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Interacting particle models

Interacting particle models gives a tool to study the universal
scaling behaviour of a wide variety of large stochastic systems:

Traffic flows

Interface growth

Polymers in random media

Crystal shape
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Integrability

Integrability is a special structure of the matrix of transition
probabilities, which makes its complete diagonalization a solvable
problem.

— The choice of dynamical rules is very restrictive.

+ The full exact analytic solution is possible.

Examples:

SSEP −→ EW

ASEP −→ KPZ

Can we extend the range of integrable models by including new
interactions to see how the KPZ universality breaks down?
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Zero-range chipping models with factorized steady state
Integrability

State space

M particles on the lattice

n = (0,1,1,0,1,1)
x = (1,2,4,5)

,

Particle configurations

Occupation numbers: n = {ni}i∈L ,∑i∈L ni = M,
ni ∈ {0,1}-ASEP like, ni ∈ Z≥0-ZRP like
Particle coordinates: x = (x1,< . . . ,< xM)⊂L -ASEP-like or
x = (x1,≤ . . . ,≤ xM)-ZRP like

L =Z - infinite lattice orL = Z/LZ - periodic lattice with L
sites
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Zero-range chipping models with factorized steady state
Integrability

Markov chain.

Chapman-Kolmogorov equation:

Pt+1(n) = ∑
{n′}

Mn,n′Pt(n
′)

Stationary state

Pst(n) = ∑
{n′}

Mn,n′Pst(n
′)

Factorized stationary measure:

Pst(n) = ∏
i∈L

f (ni )
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Zero-range chipping models with factorized steady state
Integrability

Chipping models

Dynamical rules:

one-sided nearest neighbor hopping

on-site (zero range) interaction

ϕ(m|n)– probability for m particles to jump from a site with
n ≥m particles
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Zero-range chipping models with factorized steady state
Integrability

Chipping models

Markov matrix:

Mn,n′ = ∑{mk∈Z≥0}k∈L ∏i∈L T
mi−1,mi

ni ,n
′
i

T
mi−1,mi

ni ,n
′
i

= δ(ni−n′i ),(mi−1
−mi )ϕ(mi |n′i )
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Zero-range chipping models with factorized steady state
Integrability

Factorization of stationary measure

Theorem (Evans, Majumdar, Zia 2004)

The stationary measure of zero-range chipping models on a ring is
the product measure iff the chipping probability is of the form

ϕ(m|n) =
v(m)w(n−m)

∑
n
i=0 v(i)w(n− i)

,

where w(k),v(m)≥ 0, in which case

Pst (n) =
1

Z (M,N)

N

∏
i=1

f (ni ) with f (n) =
n

∑
i=0

v(i)w(n− i)
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Zero-range chipping models with factorized steady state
Integrability

Diagonalize that

Eigenvalue problem

MΨ = ΛΨ, ΨM = ΛΨ

Forward-backward symmetry:

ΠMTΠ = D−1MD
where Dn,m = Pst(n) and Π(x1, . . . ,xN) = (−xN , . . . ,−x1).

Look for the eigenvector in the form:

Ψn = Ψ0
nPst(n), Ψn = ΠΨ0

n
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Zero-range chipping models with factorized steady state
Integrability

One and two particle problems

One particle problem

ΛΨ0(x) = pΨ0(x−1) + (1−p)Ψ0(x); (p := ϕ(1|1))

Two particle problem (Free, x1 < x2)

Λ2Ψ0(x1,x2) = (1−p)[pΨ0(x1−1,x2) + (1−p)Ψ0(x1,x2)] +
p[pΨ0(x1−1,x2−1) + (1−p)Ψ0(x1,x2−1)]

Two particle problem (Interacting, x1 = x2 := x)

Λ2Ψ0(x ,x) =
f (2)−1[w(2)Ψ0(x ,x)+v(1)w(1)Ψ0(x−1,x)+v(2)Ψ0(x−1,x−1)]
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Two-particle reducibility

Many particle problem (Free)

∑
1
k1=0 · · ·∑1

kn=0 p
k1+···+kn(1−p)n−(k1+···+kn)Ψ0(. . . ,x−k1, . . . ,x−

kn, . . .)

Many particle problem (Interacting)

∑
n
k=0 ϕ(k |n)Ψ0(. . . ,(x−1)k ,xn−k , . . .)

Boundary conditions

Ψ0(. . . ,x ,x−1, . . .) =
αΨ0(. . . ,x−1,x−1, . . .) + β Ψ0(. . . ,x−1,x , . . .) + γΨ0(. . . ,x ,x , . . .)
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Zero-range chipping models with factorized steady state
Integrability

Generalized quantum binomial

Problem reformulation

Consider an associative algebra with two generators A,B satisfying
general homogeneous quadratic relation

BA = αAA+ βAB + γBB,

where α,β ,γ ∈ C such that α + β + γ = 1. Find the coefficients for
the generalized quantum binomial

(pA+ (1−p)B)n =
n

∑
m=0

ϕ(m|n)AmBn−m.
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Generalized quantum binomial

Theorem (Rosengren 2000, P. 2013)

ϕ(m|n) = µ
m (ν/µ;q)m(µ;q)n−m

(ν ;q)n

(q;q)n
(q;q)m(q;q)n−m

,

where α = ν(1−q)
1−qν

, β = q−ν

1−qν
, γ = 1−q

1−qν
,µ = p+ ν(1−p) and

ν 6= q−k , for k ∈ N. (For ν = q−k see Corwin, Petrov, 2015 )

In particular the functions v(k),w(k) and f (k) are

v(k) = µ
k (ν/µ;q)k

(q;q)k
, w(k) =

(µ;q)k
(q;q)k

, f (n) =
(ν ;q)n
(q,q)n

RandomKPZ16 , Santa Barbara 2016 On some integrable models of interacting particles



Introduction
Interacting particle models and integrability

TASEP with generalized update
Summary

Zero-range chipping models with factorized steady state
Integrability

Bethe ansatz

Eigenvector:

Ψ0(x|u) = ∑
σ∈SN

sgn(σ)
M

∏
i=1

∏
j > i

uσi −quσj

ui −quj

(
1−νuσi

1−uσi

)xi

Eigenvalue:

ΛN =
N

∏
i=1

(
1−µui
1−νui

)
Periodic boundary conditions:

Ψ(x1, . . . ,xN |u) = Ψ(x2, . . . ,xN ,x1 +L|u)

Bethe equations:(
1−νui
1−ui

)L

= (−1)N−1
N

∏
j=1

ui −quj
uj −qui

, i = 1, . . . ,N.
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Integrability

ZRP-ASEP mapping and particle hole transformation

φ

φ

φ
                       φ

φ
φ

ZRP-ASEP:

Particle-hole:
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Zero-range chipping models with factorized steady state
Integrability

q-Hahn process. Particular cases.

q = 1;ϕ(m|n) = pm(1−p)n−mCm
n : Independent particles

µ = qν ;ϕ(m|n) = p[n]q q-boson (Sasamoto,Wadati 98) and
q-TASEP (Borodin, Corwin, 2011)
ν → µ = q, ϕ(m|n)' dt/[n]1/q MADM and and long range
hopping models, (Sasamoto Wadati, 1998; Alimohammadi,
Karimipour, Khorrami, 1998)
ν = 0, Geometric q-TASEP (Borodin, Corwin, 2013)
q→ 1,µ = qα ,ν = qα+β , ϕ(m|n) — Beta-Binomial
distribution (Barraquand, Corwin, 2015)
TASEP with generalized update (M. Woelki, 2005, Derbyshev,
Poghosyan, P., Priezzhev, 2012)

q = 0,ϕ(m|n) =

{
(1−p), m = 0;
pµm−1 (1−µ) , 0 <m < n;
pµn−1 m = n,
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Stationary state
Asymptotic analysis
Fluctuations of particle current

Discrete time dynamics

Clusterwise update: At every time step each cluster is
updated independently.

First particle of a cluster jumps forward with probability p or
stays with probability (1−p).

If the first particle decided to jump, the next particle follows it
with probability µ and so do the second, third, e.t.c.

Exclusion interaction (jumps to occupied sites are forbidden).
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Particular limits

µ = 0 — TASEP with parallel update (PU)

µ = p — backward sequential update (BSU)

µ → 1 — deterministic agregation (DA) limit
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Two regimes

p = 0.1,µ = 0 p = 0.1,µ = 0,995

We expect change of behaviour the limit µ → 1:

1−µ > 0 - KPZ-like behaviour, ∆∼ L−1/2

µ → 1 - DA limit (all particles stick together into a single
cluster, which moves diffusively)∆ = const

What is in between?
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Stationary state

Consider a limit L→ ∞,M → ∞,M/L = c

Questions to answer

Cluster distribution.

Particle current.

Correlation length.

When µ = 1, there is a single cluster moving diffusively with the
velocity p. How this regime is approached?
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Partition function for ZRP-like model

Partition function (M paricles, N = L−M sites):

Z (M,N) = ∑
n1,...,nN≥0

δ‖n‖,M

N

∏
i=1

f (ni ) =
∮

Γ0

[F (z)]N

zM+1
,

Occupation number distribution:

P(n) = f (n)
Z (M−n,N−1)

Z (M,N)
.

Mean number of particles jumping per time step

J =
N

Z (M,N)

∮
Γ0

[F (z)]N

zM
V ′(z)

V (z)

dz

2π i
,

where V (z) = ∑k≥0 v(k)zk and F (z) = ∑k≥0 v(k)zk
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Exact formuals

Z (M,N) =

(
L−1
M

)
2F1 (−M,−N;1−L;ν),

J =
(µ−ν)NM

(L−1)

F1(1−M;1−N,1;2−L;ν ,µ)

2F1 (−M,−N;1−L;ν)
.

Gauss hypergeometri function 2F1(a,b;c;x) = ∑
∞
n=0

(a)n(b)n
(c)nn! xn;

Appell hypergeometric function

F1(α;β ,β ′;γ;x ,y) = ∑
∞
n,m=0

(α)m+n(β)m(β ′)n
(γ)m+nm!n! xmyn
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Saddle point approximation

The local stationary state observable are reduced to
evaluation of integrals of the form

IN (h(z),g(z)) =
∮

Γ0

eNh(z)g(z)
dz

2π iz
,

where h(z) = ln(1−νz)− ln(1− z)−ρ lnz .

Critical point, h′(zc) = 0:

zc = 1 +
(1−ν)

2cν

(
1−
√

1 +
4(1− c)cν

1−ν

)
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Particle current

jgTASEP = lim
L→∞

J/L

=
cp(1 + (1−2c)µ)

2µ + 2c(p(1−µ)−µ)
−

cp
√

(1−µ)(1−4(1− c)c(p−µ)−µ)

2µ + 2c(p(1−µ)−µ)

Μ=0

Μ=0.95

Μ=0.995

Μ=0.9995

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4
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Cluster size distribution in gTASEP:

P(n) = znc (1− zc)−1

〈n〉= 1/Log [zc ]∼ 1/
√

1−µ as µ → 1
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Validity range of saddle point approximation

Consider a limit

µ → 1,ν → 1,p =
µ−ν

1−ν
= const.

Let
λ := (1−ν)−1→ ∞.

How large can it be for the saddle point analysis to be valid, given
hk ∼ λ

k−1
2 :

lim
N→∞

∣∣∣∣∣N1−k/2hk

h
k/2
2

∣∣∣∣∣= 0⇒ λ/N2→ ∞.
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Transition regime,λN−2 = const

Deform contour Z (M,N) =−
∮

Γ1
eNh(z) dz

2π iz .

Choose the right integration scale z = 1 + eiϕ√
ρλ

to get.

h (z) =−2

√
ρ

λ
cosϕ +O(1/λ )

Then we obtain

Z (M,N) =
−1√
ρλ

∫ 2π

0
e−2N

√
ρ/λ cosϕ+iϕ dϕ

2π
' θ

2M
I1(θ),

where θ = 2N

√
ρ

λ

is the scaling parameter controlling the KPZ-DA transition
and ρ = N/L
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Transitional distribution over the macroscopic scale

Cluster fraction distribution (χ = n/M, M → ∞):

Prob(χ = 1) =
1

I0(θ)
,

Prob(χ < x) =
θ

2I0 (θ)

∫ x

0

I1
(
θ
√

1−y
)

√
1−y

dy .
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Correlation function

C (k)≡ 〈τ1τ1+k〉−〈τ1〉〈τ1+k〉 ' c(1− c)e−k/ξ , µ < 1

ξ '
√

λc(1− c), λ → ∞.

C (Lr) =
(1−2c)e−1/ξ̃ + c(1− c)(e−r/ξ̃ + e−(1−r)/ξ̃ )

1 + e−1/ξ̃
,

where ξ̃ = 2c(1− c)/θ and λ ∼ N2
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Large deviation function

Introduce deformed Markov matrix

Mγ

n,n′ = Mn,n′ exp
(
γN (n,n′)

)
,

where N (n,n′) is the number of particle jumps in the
one-step transition from n′ to n.

The log of its largest eigenvalue Λ0 (γ) is the rescaled
cumulant generating function of total number of particle
jumps

lnΛ0 (γ) = lim
t→∞

ln
〈
eγYt

〉
t

.

Its Legendre transform is the large deviation function:

lim
t→∞

t−1 lnP(Yt/t > y) = sup
γ

(yγ− lnΛ0(γ))
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γ

(yγ− lnΛ0(γ))
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Large deviation function
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What would we expect in scaling limit?

Large deviation hypothesis:

P(Yt/t > y)' exp

(
t

aLz
Ĝ

(
y −y

ab

))

lim
t→∞

t−1 ln
〈
eγYt

〉
= γy +aL−zG (γbLz), (L→ ∞,γbLz = const)

KPZ, z = 3/2, (Derrida-Lebowitz, 1998):

GDL(γ) =−Li5/2(B)

γ =−Li3/2(B)

DA limit, z = 2, CLT for random walk of particle of mass M,:

lim
t→∞

t−1 ln
〈
eγYt

〉
= ln

(
1−p+peγM

)
'Mpγ +M2p(1−p)

γ2

2
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Exact results.

Integral expressions

lnΛ0(γ) = (µ−ν)
∮

Γ0

ln
[
1− B(1−νu)N

(1−u)NuM

]
(1−µu)(1−νu)

du

2π i
.

γ =
1−ν

M

∮
Γ0

ln
[
1− B(1−νu)N

(1−u)NuM

]
(1−u)(1−νu)

du

2π i
.

Series representations (term by term integration)

lnΛ0(γ) =−(µ−ν)
∞

∑
n=1

Bn

n

(
Ln−2

Mn−1

)
F1 (1−nM;1−nN,1;2−nL;ν ,µ) ,

γ =−1−ν

M

∞

∑
n=1

Bn

n

(
Ln−1

Mn−1

)
2F1

(
1−Mn,1−Nn ;1−nL;ν

)
.
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∞

∑
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Asymptotic forms

KPZ regime,λ/N2→ 0,λ 1/4N3/2γ = const

lnΛ(γ) = γJ∞ +aL−zGDL(γbLz),

a∼ λ 1/4 and b ∼ λ−1/4as λ → ∞.

Transition regime

lnΛ(γ) = γpM +N−2p(1−p)Gθ (N2
ργ),

Gθ (t) =
θ 2

4

∞

∑
k=1

I2(kθ)
Bk

k
, t =−θ

2

∞

∑
k=1

I1(kθ)
Bk

k
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Cumulants

Mean current: J 'Mp−p(1−p)ρ
θ

2
I2(θ)
I1(θ) ,

Diffusion coefficient: ∆ = p(1−p)
[
I1(2θ)
I 2
1 (θ)

(
I2(2θ)
I1(2θ) −

I2(θ)
I1(θ)

)]
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Cumulants

Cumulants in the transition regime scale as cn ∼ N2(n−1)

unlike cn ∼ N3/2(n−1) in the KPZ regime and cn ∼ Nn.

c

2

θ
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4
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Universal cumulant ratio:

R(θ) =
c2

3
c2c4

=

(
G

(3)
θ

(0)
)2

G
′′
θ

(0)G
(4)
θ

(0)
→ 2(3/2−8/33/2)

2

15/2−24/
√

3+9/
√

2
' 0.41517

.

R(θ)

θ 
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Limiting forms of transitional LDF

Gθ (t)'−θ t

2
+

3

8

√
θ

2π
GDL

(
t

√
8π

θ

)
, θ → ∞

Gθ (t)' t2

2
− θ 2t

8
, θ → 0
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Nonstationary case

Hydrodynamics: ∂tρ + ∂x j(ρ) = 0
Particle number vs coordinate (step initial conditions,
χ = x/t,θ = n/t):

χ = −(µ−ν)(−1 +u(2−uµ +u(−1 + (2 + (−2 +u)u)µ)ν))

(−1 +uµ)2(−1 + ν)(−1 +u2ν)

θ =
u2(−1 + µ)(µ−ν)

(−1 +uµ)2 (−1 +u2ν)
; u ∈ [0,1]

Μ = 0.5

Μ = 0

Μ = 0.99

-1.5 -1.0 -0.5 0.5

0.2

0.4
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Nonstationary case

Exact distribution:

P(xn1 > a1, . . . ,xnk > ak) = det(1−χaKχa), χa = ∏
i

1(xi < ai )

K (n1,x1;n2,x2) = (1−ν)

[∮
Γ1

dv

2π i

(1−v)n2+x2−n1−x1−1

vn2−n1(1−νv)n2+x2−n1−x1+1

+
∮

Γ1

du

2π i

∮
Γ0

dv

2π i

un1(1−µu)t(1−νu)n1+x1−t−1

(1−u)x1+n1+1

× (1−v)x2+n2

vn2(1−µv)t(1−νv)n2+x2−t
1

(v −u)

]
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KPZ regime

Exact distribution:

χi = χ0 + si t
−1/3

κ
−1
f , θ = θi +ui t

−2/3
κ
−1
c

κ
−1
f t1/3K (n1,x1;n2,x2)∼ KAiry2(u1,s1,u2,s2)
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Transition regime

λ → ∞, t→ ∞, t/λ
2/3 = σ

Scaling: ni/t = θi ,xi/t = p−θ − si/λ 1/3

λ 1/3σ−1K (n1,x1;n2,x2)→ Ktr (θ1,s1;θ2,s2) :=

1(s1 > s2)
∫

Γ0

du
2π i exp

(
σ

(
(s1− s2)u+ θ1−θ2

u

))
+

∫
Γ−

du
2π i

∫
Γ0

dv
2π i

u
v

exp
(

σ

(
p(1−p)

2 (u2−v2)+s1u+
θ1
u −s2v−

θ2
v

))
u−v

Limiting behaviour:
Ktr → KAiry2 ,σ → ∞, si ∼ σ−2/3

Ktr (θ ,s1,θ ,s2)→ e−y
2
1 /2p(1−p)√

2πp(1−p))
, as σ → 0 and y1 = s1

√
σ ∼ x1/

√
t
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Summary

The KPZ universality breaks down when the saddle point
method fails.

The KPZ scaling function keeps its form up to the diffusive
scale, all the change being in model dependent constants.

We obtained the LDF and the kernel interpolating between
Gaussian and KPZ regimes

Outlook

Search for new integrable particle models.
Combinatorial structure of gTASEP. (Should the RSK be
modified?)
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