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— some time last week:

m Pavel: "..o....

[ | me: ......

oooooo



— some time last week:

= Pavel: (ERRRRE can you do it without holography?”
B me: nm.o..... no «-«---- /"
— BUT:

e Apart from a simple (physically useful) exercise we will not use
holography

e All results are phrased in the language of hydro

e All computations are studies of dynamical horizons of black
holes/branes, and following gauge/gravity (gravity/fluid) correspondence
interpreted as non-equilibrium (far-from-equilibrium) dynamics of

corresponding strongly-coupled QFT's



—> the BENEFITS of holography:
e we can do all-derivative/all-gradient non-equilibrium QFT computations

e results interpreted within hydro gradient truncations teach:
m what are specific terms that enter at the n-th order of derivative
expansion?
m what are the explicit values of transport coeflicients in terms of
microscopic parameters

m study transport in the vicinity of critical phenomena — find explicit
counter-examples of Onuki classification of bulk viscosity criticality

e study the nonadiabaticity (irreversibility) of off-equilibrium processes in
QFT (universality of driven quantum systems)

e Entropy current, thermalization, isotropization of QGP

o -



—> a class of problems: hydrodynamics in cosmology

e consider FLRW line element
ds* = g, dztdr” = —dt* + a(t)*dz”

e the cosmological scale factor a(t) is governed by Einstein’s equations

coupled to matter:

1
RMV — §Rguy = &G T,LU/

e under the symmetry assumptions, one typically postulates

T =T = diagle, P, P, P}, with e = ¢e“I(P)



— a class of problems: hydrodynamics in cosmology

e consider FLRW line element
ds* = g, datdz” = —dt* + a(t)*dz’

e the cosmological scale factor a(t) is governed by Einstein’s equations

coupled to matter:

1
RMV — §Rguy = 81 T,LU/

e under the symmetry assumptions, one typically postulates
T, =15 = diag{e, P, P, P}, with e = ¢(P)

— in general, for an interactive QFT,

1
R,LW o _Rg,tw — 87G pr
N 2 —~—
class"(cally (Tuv) FPLRW
with
L) =Tip+ Hwl@{a”a}, )

. . . e . e
derivative corrections to equilibrium TMS



— To summarize: we will be interested in:

(Tuw)ia(t)

of strong coupled QFT's

— A hydro perspective:
m Recall from previous talks: a boost-invariant expansion is a QFT dynamics
in Milne cosmology from the comoving fluid perspective:

1
ds® = —dt* + t*d&? + dx? | w =(1,0,0,0) = 6=V, u" = "

m Likewise, a QFT dynamics in FLRW Universe is a spatially homogeneous
and isotropic flow form the comoving fluid perspective:

ds? = —dt? + a(t)? dz?,  u" =(1,0,0,0) = 0=V, u" =3
a



e A particular interesting flow is de Sitter expansion with
a(t) = et H = const

e Note difference in the gradient scales relative to a local temperature scale
at late times:
m boost-invariant —

0
Toxt V3 — lim — o lim ¢t 23 =0
t— o0 T t— o0
m dS —
—Ht . 0 : Ht
T x e — Iim — x lim H:-e"" — o0
t— o0 T t—o0

—> we expect interesting late-time attractor in de Sitter:

Dynamical Fixed Point




Outline:

e FLRW Hydrodynamics

B first-order hydro

B resummation and non-hydrodynamic modes

e A trivial DFP: thermal states of N' = 4 supersymmetric Yang-Mills
(SYM) in de Sitter
m gauge theory perspective
B holographic picture

B de Sitter vacuum ’entanglement’ entropy

e Nontrivial DFP

B we focus on QFT2_|_1

B A = 2* and cascading DFP — see the literature

e Applications: holographic gravitational reheating

B harvesting the entanglement entropy of de Sitter DFPs

e Conclusions and future directions



—> Thermodynamic equilibrium is a late-time attractor of dynamical

evolution of isolated interacting quantum system:

lim Tuy(t’ iE) = dlag (geqa PGQ7 T Peq)

t— 00

= 7}, are the component of the stress-energy tensor of the system at time ¢

and the spatial location @

—> We also have a theory — the hydrodynamics — that describes the

approaCh tO that GQUilibI‘ium (assuming we are not-far from it).
¢ V,TH =0

v __ v pv pvo
o T =Ty +1y + 1y +



T = & uu” + P (g"" + ufu”) + | —no?” — ((g"" + uHu”)V - u

7

O(0%u ~ g -
( : O(0tu): oHY ~OHuY

_|_[ ]_|_

\ - 7

0(321:,r(3u)2)

m u* — local fluid velocity
m g*” — background metric
m 7),( — shear and bulk viscosities

m expansion parameter of hydro as EFT:

! Ou| < 1
— . u

T

where T' = T'(t, x) is the local temperature

E+ P =3sT, d€ = Tds



1 v
S/J“: S/U,'LL _|_[_? T(l’:l'[) ]_|_[ . . l_|_...
O(0%u) ~ ~ O(92u,(Hu)?)
O(0tu)

m from the conservation of the stress-energy tensor,
vV, T" =0 —

TV-§=( (V-u)z—kgawa’” > 0

— As one approaches the equilibrium,

lim v =uf, =(1,0) — lim T'V-§=0

t— 00 t— 00

i.e., in the approach to equilibrium the entropy production rate vanishes



We can now provide a formal definition of a dynamical fixed point (DFP):

A Dynamical Fixed Point is an internal state of a quantum

field theory with spatially homogeneous and time-independent one-

point correlation functions of its stress energy tensor T*”, and

(possibly additional) set of gauge-invariant local operators {O;},
and

strictly positive divergence of the entropy current at late-times:

lim (V : 5) > 0
t— 00

— Apart from the requirement of the strictly non-zero entropy production
rate at late times, characteristics of a DFP coincide with that of the
thermodynamic equilibrium.



Example: N — 2* QGP — one of the best understood non-conformal top-down holography

o N =2% N =4 SYM with my,/m¢ # 0 for bosonic/fermionic

components of a hypermultiplet

e in Minkowski space time:
n ghv = phv

3 In L mp \ 4 QF(§)4 myr\ 2
E. = “x2N2T4|1 mb( ) _4\a ( f)
1= g" [ +{ ort \7) T T T T \7 ) T

4
_:i g:ﬁF.F@) (mf)2+6F. 1 (mb)4_|_
s Ar’ n " 3m \T b4z \ T

By ~ 0.9672, B; = 8.0000



e in FLRW:

ds; = gy datdz” = —dt* + a(t)* dz?

m FLRW cosmology as hydro:

local /comoving : ut = (1,0)

BUT: V-u=32%+#0
a

L Q a2 Yoy
TV-§S =((V-u) —I—ZUWJ +
-5 e a®s] 9(&)? =0
—> prediction verified in (1603.05344)
d 1
él_t ln[a3s] = f (V- u)2 : é

Vv Vv
computed from dynamical horizon agreement from Minkowski &
S



= We can prove a theorem (from Einstein equations applied to the area
growth of dynamical horizon):

d(a’s)
dt

>0

m Contribution to the production rate from operator of dimension A in, e.g,

de-Sitter cosmology (to leading order in 7+) reads:
3
d(a”s) _ N2(aT)2 a7 20 o Q2A
dt
where
©.@) H n
Qa =) cn(A) (T)

m ¢ coefficient describes entropy production due to bulk viscosity

—> ¢, for n > 1 can be computed (semi-)analytically:

Cn ~ nl, n>1



—> Thus, “hydrodynamics” of strongly coupled gauge theories in de Sitter

is an asymptotic expansion, with zero radius of convergence

—> To rephrase,
- eq . . 2 oo
T =T + 10, (a,{a, da}, ),
when organized as a series expansion in derivatives of the scale factor a is a

divergent series

—> This asymptotic series can be Borel-resumed; there are poles in the

Borel transform (resummation)



— Usually, there is an interesting physics associated with the poles of the

Borel transform of asymptotic expansion:

= in QED, it is related to the vacuum instability due to eTe™ pair production

once

m in theory of nonlinear elasticity, it is rated to the physics of the material

fracture (under stress)

m Here, it is related to the presence of the 'non-hydrodynamic’ excitations in
strongly coupled gauge theory plasma (black hole quasinormal modes —
QNM — in the dual gravitational description).



m We used Pade approximation of

oo

() =D e
n=0 )

to determine to location of the 10 leading singularities (poles) on the complex

Borel plane

m These poles were compared with the BH QNM computations for the
A = {2,3} computed by Nunez and Starinets in 2003
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—> We now move to study FLRW /de Sitter attractors:

N =4 SYM in FLRW CFT perspective

e FLRW is Weyl equivalent to Minkowski:

dt*
ds] = —dt* + a*(t) dz* = a(t)? (— ()2 + dw2> = qa” (—d’r2 + dw2>
a

7

“/”

2
dsMink:owsk:i

o if OA is a primary operator of dimension A,

= CL_A <OA>
FLRW

(Oa)

Minkowsk?

e stress-energy tensor is not a primary field:

a~* (T, + conformal anomaly

Minkowsk?



— for a trace of the stress-energy tensor

(T") =a* (T74) + 2 (RWRW — —RQ)
FLRW O Minkowski 24T\
=0 :_12(aa)§a
e.g., for N =4 SU(N) SYM,
1 N2 -\4
| = er o @)
rrrw  o(t) 3272 a
“Neppw  alt)? 8r2 | 4a* a3
2 ()2
(TH) _ot (g qgp) 3N (@)
" rLrw 82 a?




—> Minkowski space-time thermal equilibrium states of N'=4 SYM (strong

coupling) of temperature Tj:

3 1
50 = §7T2N2T61, PO = 560
—> in FLRW cosmology,
3 3N? (a)* 1 N? (a)%ad
E(t) = =m*N?T(t)* P(t) = =E(t) —
where T'(t) is the effective temperature
1o
T(t) = —=
(2) ot
— Stress-energy tensor in FLRW is covariantly conserved:
d&(t '
0= (V“T:) = % + 3% (E(t)+ P(t)) =0



—> entropy density

e In Minkowski space-time:

71.2

S — 7N2Tg

e Assuming the adiabatic expansion in FLRW, the co-moving entropy
density, Scomoving
Scomoving = a(t)’s(t)
is conserved:

d

p Scomoving — 0 — Scomoving — Scomoving — S0

2

s(t) = %NQT(t)3

e In expanding FLRW, with a(t) — oo as t — oo,

lim s(t) =0

t— 00



— Let’s rephrase the de Sitter entropy discussion in the language of the

entropy current S*:
e A locally static observer has u* = (1, 0)

o The entropy current (in Landau frame T(}ju, = 0) is

St = s ut

1 d 5 1 d
v ) S T &(t)3 dt (a’(t) S) T a(t)?) dtscomovzng(t) - O

That is is why N/ =4 SYM (same is true for any conformal theory!) in de
Sitter evolved to a trivial DF'P



How would a non-trivial DFP arise?

e Imagine that
lim s(t) = Sent # 0

t—00

This limit is natural to call the vacuum entanglement entropy density,

hence .t
e Then,
tli)rglo(v : S) =3 H Sepnt
where
H = tlggl()% Ina(t)

— In strongly coupled non-conformal theories with holographic dual

Sent > O



— N =4 SYM in FLRW holographic perspective

1 12
Sn=q4 = d°¢/—g |R+ —
N=4= 167TG5 / f [ * ]
w3
L4:€§ Ng%/Ma GE’:W’ 479829%/M

— (Consider general spatially homogeneous, time-dependent states:
dsz = 2dt (dr — Adt) + ¥* dz”
A= A(t,r), Y =X(t,r)



—> We are interested in spatially homogeneous and isotropic states
of N =4 SYM in FLRW, so the bulk metric warp approach the AdS

boundary r — oo as

a(t)r 0 1
=400, A= +00)
Indeed, as r — oo,
o 17 2 2 7.2
ds5:ﬁ —dt® + a(t)dx” | + - - -

A\ J/
N/

boundary FLRW




—> Given the metric ansatz, we can derive derive EOMs
(without loss of generality we set L = 2):

)
0=(dsX) +2%" dylny — 5

1
0=A"—-6(InX) d InX + 5

O — E//
0=d2% — 24 — (4A¥' + A'Y) dy InX + XA

where



— These equations can be solve in all generality for arbitrary a(t):

(r 4+ N)? a re
A= — A) — — X\ —
8 r+2 5 8at(r + A)2’
5 _ (r+XNa
2

where

m 7o is a single constant parameter

m \(¢) is an arbitrary function - the leftover diffeomorphism of the 5d
gravitational metric reparametrization r — 7 =1 — A\(¢):

A(t, ) = A(t,7) = A(t, 7 + X)) — A(t)
S(t,r) = S, T) = (T 4+ A1)

ds: = ds; = 2dt (dr — Adt) + %? dz?



— Identifying

— from holographic computation of the boundary stress energy tensor,

3 oo e, 3N (a) 1 N® (a)%a
E) = g N°T()' + o5, P(t)=3&(t) — 55
T(t):ﬂ

Precisely as expected from the Weyl transformation of the thermal
state from Minkowski to FLRW!



—> Holography buys us more:

e Chesler-Yaffe pioneered numerical studies of EF metrics:
dsz = 2dt (dr — Adt) + ¥* dz”

e such metrics has an apparent horizon (AH) at rag
To
di >’ =0 — rag = —— — A1)

r=raAHg a(t)

e causal dependence must include
r € [rag,+oo)
® region
r<TAH

is causally disconnected from the holographic dynamics and must be

excised



e AH is a dynamical horizon

3 N?rg

4G5 |, 1287

=TAH
\ v
e

comoving Bekenstein entropy of the AH

— Scomoving — a(t)gs(t) — —N2T03

A\ 4 2

~~

SYM comoving entropy density in FLRW

Precisely as expected from the CFT arguments!



— Nontrivial DFP

e The model:

1 1
Sy = dz*\/— [R +6—= (Vo) + ¢
2K My 2
o ¢ is dual to Oy,

L?m} = —2 — dim(Oy) = 2

e source terms for the gravitational evolution:
m the boundary metric is dSs,

ds3 = —dt* + et dz?

m mass scale A of the boundary QF153,

¢=%+O@”>



Recall: Sepny = limy o s(t)

96 Sent

wc H?

1=
/{,2 Sent 1 4 3 1 5 8 3 3359 10 3
o Zent  Zp1/3 4/ 2 g2/3 8/ 2297 61/3 /310
or 2 =60 P T P 5% P~ g0 +0 (p1)

Important:
d(CLQS) _ 2m (22)/ (d+¢)2 > 0
dt K2 »2+6



— DFP as a late-time attractor:

0.05F




— Spectrum of DFP fluctuations (aka QNMs):

N

I

o

©

==
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T| €
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Re[w®)]




— Approach to DFP via "QNMs’:

NM
§=[1- 09N (1)/0,(1)|

5.x1078

4.1 4.2 4.3 4.4

OgNM(t) _ OgFP 4 Z Ae—z’(det—l—phase)
QNM spectrum

e blue: n =2 QNM only

o red: n = 2,3 QNMs

e green: n = 2,3,4 QNMs



—> Holographic gravitational reheating:

d(a’*s) 2w

dt k2

(3%)

(d4¢)?
9 + 6 =

T=TAH

e consider a scale factor a(t) with a Hubble parameter:

H(t)/H

0.0

H(t) =

a
a

B H
14 exp(27t)

> 0

10
0.8
0.6
0.4:

0.2

Initiate exit

terminate exit

thermalizationf




1.0+

sk thermalization

H(t)/H

0.6 initiate exit
0,4} terminate exit

0.2+

0.0

e in the fast inflationary exit

5/ 5H H
ln%:/ dt H(t) = — — 0 as — =0

[
d(a?s) X > a;\’ DFP
720:>3tat23i%:>3t2373 o < Sent
t
H/v—0
[
DFP DFP
Seont — S(t) = Sthermal = Sent
~ t—+00

with further thermalization



2 scomoving( t)

2k




—> evolve until the inflationary exit state thermalizes at T’.: t1}. ~ 1

A
—:{0.55, 11, 2.2}
H ~~ N~ =~
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Conclusions:

e A new concept of DFP
e Massive QFT in de Sitter has finite physical entropy density Sen:

e In the exit from inflation s.,; can be harvested — this solves the problem
of the initial Hot Big Bang entropy without the inflaton reheating

— To do:
e understanding of weakly coupled DFP is missing
e finite coupling, finite-INV corrections
e formal: relation of s.,; to “simple entropy” of Engelhardt-Wall

e other examples (not dS flows) of DFPs



