T)
energy $e_j = \frac{1}{2m} |\psi_{j+1} - \psi_j|^2 + \frac{1}{2} g |\psi_j|^4$

Example: density conservation law

$$rac{\mathrm{d}}{\mathrm{d}t}
ho_j(t) + \mathcal{J}_{
ho,j+1}(t) - \mathcal{J}_{
ho,j}(t) = 0$$

 $\rightsquigarrow \sum_{j=0}^{N-1}
ho_j(t) = \mathrm{const!}$

Corresponding density current

$$\mathcal{J}_{\rho,j} = \frac{1}{2m} \mathrm{i} \left(\psi_{j-1} \,\partial \psi_{j-1}^* - \psi_{j-1}^* \,\partial \psi_{j-1} \right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Nonlinear fluctuating hydrodynamics (scalar case)

At macroscopic scale: hyperbolic conservation law

$$\partial_t \varrho(x,t) + \partial_x \mathbf{j}(\varrho(x,t)) = 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

with *j* the density current.

At macroscopic scale: hyperbolic conservation law

$$\partial_t \varrho(x,t) + \partial_x \mathbf{j}(\varrho(x,t)) = 0$$

with *j* the density current.

Fluctuations relative to background: $\rho(x, t) = \overline{\rho} + \rho(x, t)$, add dissipation and noise \rightsquigarrow Langevin equation

$$\partial_t \rho + \partial_x \left(\underbrace{j'(\bar{\rho})}_c \rho + \frac{1}{2} j''(\bar{\rho}) \rho^2 - D \partial_x \rho + B \xi \right) = 0$$

D: diffusion constant, $\xi(x, t)$: space-time white noise

Nonlinear fluctuating hydrodynamics (scalar case)

Langevin equation (noisy Burgers equation, cf KPZ equation)

$$\partial_t \rho + \partial_x \left(\underbrace{j'(\bar{\rho})}_{c} \rho + \frac{1}{2} j''(\bar{\rho}) \rho^2 - D \partial_x \rho + B \xi \right) = 0$$

Mathematical solution theory: Martin Hairer, Fields Medal 2014

Nonlinear fluctuating hydrodynamics (scalar case)

Langevin equation (noisy Burgers equation, cf KPZ equation)

$$\partial_t \rho + \partial_x \left(\underbrace{j'(\bar{\rho})}_{c} \rho + \frac{1}{2} j''(\bar{\rho}) \rho^2 - D \partial_x \rho + B \xi \right) = 0$$

Mathematical solution theory: Martin Hairer, Fields Medal 2014 Want to obtain correlator $S(x, t) = \langle \rho(x, t); \rho(0, 0) \rangle$ Long-time limit

$$S(x,t) = \chi(\lambda|t|)^{-2/3} f_{\mathrm{KPZ}}((\lambda|t|)^{-2/3}(x-ct))$$

Generalization to several fields

 $\vec{u} = \vec{u}(x, t)$: deviation of the conserved fields from background $\partial_t \vec{u} + \partial_x \left(A\vec{u} + \frac{1}{2}\langle \vec{u}, \vec{H}\vec{u} \rangle - \partial_x \tilde{D}\vec{u} + \tilde{B}\vec{\xi}(x, t)\right) = 0$ Hessians: $H^{\alpha}_{\gamma\gamma'} = \partial_{u\gamma}\partial_{u_{\gamma'}}j_{\alpha}, \quad j_{\alpha} = \langle \mathcal{J}_{\alpha} \rangle$ Initial correlations: $\langle u_{\alpha}(x, 0); u_{\alpha'}(x', 0) \rangle = C_{\alpha\alpha'} \,\delta(x - x')$

Generalization to several fields

 $\vec{u} = \vec{u}(x, t)$: deviation of the conserved fields from background $\partial_t \vec{u} + \partial_x \left(A\vec{u} + \frac{1}{2}\langle \vec{u}, \vec{H}\vec{u} \rangle - \partial_x \tilde{D}\vec{u} + \tilde{B}\vec{\xi}(x, t)\right) = 0$ Hessians: $H^{\alpha}_{\gamma\gamma'} = \partial_{u\gamma}\partial_{u\gamma'}j_{\alpha}, \quad j_{\alpha} = \langle \mathcal{J}_{\alpha} \rangle$ Initial correlations: $\langle u_{\alpha}(x, 0); u_{\alpha'}(x', 0) \rangle = C_{\alpha\alpha'} \,\delta(x - x')$ Diagonalization:

$$\vec{\phi} = R\vec{u}, \quad RAR^{-1} = \operatorname{diag}(-c, 0, c), \quad RCR^{\mathrm{T}} = \mathbb{1} \quad \rightsquigarrow \\ \partial_t \phi_\alpha + \partial_x \big(c_\alpha \phi_\alpha + \frac{1}{2} \langle \vec{\phi}, G^\alpha \vec{\phi} \rangle - \partial_x D \phi_\alpha + B \vec{\xi}(x, t) \big) = 0$$

Low temperature Hamiltonian

polar coordinates: $\psi_j = \sqrt{\rho_j} e^{i\varphi_j}$, phase difference: $r_j = \varphi_{j+1} - \varphi_j$ (almost conserved at low T) Exact Hamiltonian in polar coordinates (angles φ_j and $\rho_j \ge 0$):

$$H = \sum_{j=0}^{N-1} \left(-\frac{1}{m} \sqrt{\rho_{j+1} \rho_j} \cos(\varphi_{j+1} - \varphi_j) + \frac{1}{m} \rho_j + \frac{1}{2} g \rho_j^2 \right)$$

Umklapp: $|\varphi_{j+1}(t) - \varphi_j(t)| = \pi$

Low temperature approximation: regard angles φ_j as variables in \mathbb{R} and replace

$$-\frac{1}{m}\cos(\varphi_{j+1}-\varphi_j) \to U(\varphi_{j+1}-\varphi_j) \quad \text{with}$$
$$U(x) = -\frac{1}{m}\cos(x) \text{ for } |x| \le \pi, \qquad U(x) = \infty \text{ for } |x| > \pi$$

Thermodynamic current averages for DNLS

polar coordinates: $\psi_j = \sqrt{\rho_j} e^{i\varphi_j}$, phase difference: $r_j = \varphi_{j+1} - \varphi_j$ (almost conserved at low T)

Canonical ensemble:

$$Z_{N}(\mu,\nu,\beta)^{-1} e^{-\beta \left(H-\mu\sum_{j}\rho_{j}-\nu\sum_{j}r_{j}\right)} \prod_{j=0}^{N-1} \mathrm{d}\rho_{j} \,\mathrm{d}r_{j}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Averages denoted by $\langle\cdot\rangle$

polar coordinates: $\psi_j = \sqrt{\rho_j} e^{i\varphi_j}$, phase difference: $r_j = \varphi_{j+1} - \varphi_j$ (almost conserved at low T)

Canonical ensemble:

$$Z_{N}(\mu,\nu,\beta)^{-1} e^{-\beta \left(H-\mu\sum_{j}\rho_{j}-\nu\sum_{j}r_{j}\right)} \prod_{j=0}^{N-1} \mathrm{d}\rho_{j} \,\mathrm{d}r_{j}$$

Averages denoted by $\langle \cdot
angle$

Field variables ρ_j , r_j , e_j , corresponding current averages:

$$ec{\mathbf{j}} = \left\langle ec{\mathcal{J}}_j \right
angle = \left\langle \left(\mathcal{J}_{
ho,j}, \mathcal{J}_{r,j}, \mathcal{J}_{\mathbf{e},j}
ight)
ight
angle \simeq \left(
u, \mu, \mu \,
u
ight)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Simulation results $\beta = 15$

Figure: Equilibrium two-point correlations $S_{11}^{\sharp}(j, t)$, showing the right-moving sound peak at different time points; equilibrium inverse temperature $\beta = 15$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Simulation results $\beta = 15$

Figure: Central heat mode $S^{\sharp}_{00}(j,t)$, at $\beta = 15$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Simulation results $\beta = 200$ (traces of integrability)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Split Hamiltonian into kinetic and nonlinear part, H = T + U:

$$T = \sum_{j=0}^{N-1} \frac{1}{2m} |\psi_{j+1} - \psi_j|^2, \qquad U = \sum_{j=0}^{N-1} \frac{1}{2} g |\psi_j|^4.$$

Flow over time t:

$$\begin{split} \Phi_t^T : \ \hat{\psi}_k &\mapsto \mathrm{e}^{-\mathrm{i}\left(1 - \cos(2\pi k/N)\right)t/m} \, \hat{\psi}_k \,, \\ \Phi_t^U : \ \psi_j &\mapsto \mathrm{e}^{-\mathrm{i}g \, |\psi_j|^2 \, t} \, \psi_j \end{split}$$

Generalization of Strang splitting: Runge-Kutta-Nyström method $SRKN_6^b$ by Blanes and Moan 2002 for a time step *h*:

$$\Psi_{h} = \Phi_{b_{s+1}h}^{U} \circ \Phi_{a_{s}h}^{T} \circ \cdots \circ \Phi_{b_{2}h}^{U} \circ \Phi_{a_{1}h}^{T} \circ \Phi_{b_{1}h}^{U}$$

Numerical implementation

Evaluating the partition function

$$Z_{N}(\mu,\nu,\beta) = \int e^{-\beta \left(H-\mu\sum_{j}\rho_{j}-\nu\sum_{j}r_{j}\right)} \prod_{j=0}^{N-1} d\rho_{j} dr_{j}$$

For $\nu = 0$, first evaluate angular integrals r_j on $[-\pi, \pi]$ (Rasmussen et al. 2000) \rightsquigarrow

$$Z_{N}(\mu,0,\beta) = \int \prod_{j=0}^{N-1} K(\rho_{j+1},\rho_{j}) \,\mathrm{d}\rho_{j}$$

with *transfer operator* or kernel $K(x, y) = K_1(x, y)K_0(y)$ and

$$K_1(x,y) = 2\pi I_0\left(\beta \frac{1}{m}\sqrt{x y}\right) e^{-\beta \frac{1}{2m}(x+y)}, \quad K_0(y) = e^{\beta \frac{1}{2}\mu^2/g} e^{-\beta \frac{1}{2}g\left(y-\frac{\mu}{g}\right)^2}$$

Then

$$\lim_{N \to \infty} \frac{1}{N} \log Z_N(\mu, 0, \beta) = \log(\lambda_{\max}(K))$$

Numerical implementation Evaluating the partition function

Use a Nyström-type discretization for the kernel: given a Gauss quadrature rule

$$\int_0^\infty f(\rho) \,\mathrm{e}^{-\beta \frac{1}{2}g\left(\rho - \frac{\mu}{g}\right)^2} \mathrm{d}\rho \approx \sum_{i=1}^n w_i \,f(x_i) \,,$$

construct the symmetric matrix

$$\left(K_1(\mathbf{x}_i,\mathbf{x}_{i'})\sqrt{w_i w_{i'}}\right)_{i,i'=1}^n$$

and calculate its largest eigenvalue, denoted λ_1 . Then

$$\log(\lambda_{\max}(K)) \approx \beta \frac{1}{2} \frac{\mu^2}{g} + \log \lambda_1$$

 \rightsquigarrow exponential convergence with respect to the number of quadrature points

Integrable Ablowitz-Ladik model

$$i \frac{d}{dt} \psi_j = -\frac{1}{2m} \Delta \psi_j + \frac{1}{2} g |\psi_j|^2 (\psi_{j+1} + \psi_{j-1})$$

Expecting ballistic (linear in time) spreading of the correlation functions due to integrability

Figure: Equilibrium time-correlations of the Ablowitz-Ladik model at inverse temperature $\beta=15$

References

- Blanes, S. and Moan, P. C. (2002). "Practical symplectic partitioned Runge-Kutta and Runge-Kutta-Nyström methods". In: J. Comput. Appl. Math. 142, pp. 313–330.
 - Kulkarni, M. and Lamacraft, A. (2013). "Finite-temperature dynamical structure factor of the one-dimensional Bose gas: From the Gross-Pitaevskii equation to the Kardar-Parisi-Zhang universality class of dynamical critical phenomena". In: *Phys. Rev. A* 88, 021603(R).
- Kulkarni, M. et al. (2015). "Fluctuating hydrodynamics for a discrete Gross-Pitaevskii equation: mapping to Kardar-Parisi-Zhang universality class". In: arXiv:1502.06661.
- Mendl, C. B. and Spohn, H. (2013). "Dynamic correlators of FPU chains and nonlinear fluctuating hydrodynamics". In: *Phys. Rev. Lett.* 111, p. 230601.
 - (2015). "Low temperature dynamics of the one-dimensional discrete nonlinear Schrödinger equation". In: J. Stat. Mech. 2015, P08028.
 - Rasmussen, K. O. et al. (2000). "Statistical mechanics of a discrete nonlinear system". In: *Phys. Rev. Lett.* 84, pp. 3740–3743.
 - Spohn, H. (2014). "Nonlinear fluctuating hydrodynamics for anharmonic chains". In: J. Stat. Phys. 154, pp. 1191–1227.