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Introduction

Interacting particle models
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Interacting particle models gives a tool to study the universal
scaling behaviour of a wide variety of large stochastic systems:
@ Traffic flows
@ Interface growth
@ Polymers in random media
@ Crystal shape
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Introduction

Integrability

Integrability is a special structure of the matrix of transition
probabilities, which makes its complete diagonalization a solvable
problem.
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Introduction

Integrability

Integrability is a special structure of the matrix of transition
probabilities, which makes its complete diagonalization a solvable
problem.

— The choice of dynamical rules is very restrictive.

— The full exact analytic solution is possible.

e SSEP — EW

e ASEP — KPZ

Can we extend the range of integrable models by including new
interactions to see how the KPZ universality breaks down?

RandomKPZ16 , Santa Barbara 2016 On some integrable models of interacting particles



Interacting particle models and integrability Zero-range chipping models with factorized steady state
Integrability

State space

M particles on the lattice

n=(0,1,1,0,1,1)
x=(1,2,4,5)

o Particle configurations

o Occupation numbers: n={n;}icz,Yicyn =M,
n; € {0,1}-ASEP like, n; € Z>o-ZRP like
o Particle coordinates: x = (x1,< ..., < xum) C -Z-ASEP-like or
x=(x1,< ..., < xp)-ZRP like
e ¥ =7 - infinite lattice or.Z =7 /L7 - periodic lattice with L
sites
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Interacting particle models and integrability Zero-range chipping models with factorized steady
Integrability

Markov chain.

Chapman-Kolmogorov equation:

P 1(n) = Z My Pe(n)
{n'}
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Interacting particle models and integrability Zero-range chipping models with factorized steady state
Integrability

Markov chain.

Chapman-Kolmogorov equation:

Peii(n) =Y MowPe(n')
{n}

Stationary state

Pst(n) = Z Mn,n’Pst(n/)
{n'}
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Interacting particle models and integrability Zero-range chipping models with factorized steady state
Integrability

Markov chain.

Chapman-Kolmogorov equation:

Peii(n) =Y MowPe(n')
{n}

Stationary state

Pst(n) = Z Mn,n’Pst(n/)
{n'}

Pst(n) = H f(n;)

ie¥
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Interacting particle models and integrability Zero-range chipping models with factorized steady state
Integrability

Chipping models

Dynamical rules:

@ one-sided nearest neighbor hopping
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Integrability

Chipping models

Dynamical rules:
@ one-sided nearest neighbor hopping

@ on-site (zero range) interaction
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Interacting particle models and integrability Zero-range chipping models with factorized steady state
Integrability

Chipping models

Dynamical rules:
@ one-sided nearest neighbor hopping
@ on-site (zero range) interaction

@ ¢@(m|n)- probability for m particles to jump from a site with
n > m particles
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Interacting particle models and integrability Zero-range chipping models with factorized steady state

Integrabil

Chipping models

Markov matrix:

_ i mj_1,m;
° My = Z{mkEZZO}keZ’ [lies Tn,-.n;.

o T ™ = 8(n—rfy(m, ,—my)@(miln})
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Interacting particle models and integrability Zero-range chipping models with factorized steady state
Integrability

Factorization of stationary measure

Theorem (Evans, Majumdar, Zia 2004)

The stationary measure of zero-range chipping models on a ring is
the product measure iff the chipping probability is of the form

v(m)w(n—m)
Yiov(iw(n—i)’

where w(k),v(m) >0, in which case

¢(m|n) =

N
Pst(n):MHf(n;) with £ ()= 3 v(ipw(n )

i=1 i=0
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Interacting particle models and integrability Zero-range chipping models with factorized steady state
Integrability

Diagonalize that

Eigenvalue problem

MV =AW, UM =AYV
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Interacting particle models and integrability Zero-range chipping models with factorized steady state
Integrability

Diagonalize that

Eigenvalue problem

MV =AW, UM =AYV

<

Forward-backward symmetry:
MMTN=D"'MD
where D, p, = Pst(n) and M(x1,...,xn) = (—xn, ..., —X1).

RandomKPZ16 , Santa Barbara 2016 On some integrable models of interacting particles



Interacting particle models and integrability Zero-range chipping models with factorized steady state
Integrability

Diagonalize that

Eigenvalue problem

MV =AW, UM =AYV

Forward-backward symmetry:
MMTN=D"'MD
where D, p, = Pst(n) and M(x1,...,xn) = (—xn, ..., —X1).

Look for the eigenvector in the form:

W, =WopP,(n), W,=nvwo
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Interacting particle models and integrability Zero-range chipping models with factorized steady state
Integrability

One and two particle problems

One particle problem
AWO(x) = pWO(x — 1) + (1 — p)WO(x); (p:= p(1I1))
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Interacting particle models and integrability Zero-range chipping models with factorized steady state
Integrability

One and two particle problems

One particle problem
AWO(x) = pWO(x — 1) + (1 — p)WO(x); (p:= p(1I1))

Two particle problem (Free,

AVO(x1 x2) = (1 —p)[pVO(x1 — 1,x2) + (1 — p)WO(x1 x2)] +
p[p\UO(Xl —1,x— 1) aF (1 = p)\UO(XLXg = 1)]
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Interacting particle models and integrability Zero-range chipping models with factorized steady state
Integrability

One and two particle problems

One particle problem
AWO(x) = pWO(x — 1) + (1 — p)WO(x); (p:= p(1I1))

Two particle problem (Free, )

AVO(x1 x2) = (1 —p)[pVO(x1 — 1,x2) + (1 — p)WO(x1 x2)] +
p[p\UO(Xl —1,x— 1) aF (1 = p)\UO(XLXg = 1)]

A\

Two particle problem (Interacting, )

AoWO(x,x) =
f(2) Hw()WO(x,x) +v(1)w(1)WO(x —1,x) + v(2)WO(x —1,x —1)]

<
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Integrability

One and two particle problems

One particle problem
AWO(x) = pWO(x — 1) + (1 — p)WO(x); (p:= p(1I1))

Two particle problem (Free, )

AVO(x1 x2) = (1 —p)[pVO(x1 — 1,x2) + (1 — p)WO(x1 x2)] +
p[p\UO(Xl —1,x— 1) aF (1 = p)\UO(XLXQ = 1)]

A\

Two particle problem (Interacting, )

AoWO(x,x) =
f(2) Hw()WO(x,x) +v(1)w(1)WO(x —1,x) + v(2)WO(x —1,x —1)]

<

RandomKPZ16 , Santa Barbara 2016 On some integrable models of interacting particles



Interacting particle models and integrability Zero-range chipping models with factorized steady state
Integrability

One and two particle problems

One particle problem
AWO(x) = pWO(x — 1) + (1 — p)WO(x); (p:= p(1I1))

Two particle problem (Free, )

AVO(x1 x2) = (1 —p)[pVO(x1 — 1,x2) + (1 — p)WO(x1 x2)] +
p[p\UO(Xl —1,x— 1) aF (1 = p)\UO(XLXQ = 1)]

Two particle problem (Interacting, )

AoWO(x,x) =
f(2) Hw()WO(x,x) +v(1)w(1)WO(x —1,x) + v(2)WO(x —1,x —1)]

Boundary conditions
WO(x,x —1) = aWO(x —1,x — 1) + BWO(x — 1,x) + y¥O(x, x)
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Interacting particle models and integrability Zero-range chipping models with factorized steady state
Integrability

Two-particle reducibility

Many particle problem (Free)

Yhimo* Lhymo P (1 — p)r- Utk w0 x — k. x =
PR
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Interacting particle models and integrability Zero-range chipping models with factorized steady state

Integrability

Two-particle reducibility

Many particle problem (Free)

Yhimo* Lhymo P (1 — p)r- Utk w0 x — k. x =
PR

v

Many particle problem (Interacting)
Y7 _o@(klm)WO(... (x — 1)k x"=k ...)
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Interacting particle models and integrability Zero-range chipping models with factorized steady state
Integrability

Two-particle reducibility

Many particle problem (Free)
Zilzo o 'Z]I;HZO pk1+<--+k,,(1 - p)nf(k1+---+kn)w0(. sy X = kla ceey X —
kn,...)

Many particle problem (Interacting)
Y7 _o@(klm)WO(... (x — 1)k x"=k ...)

Boundary conditions

WO, x,x—1,...)=
aVo(... x—1,x—1,..)+BWO(...,.x—1,x,...) +7V¥O(... . x,x,...)
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Interacting particle models and integrability Zero-range chipping models with factorized steady state
Integrability

Generalized quantum binomial

Problem reformulation

Consider an associative algebra with two generators A,B satisfying
general homogeneous quadratic relation

BA = aAA+ BAB+yBB,
where a, 3,7 € C such that ot + 3 + Y= 1. Find the coefficients for

the generalized quantum binomial

n

(PA+(1=p)B)"= Y (m|n)AmB" ™.

m=0
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Interacting particle models and integrability Zero-range chipping models with factorized steady state
Integrability

Generalized quantum binomial

Theorem (Rosengren 2000, P. 2013)

V@) (15 9)n-m (q:9)n
plmin) =4 (v; q)n (6:@)m(F: q)n—m

where o = ¥ qv,ﬁ quv,}/ 1 i =p+v(l—p) and
v£qk, for k € N. (For v =g see Corwin, Petrov, 2015 )

In particular the functions v(k),w(k) and f(k) are

W
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Interacting particle models and integrability Zero-range chipping models with factorized steady state
Integrability

Bethe ansatz

Eigenvector:

M . —Qug;, (1—Vug,
\UO(X|U): Z Sgn(G)H H Ug; unj : Vg,

-1 - . uj—quj — Ug;
oEeSy i=1 J > | ! J

Xi
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Interacting particle models and integrability Zero-range chipping models with factorized steady state
Integrability

Bethe ansatz

Eigenvector:
M Us; — qQUg; (1 —Vug, X
WO(x|u) = Z sgn(G)H H — j = (.;I
oEeSy i=1 j> i ! J Oj
Eigenvalue:
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Interacting particle models and integrability Zero-range chipping models with factorized steady state
Integrability

Bethe ansatz

Eigenvector:
M Us; —qUg; (1 —Vug. Xi
Vi) = ¥ sen()[] [T oo (120
oEeSy i=1 j> i ! J Oj
Eigenvalue:

Periodic boundary conditions:

llJ(le"'7XN|u) = W(X2,,..7XN,X1+L|U)
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Interacting particle models and integrability Zero-range chipping models with factorized steady state
Integrability

Bethe ansatz

Eigenvector:
M Us. —QUs. (1 —Vus \"
Vi) = ¥ sen()[] [T oo (120
oeSy i=1 > uj —qu; 1 Ug;
Eigenvalue:
N
1—pu;
An —
N ,1:11(1—VU,>

Periodic boundary conditions:
W(le s 7XN|u) = \U(X2, ces XNG X1 L|U)

Bethe equations:

L N
<1—VU> EERIUES | ELL AN
l—u,- j:luj— i
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Interacting particle models and integrability Zero-range chipping models with factorized steady state
Integrability

ZRP-ASEP mapping and particle hole transformation

@35)

@(112)

ZRP-ASEP:

Particle-hole: f(3]5)

; f(112)
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Interacting particle models and integrability Zero-range chipping models with factorized steady state
Integrability

g-Hahn process. Particular cases.

e g=1,0(m|n)=p™(1—p)""C]": Independent particles
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Interacting particle models and integrability Zero-range chipping models with factorized steady state
Integrability

g-Hahn process. Particular cases.

e g=1,0(m|n)=p™(1—p)""C]": Independent particles
e 1 =qv;@(m|n)=p[n]; q-boson (Sasamoto,Wadati 98) and
q-TASEP (Borodin, Corwin, 2011)
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Interacting particle models and integrability Zero-range chipping models with factorized steady state
Integrability

g-Hahn process. Particular cases.

e g=1,0(m|n)=p™(1—p)""C]": Independent particles

e 1 =qv;@(m|n)=p[n]; q-boson (Sasamoto,Wadati 98) and
q-TASEP (Borodin, Corwin, 2011)

® V— u=gq,®(mln) ~dt/[n];)g MADM and and long range
hopping models, (Sasamoto Wadati, 1998; Alimohammadi,
Karimipour, Khorrami, 1998)
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Interacting particle models and integrability Zero-range chipping models with factorized steady state
Integrability

g-Hahn process. Particular cases.

e g=1,0(m|n)=p™(1—p)""C]": Independent particles

e 1 =qv;@(m|n)=p[n]; q-boson (Sasamoto,Wadati 98) and
q-TASEP (Borodin, Corwin, 2011)

® V— u=gq,®(mln) ~dt/[n];)g MADM and and long range
hopping models, (Sasamoto Wadati, 1998; Alimohammadi,
Karimipour, Khorrami, 1998)

e v =0, Geometric q-TASEP (Borodin, Corwin, 2013)
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Interacting particle models and integrability Zero-range chipping models with factorized steady state
Integrability

g-Hahn process. Particular cases.

e g=1,0(m|n)=p™(1—p)""C]": Independent particles

e 1 =qv;@(m|n)=p[n]; q-boson (Sasamoto,Wadati 98) and
q-TASEP (Borodin, Corwin, 2011)

® V— u=gq,®(mln) ~dt/[n];)g MADM and and long range
hopping models, (Sasamoto Wadati, 1998; Alimohammadi,
Karimipour, Khorrami, 1998)

e v =0, Geometric q-TASEP (Borodin, Corwin, 2013)

o g—1,u=q%v=q*P, @(m|n)— Beta-Binomial
distribution (Barraquand, Corwin, 2015)
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Interacting particle models and integrability Zero-range chipping models with factorized steady state
Integrability

g-Hahn process. Particular cases.

e g=1,0(m|n)=p™(1—p)""C]": Independent particles

1 =qv;e(m|n) = p[n]q g-boson (Sasamoto,Wadati 98) and

q-TASEP (Borodin, Corwin, 2011)

® V— u=gq,®(mln) ~dt/[n];)g MADM and and long range
hopping models, (Sasamoto Wadati, 1998; Alimohammadi,
Karimipour, Khorrami, 1998)

e v =0, Geometric q-TASEP (Borodin, Corwin, 2013)

o g—1,u=q%v=q*P, @(m|n)— Beta-Binomial
distribution (Barraquand, Corwin, 2015)

e TASEP with generalized update (M. Woelki, 2005, Derbyshev,
Poghosyan, P., Priezzhev, 2012)

(1-p), m=0;
g=0,0(mln)=< pu™t(1—p), 0<m<n;
pur? m=n,
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Stationary state
Asymptotic

TASEP with generalized update Fluctuations of f le current

Discrete time dynamics

p-p P Ip
—0-0-6-0-0-0-0-6-0-00000

LN MY O
—0-000000000000C

o Clusterwise update: At every time step each cluster is
updated independently.
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Stationary state
Asymp alysis

. . ysis
TASEP with generalized update Fluctuations of particle current

Discrete time dynamics

p-p P Ip
—0-0-6-0-0-0-0-6-0-00000

LN MY O

—O0-0-0-0-0-0-0-0-C- 00000

o Clusterwise update: At every time step each cluster is
updated independently.

o First particle of a cluster jumps forward with probability p or
stays with probability (1 — p).
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Stationary state
Asympto i

TASEP with generalized update Fluctuations of

Discrete time dynamics

p-p P Ip
—0-0-6-0-0-0-0-6-0-00000

LN MY O
—0-000000000000C

o Clusterwise update: At every time step each cluster is
updated independently.

o First particle of a cluster jumps forward with probability p or
stays with probability (1 — p).

o If the first particle decided to jump, the next particle follows it
with probability 1t and so do the second, third, e.t.c.
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TASEP with generalized update s : dle curre
article current

Discrete time dynamics

p-p P Ip
—0-0-6-0-0-0-0-6-0-00000
b\ NN L
—0-0 000060000060

o Clusterwise update: At every time step each cluster is
updated independently.

o First particle of a cluster jumps forward with probability p or
stays with probability (1 — p).

o If the first particle decided to jump, the next particle follows it
with probability 1t and so do the second, third, e.t.c.

@ Exclusion interaction (jumps to occupied sites are forbidden).
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Stationary state
Asymptotic

TASEP with generalized update Fluctuations of f le current

Particular limits

-1 i 1p
—0-0-8-0-0-9-8C 00000

LN NN
—0-0-0-0-0-00 0000000

@ 1 =0 — TASEP with parallel update (PU)
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Stationary state
Asymptotic

TASEP with generalized update Fluctuations of f le current

Particular limits

-1 i 1p
—0-0-8-0-0-9-8C 00000

LN NN
—0-0-0-0-0-00 0000000

@ 1 =0 — TASEP with parallel update (PU)
@ U1 = p — backward sequential update (BSU)
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Stationary state
Asymp alysis

. . ysis
TASEP with generalized update Fluctuations of particle current

Particular limits

-1 i 1p
—0-0-8-0-0-9-8C 00000

LN NN
—0-0-0-0-0-00 0000000

@ 1 =0 — TASEP with parallel update (PU)
@ U1 = p — backward sequential update (BSU)
@ [t — 1 — deterministic agregation (DA) limit
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Stationary state
N . Asymptotic
TASEP with generalized update Eluctuations

Two regimes

(b

p=0.1,u =0,995

o We expect change of behaviour the limit p — 1:

o 1—u >0 - KPZ-like behaviour, A ~ L~1/2
o i —1- DA limit (all particles stick together into a single
cluster, which moves diffusively) A = const
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TASEP with generalized update Fluctuations of p e current

Two regimes

p=0.1,u =0,995

o We expect change of behaviour the limit p — 1:

o 1—u >0 - KPZ-like behaviour, A ~ L~1/2
o i —1- DA limit (all particles stick together into a single
cluster, which moves diffusively) A = const

What is in between?
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Stationary state

TASEP with generalized update

Stationary state

Consider a limit L — oo,M — o, M/L = ¢

Questions to answer

@ Cluster distribution.
@ Particle current.

@ Correlation length.

When p =1, there is a single cluster moving diffusively with the
velocity p. How this regime is approached?
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Stationary state

TASEP with generalized update

Partition function for ZRP-like model

@ Partition function (M paricles, N = L — M sites):
- [F)"
ZMN)= 3, By, MHf e
ni,... >0 0 z

YN Z
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Stationary state

N . Asymptotic analysis
TASEP with generalized update Fluctuations of particle current

Partition function for ZRP-like model

@ Partition function (M paricles, N = L — M sites):

Z(M,N)= ) 5HnuMHf [F(z)]

T oM+1
ny,...,ny>0 z

@ Occupation number distribution:

P(n) = f(n)Z(IV;(_A;: x)_ 1
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Stationary state
Asymptotic analysis

TASEP with generalized update Fluctuations of particle current

Partition function for ZRP-like model

@ Partition function (M paricles, N = L — M sites):

[F2)"
M1

N
Z(M,N)= Y 5”"“,/\//1:[1'((”0:

)
@ Occupation number distribution:

Z(M—=n,N—1)

Pn) = F(0) =20

@ Mean number of particles jumping per time step

N [F(2)" V'(2) dz.
Z(M,N)Jr, zM  V(z) 2mi’

J=
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Stationary state
Asymptotic analysis

TASEP with generalized update Fluctuations of particle current

Partition function for ZRP-like model

@ Partition function (M paricles, N = L — M sites):

[F2)"
M1

N
Z(M,N)= Y 5”"“,/\//1:[1'((”0:

)
@ Occupation number distribution:

Z(M—=n,N—1)

Pn) = F(0) =20

@ Mean number of particles jumping per time step

N [F(2)" V'(2) dz.
Z(M,N)Jr, zM  V(z) 2mi’

J=

where V(z) = Y0 v(k)zX and F(z) = Y0 v(k)z"



Stationary state
Asymptotic analysis

TASEP with generalized update Fluctuations of particle current

Exact formuals

Z(M,N):( LA_/Il >2F1 (—M,—N;1—L;v),

(u—Vv)NM Fi(1-M;1—-N,1;2—L;v,u)
(L—l) 2F1 (—M,—N;].—L;V)

J=
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Stationary state
Asymptotic analysis

TASEP with generalized update Fluctuations of particle current

Exact formuals

Z(M,N):( LA_/Il >2F1 (—M,—N;1—L;v),

J_ (u—Vv)NM Fi(1-M;1—-N,1;2—L;v,u)
(L—l) 2F1 (—M,—N;].—L;V)

(a b)n n.

Gauss hypergeometri function 2Fy(a, b;c;x) =Y 1o (Zlif,n! x";

Appell hypergeometric function
Fl(ayﬁ7ﬁ/,¢}/,x,y) :Z‘X’ 0 (a)m+n(ﬁ)m(ﬁ )nxmyn

n,m= (Y)mtnm!n!
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Stationary state
Asymp ELELVES

TASEP with generalized update Fluctuations of particle current

Saddle point approximation

@ The local stationary state observable are reduced to
evaluation of integrals of the form

dz
2miz’

Iu(h(2).8(2) = " a(2)

where h(z) =In(l1—vz)—In(1—z)—plnz.
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Stationary state
Asymptotic analysis

TASEP with generalized update Fluctuations of particle current

Saddle point approximation

@ The local stationary state observable are reduced to
evaluation of integrals of the form

dz
2miz’

Iu(h(2).8(2) = " a(2)

where h(z) =In(l1—vz)—In(1—z)—plnz.
e Critical point, h'(z.) =0:

ZC:1+(1—V) (1_ 1Jr4(1—c)cv>

2cv 1—-v
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Stationary state
Asymptotic analysis

TASEP with generalized update Fluctuations of particle current

Particle current

ngASEP — lim J/I_
[—oo

_ ot (1-20u)  ep/(I-p)(1-4(1—c)c(p—p)—p)
21+ 2c(p(L—p) —p) 21 +2c(p(L—p)—p)

=0, N
04 4#=09995 \
=099, \
\
03 S
— u:oss\\ \
" \ |
02 Z \
Z \
——
- \
Z- =0 \
01 S \ \
~ |
\ |
02 04 06 08 10
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TASEP with generalized update Fluctuations of particle current

Particle current

ngASEP — lim J/I_
[—oo

_ ot (1-20u)  ep/(I-p)(1-4(1—c)c(p—p)—p)
21+ 2c(p(L—p) —p) 21 +2c(p(L—p)—p)

=0, N
04 #=09995 \
=099, \
\
03 S
— u:oss\\ \
" \ |
02 Z \
Z \
——
- \
Z- =0 \
01 S \ \
~ |
\ |
02 04 06 08 10
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Stationary state
Asymptotic analysis

TASEP with generalized update Fluctuations of particle current

Cluster size distribution in gTASEP:
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Stationary state
Asymp ELELVES

TASEP with generalized update Fluctuations of particle current

Cluster size distribution in gTASEP:

P(n)=z"(1—z)""

(n)=1/Loglzc] ~1/y/1—pn as u—1
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Stationary state

N . Asymptotic analysis
TASEP with generalized update Fluctuations of particle current

Validity range of saddle point approximation

Consider a limit

UL—v

——— = const.
1—v

u—1lv—=1p=

Let

A=(1-v) = e
How Iarkgfz can it be for the saddle point analysis to be valid, given
hk ~ )L%:

Nl—k/th
lim

_— | = 2 oo
Jim hg/z 0=A4/N?%— oo,
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Stationary state
Asymptotic analysis

TASEP with generalized update Fluctuations of particle current

Transition regime,

e Deform contour Z(M,N) = *frl eNh(z) _dz

2wiz*
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Stationary state
Asymp ELELVES

TASEP with generalized update Fluctuations of particle current

Transition regime,

Nh(z) _d.
o Deform contour Z(M,N) = — - e ( )2;,.2..
@ Choose the right integration scale z =1+ \;II% to get.

h(z) = —2\/§cos(p+0(1/7t)
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Stationary state
Asymptotic analysis

TASEP with generalized update Fluctuations of particle current

Transition regime,

Nh(z) _d.
o Deform contour Z(M,N) = — - e ( )2;,.2..
@ Choose the right integration scale z =1+ \;II% to get.

h(z) = —2\/§cos(p+0(1/7t)

@ Then we obtain

-1 27 . dq) 0
Z(M.N - = —2N+/p/Acoso+lp “ ¥ ~_— (6
( ) ) \/ﬁ 0 € o oM 1( )7
P
h 0 =2N,/=
where 1
is the scaling parameter controlling the KPZ-DA transition

and p=N/L
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Stationary state
N . Asymptotic analysis
TASEP with generalized update Fluctuations of particle current

Transitional distribution over the macroscopic scale

Cluster fraction distribution (x = n/M, M — o):

Prob(y =1) = /0(19),
0 xh(6yvI—y)
Prob(x < x) 2/0(9)/0 =y dy
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Stationary state
Asymptotic analysis

TASEP with generalized update Fluctuations of particle current

Correlation function

C(k) = (tty1k) — (1) (Tipi) ~ c(1—c)e Mo, u<1
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Stationary state
Asymp ELELVES

TASEP with generalized update Fluctuations of particle current

Correlation function

C(k) = (tty1k) — (1) (Tipi) ~ c(1—c)e Mo, u<1

E~\/Ac(l—c), A — oo
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Stationary state
Asymptotic analysis

TASEP with generalized update Fluctuations of particle current

Correlation function

C(k) = (tty1k) — (1) (Tipi) ~ c(1—c)e Mo, u<1

E~\/Ac(l—c), A — oo

(1- 2c)e‘1/g+ c(1— c)(e—f/g+ e—(l—r)/g)
1+e1/E
where £ = 2¢(1—¢c)/6 and A ~ N?

C(Lr)=

)
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Stationary state
Asymptot ysis

. . SIS
TASEP with generalized update Fluctuations of particle current

Large deviation function

@ Introduce deformed Markov matrix
Mz’n/ = Mn,n’ exXp (%/V(n,n’)) )

where #(n,n’) is the number of particle jumps in the
one-step transition from n’ to n.

RandomKPZ16 , Santa Barbara 2016 On some integrable models of interacting particles



Stationary state
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TASEP with generalized update Fluctuations of particle current

Large deviation function

@ Introduce deformed Markov matrix
Mz’n/ = Mn,n’ exXp (%/V(n,n’)) )

where #(n,n’) is the number of particle jumps in the
one-step transition from n’ to n.

@ The log of its largest eigenvalue Ag (y) is the rescaled
cumulant generating function of total number of particle
jumps

In <e7yf>

Info(y) = lim ==
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Stationary state
Asymptotic analysis

TASEP with generalized update Fluctuations of particle current

Large deviation function

@ Introduce deformed Markov matrix
Mz’n, = Mpwexp (74 (n,n)),

where #(n,n’) is the number of particle jumps in the
one-step transition from n’ to n.

@ The log of its largest eigenvalue Ag (y) is the rescaled
cumulant generating function of total number of particle
jumps < Y>

In(e¥"t
InAo () = lim ———+=.

@ lIts Legendre transform is the large deviation function:

JLm tHInP(Y:/t > y) =sup(yy—InAg(7))
oo Y

RandomKPZ16 , Santa Barbara 2016 On some integrable models of interacting particles



Stationary state
Asymptotic analysis

TASEP with generalized update Fluctuations of particle current

What would we expect in scaling limit?

@ Large deviation hypothesis:

lim ¢~ <eWt> — gy +al 2 G(ybL?), (L — oo, ybL? = const)

t—soo

e KPZ, z=3/2, (Derrida-Lebowitz, 1998):
Gpi(y) = —Lis/>(B)
Y= —Liz)»(B)

@ DA limit, z=2, CLT for random walk of particle of mass M,:

AV w, .
On some integrable models of interacting particles
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TASEP with generalized update Fluctuations of particle current

Exact results.

@ Integral expressions

In [1 B(1—vu)V

I
InAo(y) = (N—V)]{O (1—pu)(1—vu)2mi’

B(1—vu)V
1-v In [1_ (1(—u)‘;V3M} du

M Jr, 1—u)(1—vu) 27i

'}/:
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Stationary state
Asymptotic analysis

TASEP with generalized update Fluctuations of particle current

Exact results.

@ Integral expressions

n[1- 8258 a

In/\o(y)z(u—v)]{0 (1—pu)(1—vu) 21’
B(1—vu)N

1—v I”[I_W}ﬂ

M Jr @ w) (Vo) 221

'}/:
@ Series representations (term by term integration)

InAg(y) = —(—V) Z Bn<AL/;:7_21> Fi(1—nM;1—nN,1;2—nL;v,u),

ZE;( n—11> 2Fy (1= Mn,1—Nn ;1—nL;v).
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Stationary state
Asymptotic analysis

TASEP with generalized update Fluctuations of particle current

Asymptotic forms

o KPZ regime,A/N? — 0,AY/4N3/2y = const
InA(y) = yJw+aLl * Gpr(ybL?),

a~ A% and b~ A Y% s A — oo.

@ Transition regime

InA(Y) = YpM + N2p(1— p)%s(N?pY),
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Stationary st
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TASEP with generalized update Fluctuations o partlcle current

Cumulants

@ Mean current: J~ Mp—p(1—p)p

2 11(6)
e Diffusion coefficient: A = p(1—p) [/12(29) (13(26) - 12(9))}
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Stationary state
Asymptotic analysis
Fluctuations of particle current

TASEP with generalized update

Cumulants

@ Cumulants in the transition regime scale as ¢, ~ N2(n=1)
unlike ¢, ~ N3/2(n=1) in the KPZ regime and ¢, ~ N".

0020
z

0010

0.005|

o Universal cumulant ratio:
(3) s
_ & _ (%) 2(3/2-8/3%2)°

R(&)

14
20 g 0 &0 700
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Stationary state
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TASEP with generalized update Fluctuations of particle current

Limiting forms of transitional LDF
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Fluctuations of particle current

TASEP with generalized update

Nonstationary case

Hydrodynamics: dip + dij(p) =0
Particle number vs coordinate (step initial conditions,
X =x/t,0 =n/t):

(L—v)(-14u@—up+u(-1+ 2+ (-2+uv)u)u)v))

X = - (—1+up)?2(—1+V)(—1+u?v)

v(=1+p)(H—v) |
(14 up)2 (~1+ 2v)’

ue[0,1]

-15 -10 -05
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Stationary state
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TASEP with generalized update Fluctuations of particle current

Nonstationary case

Exact distribution:

P(an > ai, ..., Xn, > ak) = det(]l _XaKXa)7 Xa = H]l(X,‘ < a,-)

dV (1 _ V)n2+X2—n1—X1—1
r 21 V"l2*f71(1 — VV)H2+X2*H1*X1+1

K(n1,x1;m,x2) = (1—v)

7{ " dv u™(1—pu)t(l—vu)mha-tl
r o o ori (1 — U)X1+”1+1
(1—v)yetm 1

Um (1= pv)E(1— vv)met (v— o)
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TASEP with generalized update Fluctuations of particle current

KPZ regime

Exact distribution:

Xi=xo+sit 3kt 0 =6+ uit 23!

~1,1/3 .
K 3K (1, x0; 2, x2) ~ Ky, (U1, 51, U, 5)
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TASEP with generalized update Fluctuations of particle current

Transition regime

A — oot o0 t/A P =0
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TASEP with generalized update Fluctuations of particle current

Transition regime

A — oot o0 t/A P =0

Scaling: nj/t=6;,x;/t=p—0 —s;/A'/3
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TASEP with generalized update Fluctuations o partlcle current

Transition regime

A — oot o0 t/A P =0
Scaling: n,-/tz@,-,x,-/t:p—e—s,-/?tl/3
2367 K (1, x1; 2, x2) — Kir (61,515 62, 2) -
1(s1 > 52)fr0 %’iexp (G ((51 —sy)u+ 61;62))

p-p) (2 o _
f du f exp(G( > (uf—v )+slu+ Sov—
I 2xi JTo 277:1 v u—v
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Transition regime

A — oot o0 t/A P =0
Scaling: n,-/tz@,-,x,-/t:p—e—s,-/?tl/3
2367 K (1, x1; 2, x2) — Kir (61,515 62, 2) -
1(s1 > 52)fr0 %’iexp (G ((51 —sy)u+ 61;62))

p-p) (2 o _
f du f exp(G( > (uf—v )+slu+ Sov—
I 2xi JTo 277:1 v u—v

Limiting behaviour:
Ker — KAirygv O — 00, §5j~ o 23

—y2 /2p(1-p)
K (0,51,0,5) — 2" 356 -—-0and y; = 51/0 ~ X t
tr(0,51,0,5) () y1=51/0 ~x1/Vt
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Summary

Summary

@ The KPZ universality breaks down when the saddle point
method fails.

@ The KPZ scaling function keeps its form up to the diffusive
scale, all the change being in model dependent constants.

o We obtained the LDF and the kernel interpolating between
Gaussian and KPZ regimes

@ Outlook

e Search for new integrable particle models.
o Combinatorial structure of gTASEP. (Should the RSK be
modified?)
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