From de Sitter hydrodynamics to DFPs

Alex Buchel

(Perimeter Institute & University of Western Ontario)

 $\underline{\text{Based on arXiv:}}_{\text{theory}} \underbrace{1603.05344, 2111.04122}_{\text{theory}} , \underbrace{2301.09456}_{\text{applications}}$

also: arXiv: 1702.01320, 1809.08484, 1904.09968, 1912.03566, 2207.09887, 2210.17380, 2304.11195 + \cdots

The Many Faces of Relativistic Fluid Dynamics, KITP, June 20, 2023

 \implies some time last week:

- "..... can you do it without holography?" • Pavel: "...... no"
- me:

 \implies some time last week:

- Pavel: "····· can you do it without holography?"
- me: "..... no"

 \implies BUT:

- Apart from a simple (physically useful) exercise we will not use holography
- All results are phrased in the language of hydro
- All computations are studies of dynamical horizons of black holes/branes, and following gauge/gravity (gravity/fluid) correspondence interpreted as non-equilibrium (far-from-equilibrium) dynamics of corresponding strongly-coupled QFTs

 \implies the BENEFITS of holography:

- we can do all-derivative/all-gradient non-equilibrium QFT computations
- results interpreted within hydro gradient truncations teach:
 - what are specific terms that enter at the n-th order of derivative expansion?
 - what are the explicit values of transport coefficients in terms of microscopic parameters

$$\frac{\eta}{s} = \frac{1}{4\pi}, \qquad \frac{\zeta}{s}, \qquad \cdots$$

- study transport in the vicinity of critical phenomena find explicit counter-examples of Onuki classification of bulk viscosity criticality
- study the nonadiabaticity (irreversibility) of off-equilibrium processes in QFT (universality of driven quantum systems)
- Entropy current, thermalization, isotropization of QGP
- • •

- \Longrightarrow a class of problems: $\mathbf{hydrodynamics}\ \mathbf{in}\ \mathbf{cosmology}$
 - consider FLRW line element

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = -dt^{2} + a(t)^{2}dx^{2}$$

• the cosmological scale factor a(t) is governed by Einstein's equations coupled to matter:

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = 8\pi G \ T_{\mu\nu}$$

• under the symmetry assumptions, one typically postulates

$$T_{\mu\nu} \equiv T^{eq}_{\mu\nu} = \operatorname{diag}\{\epsilon, P, P, P\}, \quad \text{with} \quad \epsilon = \epsilon^{eq}(P)$$

- \implies a class of problems: hydrodynamics in cosmology
 - consider FLRW line element

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = -dt^{2} + a(t)^{2}dx^{2}$$

• the cosmological scale factor a(t) is governed by Einstein's equations coupled to matter:

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = 8\pi G \ T_{\mu\nu}$$

• under the symmetry assumptions, one typically postulates

$$T_{\mu\nu} \equiv T^{eq}_{\mu\nu} = \operatorname{diag}\{\epsilon, P, P, P\}, \quad \text{with} \quad \epsilon = \epsilon(P)$$

 \implies in general, for an interactive QFT,

$$\underbrace{R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu}}_{\text{classically}} = 8\pi G \underbrace{T_{\mu\nu}}_{\langle T_{\mu\nu} \rangle_{FLRW}}$$

with

$$\langle T_{\mu\nu} \rangle = T^{eq}_{\mu\nu} + \underbrace{\Pi_{\mu\nu}(\dot{a}, \{\dot{a}^2, \ddot{a}\}, \cdots)}_{}$$

derivative corrections to equilibrium $T^{eq}_{\mu\nu}$

 \implies To summarize: we will be interested in:

 $\langle T_{\mu\nu} \rangle \{a(t)\}$

of strong coupled QFTs

 \implies A hydro perspective:

 Recall from previous talks: a boost-invariant expansion <u>is</u> a QFT dynamics in Milne cosmology from the comoving fluid perspective:

$$ds^{2} = -dt^{2} + t^{2}d\xi^{2} + d\boldsymbol{x}_{\perp}^{2}, \qquad u^{\mu} = (1, 0, 0, 0) \implies \theta \equiv \nabla_{\mu}u^{\mu} = \frac{1}{t}$$

• Likewise, a QFT dynamics in FLRW Universe <u>is</u> a spatially homogeneous and isotropic flow form the comoving fluid perspective:

$$ds^2 = -dt^2 + a(t)^2 \ dx^2 , \qquad u^\mu = (1, 0, 0, 0) \implies \theta \equiv \nabla_\mu u^\mu = 3\frac{a}{a}$$

• A particular interesting flow is de Sitter expansion with

$$a(t) = e^{Ht}, \qquad H = \text{const}$$

- Note difference in the gradient scales relative to a local temperature scale at late times:
 - boost-invariant —

$$T \propto t^{-1/3} \implies \lim_{t \to \infty} \frac{\theta}{T} \propto \lim_{t \to \infty} t^{-2/3} = 0$$

$$T \propto e^{-Ht} \implies \lim_{t \to \infty} \frac{\theta}{T} \propto \lim_{t \to \infty} H \cdot e^{Ht} \to \infty$$

 \implies we expect interesting late-time attractor in de Sitter:

Dynamical Fixed Point

Outline:

• FLRW Hydrodynamics

- first-order hydro
- resummation and non-hydrodynamic modes
- A trivial DFP: thermal states of $\mathcal{N} = 4$ supersymmetric Yang-Mills (SYM) in de Sitter
 - gauge theory perspective
 - holographic picture
 - de Sitter vacuum 'entanglement' entropy

• Nontrivial DFP

- we focus on QFT_{2+1}
- $\mathcal{N} = 2^*$ and cascading DFP see the literature
- Applications: holographic gravitational reheating
 - harvesting the entanglement entropy of de Sitter DFPs
- Conclusions and future directions

 \implies Thermodynamic equilibrium is a late-time attractor of dynamical evolution of isolated interacting quantum system:

$$\lim_{t \to \infty} T_{\mu\nu}(t, \boldsymbol{x}) = \operatorname{diag}\left(\mathcal{E}_{eq}, P_{eq}, \cdots P_{eq}\right)$$

• $T_{\mu\nu}$ are the component of the stress-energy tensor of the system at time t and the spatial location \boldsymbol{x}

 \implies We also have a theory — the hydrodynamics — that describes the approach to that equilibrium (assuming we are not-far from it):

• $\nabla_{\mu}T^{\mu\nu} = 0$

•
$$T^{\mu\nu} = T^{\mu\nu}_{(0)} + T^{\mu\nu}_{(1)} + T^{\mu\nu}_{(2)} + \cdots$$

$$T^{\mu\nu} = \underbrace{\mathcal{E} \ u^{\mu}u^{\nu} + P \ (g^{\mu\nu} + u^{\mu}u^{\nu})}_{\mathcal{O}(\partial^{0}u)} + \underbrace{\left[-\eta\sigma^{\mu\nu} - \zeta(g^{\mu\nu} + u^{\mu}u^{\nu})\nabla \cdot u\right]}_{\mathcal{O}(\partial^{1}u): \ \sigma^{\mu\nu} \sim \partial^{\mu}u^{\nu}} + \underbrace{\left[\cdots\right]}_{\mathcal{O}(\partial^{2}u,(\partial u)^{2})} + \cdots$$

• u^{μ} — local fluid velocity

- $g^{\mu\nu}$ background metric
- η, ζ shear and bulk viscosities
- expansion parameter of hydro as EFT:

$$\frac{1}{T} \cdot |\partial u| \ll 1$$

where $T = T(t, \boldsymbol{x})$ is the local temperature

$$\mathcal{E} + P = sT, \qquad d\mathcal{E} = Tds$$

•

$$\mathcal{S}^{\mu} = \underbrace{s \, u^{\mu}}_{\mathcal{O}(\partial^{0} u)} + \underbrace{\left[-\frac{1}{T} \cdot T^{\mu\nu}_{(1)} u_{\nu}\right]}_{\mathcal{O}(\partial^{1} u)} + \underbrace{\left[\cdots\right]}_{\mathcal{O}(\partial^{2} u, (\partial u)^{2})} + \cdots$$

• from the conservation of the stress-energy tensor,

$$\nabla_{\mu} T^{\mu\nu} = 0 \implies$$
$$T \nabla \cdot S = \zeta \ (\nabla \cdot u)^{2} + \frac{\eta}{2} \sigma_{\mu\nu} \sigma^{\mu\nu} \ge 0$$

 \implies As one approaches the equilibrium,

$$\lim_{t \to \infty} u^{\mu} = u^{\mu}_{eq} = (1, \mathbf{0}) \qquad \Longrightarrow \qquad \lim_{t \to \infty} T \, \nabla \cdot \mathcal{S} = 0$$

i.e., in the approach to equilibrium the entropy production rate vanishes

We can now provide a formal definition of a dynamical fixed point (DFP):

A Dynamical Fixed Point is an internal state of a quantum field theory with spatially homogeneous and time-independent onepoint correlation functions of its stress energy tensor $T^{\mu\nu}$, and (possibly additional) set of gauge-invariant local operators $\{\mathcal{O}_i\}$, <u>and</u> strictly positive divergence of the entropy current at late-times: $\lim_{t\to\infty} \left(\nabla \cdot \mathcal{S}\right) > 0$

 \implies Apart from the requirement of the strictly non-zero entropy production rate at late times, characteristics of a DFP coincide with that of the thermodynamic equilibrium. Example: $\mathcal{N} = 2^* \text{ QGP}$ — one of the best understood non-conformal top-down holography

- $\mathcal{N} = 2^*$: $\mathcal{N} = 4$ SYM with $m_b/m_f \neq 0$ for bosonic/fermionic components of a hypermultiplet
- in Minkowski space time:

•
$$g^{\mu\nu} = \eta^{\mu\nu}$$

• $\mathcal{E}_{eq} = \frac{3}{8}\pi^2 N^2 T^4 \left[1 + \left\{ \frac{\ln \frac{T}{m_b}}{9\pi^4} \left(\frac{m_b}{T} \right)^4 + \cdots \right\} + \left\{ -\frac{2\Gamma \left(\frac{3}{4} \right)^4}{3\pi^4} \left(\frac{m_f}{T} \right)^2 + \cdots \right\} \right]$

$$\frac{\eta}{s} = \frac{1}{4\pi}, \qquad \frac{\zeta}{\eta} = \beta_f^{\Gamma} \cdot \frac{\Gamma\left(\frac{3}{4}\right)^4}{3\pi^3} \left(\frac{m_f}{T}\right)^2 + \beta_b^{\Gamma} \cdot \frac{1}{432\pi^2} \left(\frac{m_b}{T}\right)^4 + \cdots$$

where

$$\beta_f^{\Gamma} \approx 0.9672 \,, \qquad \beta_b^{\Gamma} \approx 8.0000$$

• in FLRW:

$$ds_4^2 = g_{\mu\nu} dx^{\mu} dx^{\nu} = -dt^2 + a(t)^2 \ dx^2$$

• FLRW cosmology as hydro:

local/comoving :
$$u^{\mu} = (1, \mathbf{0})$$

BUT : $\nabla \cdot u = 3 \quad \frac{\dot{a}}{a} \neq 0$

$$\underbrace{T \nabla \cdot \mathcal{S}}_{\frac{T}{a^3} \cdot \frac{d}{dt}[a^3s]} = \zeta \underbrace{\left(\nabla \cdot u\right)^2}_{9\left(\frac{\dot{a}}{a}\right)^2} + \frac{\eta}{2} \underbrace{\sigma_{\mu\nu} \sigma^{\mu\nu}}_{=0} + \cdots$$

 \implies prediction verified in (1603.05344)

computed from dynamical horizon

agreement from Minkowski $\frac{\zeta}{s}$

• We can prove a theorem (from Einstein equations applied to the area growth of dynamical horizon):

$$\frac{d(a^3s)}{dt} \ge 0$$

• Contribution to the production rate from operator of dimension Δ in, *e.g*, de-Sitter cosmology (to leading order in $\frac{m}{T}$) reads:

$$\frac{d(a^3s)}{dt} = N^2(aT)^2 \ a^{7-2\Delta} \times \Omega_{\Delta}^2$$

where

$$\Omega_{\Delta} \equiv \sum_{n=0}^{\infty} c_n(\Delta) \left(\frac{H}{T}\right)^n$$

• c_0 coefficient describes entropy production due to bulk viscosity

 $\implies c_n \text{ for } n \ge 1 \text{ can be computed (semi-)analytically:}$

$$c_n \sim n!, \qquad n \gg 1$$

 \implies Thus, "hydrodynamics" of strongly coupled gauge theories in de Sitter

is an asymptotic expansion, with zero radius of convergence

 \implies To rephrase,

$$T_{\mu\nu} = T^{eq}_{\mu\nu} + \Pi_{\mu\nu}(\dot{a}, \{\dot{a}^2, \ddot{a}\}, \cdots),$$

when organized as a series expansion in derivatives of the scale factor a is a divergent series

 \implies This asymptotic series can be Borel-resumed; there are <u>**poles**</u> in the Borel transform (resummation)

 \implies Usually, there is an interesting physics associated with the poles of the Borel transform of asymptotic expansion:

• in QED, it is related to the vacuum instability due to e^+e^- pair production once

$$e^2 \rightarrow -e^2$$

• in theory of nonlinear elasticity, it is rated to the physics of the material fracture (under stress)

 Here, it is related to the presence of the 'non-hydrodynamic' excitations in strongly coupled gauge theory plasma (black hole quasinormal modes — QNM — in the dual gravitational description). • We used Pade approximation of

$$\Omega_{\Delta}^{(B)}(\xi) = \sum_{n=0}^{\infty} \frac{c_n}{n!} \xi^n$$

to determine to location of the 10 leading singularities (poles) on the complex Borel plane

• These poles were compared with the BH QNM computations for the $\Delta = \{2, 3\}$ computed by Nunez and Starinets in 2003

Positions on the Borel plane of 10 singularities ξ_0 closest to the origin for $\Omega_{\Delta=2}^{(B)}$ (left) and $\Omega_{\Delta=3}^{(B)}$ (right) are given by solid circles. Crosses correspond to QNM frequencies. One observes a remarkable agreement between the singularities and the QNMs at a fraction of a percent or better.

 \implies We now move to study FLRW/de Sitter attractors:

$\mathcal{N} = 4$ SYM in FLRW CFT perspective

• FLRW is Weyl equivalent to Minkowski:

$$ds_4^2 = -dt^2 + a^2(t) \, d\mathbf{x}^2 = a(t)^2 \left(-\frac{dt^2}{a(t)^2} + d\mathbf{x}^2 \right) = a^2 \underbrace{\left(-d\tau^2 + d\mathbf{x}^2 \right)}_{ds_{Minkowski}^2}$$

• if \mathcal{O}_{Δ} is a primary operator of dimension Δ ,

$$\left. \left\langle \mathcal{O}_{\Delta} \right\rangle \right|_{FLRW} = a^{-\Delta} \left. \left\langle \mathcal{O}_{\Delta} \right\rangle \right|_{Minkowski}$$

• stress-energy tensor is not a primary field:

$$\langle T_{\mu\nu} \rangle \Big|_{FLRW} = a^{-4} \langle T_{\mu\nu} \rangle \Big|_{Minkowski} + \text{conformal anomaly}$$

 \implies for a trace of the stress-energy tensor

$$\left\langle T^{\mu}_{\mu} \right\rangle \Big|_{FLRW} = a^{-4} \left. \left\langle T^{\mu}_{\mu} \right\rangle \Big|_{\underbrace{Minkowski}}_{=0} + \frac{c}{24\pi^3} \underbrace{\left(R_{\mu\nu}R^{\mu\nu} - \frac{1}{3}R^2 \right)}_{=-12\frac{(\dot{a})^2\ddot{a}}{a^3}} \right\}$$

e.g., for $\mathcal{N} = 4 SU(N)$ SYM,

$$-\left.\left\langle T_{t}^{t}\right\rangle\right|_{FLRW} = \frac{1}{a(t)^{4}} \mathcal{E} + \frac{3N^{2}}{32\pi^{2}} \frac{(\dot{a})^{4}}{a^{4}}$$
$$\left.\left\langle T_{\boldsymbol{x}}^{\boldsymbol{x}}\right\rangle\right|_{FLRW} = \frac{1}{a(t)^{4}} P + \frac{N^{2}}{8\pi^{2}} \left\{\frac{(\dot{a})^{4}}{4a^{4}} - \frac{(\dot{a})^{2}\ddot{a}}{a^{3}}\right\}$$

$$\left\langle T^{\mu}_{\mu} \right\rangle \bigg|_{FLRW} = a^{-4} \underbrace{\left(-\mathcal{E} + 3P\right)}_{=0} - \frac{3N^2}{8\pi^2} \frac{(\dot{a})^2 \ddot{a}}{a^3}$$

 \implies Minkowski space-time thermal equilibrium states of $\mathcal{N} = 4$ SYM (strong coupling) of temperature T_0 :

$$\mathcal{E}_0 = \frac{3}{8}\pi^2 N^2 T_0^4 , \qquad P_0 = \frac{1}{3}\mathcal{E}_0$$

 \implies in FLRW cosmology,

$$\mathcal{E}(t) = \frac{3}{8}\pi^2 N^2 T(t)^4 + \frac{3N^2}{32\pi^2} \frac{(\dot{a})^4}{a^4}, \qquad P(t) = \frac{1}{3}\mathcal{E}(t) - \frac{N^2}{8\pi^2} \frac{(\dot{a})^2 \ddot{a}}{a^3}$$

where T(t) is the *effective* temperature

$$T(t) = \frac{T_0}{a(t)}$$

 \implies Stress-energy tensor in FLRW is covariantly conserved:

$$0 = \langle \nabla^{\mu} T^{\nu}_{\mu} \rangle \qquad \Longleftrightarrow \qquad \frac{d\mathcal{E}(t)}{dt} + 3\frac{\dot{a}}{a} \ \left(\mathcal{E}(t) + P(t)\right) = 0$$

- / >

 \implies entropy density

• In Minkowski space-time:

$$s_0 = \frac{\pi^2}{2} N^2 T_0^3$$

• Assuming the adiabatic expansion in FLRW, the co-moving entropy density, $s_{comoving}$,

$$s_{comoving} \equiv a(t)^3 s(t)$$

is conserved:

$$\frac{d}{dt}s_{comoving} = 0 \implies s_{comoving} = s_{comoving} \Big|_{t=0} = s_0$$

$$\implies s(t) = \frac{\pi^2}{2} N^2 T(t)^3$$

• In expanding FLRW, with $a(t) \to \infty$ as $t \to \infty$,

$$\lim_{t \to \infty} s(t) = 0$$

 \implies Let's rephrase the de Sitter entropy discussion in the language of the entropy current S^{μ} :

- A locally static observer has $u^{\mu} = (1, \mathbf{0})$
- The entropy current (in Landau frame $T^{\mu\nu}_{(1)}u_{\nu}=0$) is

$$\mathcal{S}^{\mu} = s \ u^{\mu}$$

$$\Rightarrow \qquad \nabla \cdot S = \frac{1}{a(t)^3} \frac{d}{dt} \left(a(t)^3 s \right) = \frac{1}{a(t)^3} \frac{d}{dt} s_{comoving}(t) = 0$$

That is is why $\mathcal{N} = 4$ SYM (same is true for any conformal theory!) in de Sitter evolved to a trivial DFP How would a non-trivial DFP arise?

• Imagine that

$$\lim_{t \to \infty} s(t) = s_{ent} \neq 0$$

This limit is natural to call the <u>vacuum entanglement entropy</u> density, hence $_{ent}$

• Then,

$$\lim_{t \to \infty} \left(\nabla \cdot \mathcal{S} \right) = 3 \ H \ s_{ent}$$

where

$$H = \lim_{t \to \infty} \frac{d}{dt} \, \ln a(t)$$

 \implies In strongly coupled non-conformal theories with holographic dual

$$s_{ent} > 0$$

 $\implies \mathcal{N} = 4$ SYM in FLRW holographic perspective

$$S_{\mathcal{N}=4} = \frac{1}{16\pi G_5} \int_{\mathcal{M}_5} d^5 \xi \sqrt{-g} \left[R + \frac{12}{L^2} \right]$$
$$L^4 = \ell_s^4 N g_{YM}^2, \qquad G_5 = \frac{\pi L^3}{2N^2}, \qquad 4\pi g_s = g_{YM}^2$$

 \implies Consider general spatially homogeneous, time-dependent states:

$$ds_5^2 = 2dt (dr - Adt) + \Sigma^2 dx^2$$
$$A = A(t, r), \qquad \Sigma = \Sigma(t, r)$$

 \implies We are interested in spatially homogeneous and isotropic states of $\mathcal{N} = 4$ SYM in FLRW, so the bulk metric warp approach the AdS boundary $r \to \infty$ as

$$\Sigma = \frac{a(t)r}{L} + \mathcal{O}(r^0) \,, \qquad A = \frac{r^2}{2L^2} + \mathcal{O}(r^1)$$

Indeed, as $r \to \infty$,

$$ds_5^2 = \frac{r^2}{L^2} \underbrace{\left(-dt^2 + a(t)^2 d\boldsymbol{x}^2\right)}_{-dt^2 + a(t)^2 d\boldsymbol{x}^2} + \cdots$$

boundary FLRW

 \implies Given the metric ansatz, we can derive EOMs (without loss of generality we set L = 2):

$$0 = (d_{+}\Sigma)' + 2\Sigma' d_{+} \ln \Sigma - \frac{\Sigma}{2}$$

$$0 = A'' - 6(\ln \Sigma)' d_{+} \ln \Sigma + \frac{1}{2}$$

$$0 = \Sigma''$$

$$0 = d_{+}^{2}\Sigma - 2A\Sigma' - (4A\Sigma' + A'\Sigma) d_{+} \ln \Sigma + \Sigma A$$

where

$$' = \frac{\partial}{\partial r}, \qquad \dot{} = \frac{\partial}{\partial t}, \qquad d_+ = \frac{\partial}{\partial t} + A \frac{\partial}{\partial r}$$

 \implies These equations can be solve in all generality for arbitrary a(t):

$$A = \frac{(r+\lambda)^2}{8} - (r+\lambda)\frac{\dot{a}}{a} - \dot{\lambda} - \frac{r_0^4}{8a^4(r+\lambda)^2},$$
$$\Sigma = \frac{(r+\lambda)a}{2}$$

where

- r_0 is a single constant parameter
- $\lambda(t)$ is an arbitrary function the leftover diffeomorphism of the 5d gravitational metric reparametrization $r \to \bar{r} = r \lambda(t)$:

$$A(t,r) \to \bar{A}(t,\bar{r}) = A(t,r+\lambda(r)) - \dot{\lambda}(t)$$
$$\Sigma(t,r) \to \bar{\Sigma}(t,\bar{r}) = \Sigma(t,r+\lambda(t))$$

$$ds_5^2 \implies d\bar{s}_5^2 \qquad = 2dt \ (d\bar{r} - \bar{A}dt) + \bar{\Sigma}^2 \ d\boldsymbol{x}^2$$

\implies Identifying

$$\frac{r_0}{2} \equiv T_0$$

 \implies from holographic computation of the boundary stress energy tensor,

$$\mathcal{E}(t) = \frac{3}{8}\pi^2 N^2 T(t)^4 + \frac{3N^2}{32\pi^2} \frac{(\dot{a})^4}{a^4}, \qquad P(t) = \frac{1}{3}\mathcal{E}(t) - \frac{N^2}{8\pi^2} \frac{(\dot{a})^2 \ddot{a}}{a^3}$$
$$T(t) = \frac{T_0}{a(t)}$$

Precisely as expected from the Weyl transformation of the thermal state from Minkowski to FLRW! \implies Holography buys us more:

• Chesler-Yaffe pioneered numerical studies of EF metrics:

$$ds_5^2 = 2dt \ (dr - Adt) + \Sigma^2 \ d\boldsymbol{x}^2$$

• such metrics has an **apparent horizon** (AH) at r_{AH}

$$d_{+}\Sigma\Big|_{r=r_{AH}} = 0 \implies r_{AH} = \frac{r_{0}}{a(t)} - \lambda(t)$$

• causal dependence **must** include

$$r \in [r_{AH}, +\infty)$$

• region

 $r < r_{AH}$

is causally disconnected from the holographic dynamics and **must be** excised

• AH is a dynamical horizon

comoving Bekenstein entropy of the AH

SYM comoving entropy density in FLRW

Precisely as expected from the CFT arguments!

\implies Nontrivial DFP

• The model:

$$S_4 = \frac{1}{2\kappa^2} \int_{\mathcal{M}_4} dx^4 \sqrt{-\gamma} \left[R + 6 - \frac{1}{2} \left(\nabla \phi \right)^2 + \phi^2 \right]$$

•
$$\phi$$
 is dual to \mathcal{O}_{ϕ} ,

$$L^2 m_{\phi}^2 = -2 \qquad \Longrightarrow \qquad \dim(\mathcal{O}_{\phi}) = 2$$

- source terms for the gravitational evolution:
 - the boundary metric is dS_3 ,

$$ds_3^2 = -dt^2 + e^{2Ht} d\boldsymbol{x}^2$$

• mass scale Λ of the boundary QFT_3 ,

$$\phi = \frac{\Lambda}{r} + \mathcal{O}(r^{-2})$$

Recall: $s_{ent} = \lim_{t \to \infty} s(t)$

$$\frac{\text{Important:}}{dt} = \frac{2\pi}{\kappa^2} (\Sigma^2)' \left. \frac{(d_+\phi)^2}{\phi^2 + 6} \right|_{r=r_{AH}} \ge 0$$

 \implies DFP as a late-time attractor:

 \implies Spectrum of DFP fluctuations (*aka* QNMs):

$$\hat{\omega} \equiv \frac{\omega}{H}$$

 \implies Approach to DFP via 'QNMs':

- blue: n = 2 QNM only
- red: n = 2, 3 QNMs
- green: n = 2, 3, 4 QNMs

 \implies Holographic gravitational reheating:

$$\frac{d(a^2s)}{dt} = \frac{2\pi}{\kappa^2} (\Sigma^2)' \left. \frac{(d_+\phi)^2}{\phi^2 + 6} \right|_{r=r_{AH}} \ge 0$$

• consider a scale factor a(t) with a Hubble parameter:

$$\mathcal{H}(t) \equiv \frac{\dot{a}}{a} = \frac{H}{1 + \exp(2\gamma t)}$$

• in the *fast* inflationary exit

$$\ln \frac{a_t}{a_i} = \int_{-5/\gamma}^{5/\gamma} dt \ \mathcal{H}(t) = \frac{5H}{\gamma} \to 0 \qquad \text{as} \qquad \frac{H}{\gamma} \to 0$$

$$\frac{d(a^2s)}{dt} \ge 0 \implies s_t a_t^2 \ge s_i a_i^2 \implies s_t \ge s_i \left(\frac{a_i}{a_t}\right)^2 \underset{H/\gamma \to 0}{\approx} s_{ent}^{DFP}$$

 $s_{ent}^{DFP} \xrightarrow{} s(t) \Big|_{t \to +\infty} = s_{thermal} \ge s_{ent}^{DFP}$

 \implies evolve until the inflationary exit state thermalizes at T_r : $tT_r \sim 1$

$$\frac{T_r^{max}}{H} \approx \frac{3^{2/3}}{2^{7/3}\pi} \left(\frac{\Lambda}{H}\right)^{2/3}, \quad \text{as} \quad \frac{\Lambda}{H} \to 0$$

Conclusions:

- A new concept of DFP
- Massive QFT in de Sitter has finite physical entropy density $\frac{s_{ent}}{s_{ent}}$
- In the exit from inflation s_{ent} can be harvested this solves the problem of the initial Hot Big Bang entropy without the inflaton reheating

 \implies To do:

- understanding of weakly coupled DFP is missing
- finite coupling, finite-N corrections
- formal: relation of s_{ent} to "simple entropy" of Engelhardt-Wall
- other examples (not dS flows) of DFPs