
Range expansions  can be unstructured or structured 

unstructured range expansion
(E. coli on a Petri dish, O. Hallatschek & drn

Ramanathan lab)

http://legacy.hopkinsville.kctcs.edu

structured range expansion
(leads to allopatric speciation)



Collective Behavior and Growth:  
Range Expansions in Structured Environments

Frontier populations with spatial structure

-- Our world is not featureless landscape → geographical 
features influence ecosystems and population fronts

-- How does a range expansion in a inhomogeneous 
environment shape genetic diversity at the frontier?

Simplified model of spatial structure:  
migration around obstacles such as “lakes and 
deserts” (or a mountain range…)

-- Population fronts around obstacles: experiments, 
“Fermat’s principle”  and simulations of  the bacterial 
virus T7 invading inhomogeneous bacterial lawns

---Adding population genetics: simulations and an 
experiment with E. coli

Wolfram
Moebius

Andrew
Murray 

http://www.nsummit.k12.ut.us



Unstructured range expansion in non-motile E. coli (thanks to Tom Shimizu, 
Berg Lab, for strains)
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O. Hallatschek, drn et al., PNAS 107,19926 (2007)
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Unstructured range expansion in non-motile E. coli
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Replace with simpler 
problem of rigid absorbing 
walls on either side – focus 
on the fate of the boundary 

in the middle….
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Approximate linear inoculations by annihilating random walks



Approximate linear inoculations by annihilating random walks
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But the genetic boundaries may wander more vigorously…
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50-50 circular inoculants       24 hours 
after inoculation;     (~ 1mm spot size)

~25 green & 
25 “red” viable 

founder bacteria

~250 green & 
250 “red” viable 
founder bacteria

~2500 green & 
2500 “red” viable 
founder bacteria

How can we make structured 
environments?   Can the 
“homeland” be regarded as an 
“ecological landscape”?



T4 infection 
Bacteriophage 
Ecology.aspx 





Growth of viral plaques

 A virus V encounters a bacterium B and 
(reversibly) produces an infected organism I

 The infected bacterium lyses in a latency time 
1/k2 to produce new viral particles with an 
integer yield Y (Y ~ 30 for T7)

 Reaction-Diffusion equations for [V], [B] and [I] lead to a Fisher equation for the  
spatial virus concentration [V] = u(r,t) 

J. Yin and J. S. McCaskill
Biophys. J. 61, 1540 (1992)
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phage density in the plaque "carrying capacity"
effective viral diffusion constant in bacterial lawn

effective phage multiplication rate

What happens with this autocatlytic reaction-diffusion equation???



Fisher Wave of Plaque Growth In One Dimension
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Schematic time development of a wavefront solution of Fisher’s equation on the infinite line.  (J.D. Murray, 
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Mutant isolated from stab taken at 
point A of the wild type descendants

Y. Lee and J. Yin, Nat. Biotech. 14, 491 (1996).

Front velocity of an T7 plaque invading a bacterial lawn

J. Yin and J. S. McCaskill, Biophys. J. 61, 1540 (1992).
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Infection resembles a 
Fisher population wave…



“Refraction” of a T7 
population wave….



Spread of a T7 epidemic through the homeland

= T7-susceptible  E. coli



1000 µm
31:28:39.568

Simplify by focusing on a few well defined obstacles…

Wolfram’s ink jet  printer: (see also:  
Leibler Lab, PLoS 1, (2007)



Simplified problem:  population dynamics around 
well-defined obstacles = “lakes”

plaque growth experiment

QuickTime™ and a
 decompressor

are needed to see this picture.

movie: 20120924



Christiaan Huygens (1629-1695)

Dutch mathematician, physicist and 
astronomer who formulated the wave 
theory of light. (also, pendulum clock, 
centrifugal force, the rings of Saturn .

Pierre de Fermat (1601-1665)

French lawyer at the Parlement of 
Toulouse, and amateur mathematician 
contributing to early developments 
leading to infinitesimal calculus.



Huygens’ Principle Fermat’s Principle 
of Least Time

minimize over paths ( ),   arclength
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Fermat’s principle for viral plaques [require L >> sqrt(Deff/aeff)] 

 At a given point on the frontier, ask “where did you ancestors come from?”

 Resulting principle of  least time equivalent to “survival of the fastest”

L





Simulations: T7 population dynamics around obstacles
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Cusps heal according to  Δ~1/d, 
independent of the width of the obstacle

however...



Huygens-Fermat principle neglects 
discreteness of viruses and cells...

It’s only a good  first  approximation, 
like ray optics, which neglects 
photons and the wave nature of light!
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track lineages!



Population genetics and range expansions             
(note genetic drift!)

What happens if we add an obstacle????

Wandering of genetic 
boundaries during 
range expansions 
given by a “wall 
diffusion constant”.

Dw ≈ a2/τg
a = cell size
τg = division time



Population genetics near obstacles:
E. coli colonies obstructed by a disk impermeable to nutrients

movies: 20120729etc & 20120813etc

QuickTime™ and a
 decompressor

are needed to see this picture.

QuickTime™ and a
 decompressor

are needed to see this picture.

Simulation of an 
“infinite color” model

“selection by geometry”



Coalescent lineages for range expansions around a “lake”
(Wolfram Moebius …)

simulation ↔ Huygens principle ↔ bacterial growth experiment



Population genetics of fronts impinging on obstacles
 Obstacles impress long-lived characteristic footprints on allele frequency 

patterns at population frontiers.

 Populations migrating through inhomogenous media above the 
percolation threshold will be described by an index of refraction 

 obstacles reduce genetic diversity
(‘unlucky genotypes’)

 obstacles putatively boost 
genotypes (‘lucky genotypes’)

 cusps behind obstacles 
eventually heal, but sector 
boundaries caused by obstacles 
can persist indefinitely

 “Selection by Geometry”



T7 “out of Africa”:  can print bacterial lawns for T7 in 
arbitrary patterns….  Wolfram Moebius, unpublished

= T7-resistant E. coli= T7-susceptible  E. coli

Wolfram 
Moebius

Genetically structured vs. spatially structured populations



Range Expansions in Structured Environments

Frontier population genetics with spatial structure
--Range expansions are very common in biology…  
Number fluctuations very large at the edge of a 
population wave

-- our world is not a sphere of agar → geographical 
features influence ecosystems and range expansions

→ How does a range expansion in a non-homogeneous 
environment shape genetic diversity?

Simplified model of spatial structure:  migration 
around a “lake”

-- population fronts around obstacles: simulations, 
experiments, and geometrical arguments

---adding population genetics: simulation and an 
experiment with E. coli

Wolfram Moebius
Andrew Murray

Wolfram Andrew 



T7 “out of Africa”:  can print bacterial lawns for T7 in 
arbitrary patterns….  Wolfram Moebius, unpublished

= T7-resistant E. coli= T7-susceptible  E. coli

Genetically structured vs. spatially structured populations


