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=⇒ some time last week:

Pavel: ′′ · · · · · · can you do it without holography?′′

me: ′′ · · · · · · no · · · · · ·′′



=⇒ some time last week:

Pavel: ′′ · · · · · · can you do it without holography?′′

me: ′′ · · · · · · no · · · · · ·′′

=⇒ BUT:

• Apart from a simple (physically useful) exercise we will not use

holography

• All results are phrased in the language of hydro

• All computations are studies of dynamical horizons of black

holes/branes, and following gauge/gravity (gravity/fluid) correspondence

interpreted as non-equilibrium (far-from-equilibrium) dynamics of

corresponding strongly-coupled QFTs



=⇒ the BENEFITS of holography:

• we can do all-derivative/all-gradient non-equilibrium QFT computations

• results interpreted within hydro gradient truncations teach:

what are specific terms that enter at the n-th order of derivative

expansion?

what are the explicit values of transport coefficients in terms of

microscopic parameters

η

s
=

1

4π
,

ζ

s
, · · ·

study transport in the vicinity of critical phenomena — find explicit

counter-examples of Onuki classification of bulk viscosity criticality

• study the nonadiabaticity (irreversibility) of off-equilibrium processes in

QFT (universality of driven quantum systems)

• Entropy current, thermalization, isotropization of QGP

• · · ·



=⇒ a class of problems: hydrodynamics in cosmology

• consider FLRW line element

ds2 = gµνdx
µdxν = −dt2 + a(t)2dx2

• the cosmological scale factor a(t) is governed by Einstein’s equations

coupled to matter:

Rµν − 1

2
Rgµν = 8πG Tµν

• under the symmetry assumptions, one typically postulates

Tµν ≡ T eq
µν = diag{ǫ, P, P, P} , with ǫ = ǫeq(P )



=⇒ a class of problems: hydrodynamics in cosmology

• consider FLRW line element

ds2 = gµνdx
µdxν = −dt2 + a(t)2dx2

• the cosmological scale factor a(t) is governed by Einstein’s equations

coupled to matter:

Rµν − 1

2
Rgµν = 8πG Tµν

• under the symmetry assumptions, one typically postulates

Tµν ≡ T eq
µν = diag{ǫ, P, P, P} , with ǫ = ǫ(P )

=⇒ in general, for an interactive QFT,

Rµν − 1

2
Rgµν

︸ ︷︷ ︸

classically

= 8πG Tµν
︸︷︷︸

〈Tµν〉FLRW

with

〈Tµν〉 = T eq
µν + Πµν(ȧ, {ȧ2, ä}, · · · )

︸ ︷︷ ︸

derivative corrections to equilibrium T eq
µν



=⇒ To summarize: we will be interested in:

〈Tµν〉{a(t)}

of strong coupled QFTs

=⇒ A hydro perspective:

Recall from previous talks: a boost-invariant expansion is a QFT dynamics

in Milne cosmology from the comoving fluid perspective:

ds2 = −dt2 + t2dξ2 + dx2
⊥ , uµ = (1, 0, 0, 0) =⇒ θ ≡ ∇µu

µ =
1

t

Likewise, a QFT dynamics in FLRW Universe is a spatially homogeneous

and isotropic flow form the comoving fluid perspective:

ds2 = −dt2 + a(t)2 dx2 , uµ = (1, 0, 0, 0) =⇒ θ ≡ ∇µu
µ = 3

ȧ

a



• A particular interesting flow is de Sitter expansion with

a(t) = eHt , H = const

• Note difference in the gradient scales relative to a local temperature scale

at late times:

boost-invariant —

T ∝ t−1/3 =⇒ lim
t→∞

θ

T
∝ lim

t→∞
t−2/3 = 0

dS —

T ∝ e−Ht =⇒ lim
t→∞

θ

T
∝ lim

t→∞
H · eHt → ∞

=⇒ we expect interesting late-time attractor in de Sitter:

Dynamical Fixed Point



Outline:
• FLRW Hydrodynamics

first-order hydro

resummation and non-hydrodynamic modes

• A trivial DFP: thermal states of N = 4 supersymmetric Yang-Mills

(SYM) in de Sitter

gauge theory perspective

holographic picture

de Sitter vacuum ’entanglement’ entropy

• Nontrivial DFP

we focus on QFT2+1

N = 2∗ and cascading DFP — see the literature

• Applications: holographic gravitational reheating

harvesting the entanglement entropy of de Sitter DFPs

• Conclusions and future directions



=⇒ Thermodynamic equilibrium is a late-time attractor of dynamical

evolution of isolated interacting quantum system:

lim
t→∞

Tµν(t,x) = diag (Eeq, Peq, · · ·Peq)

Tµν are the component of the stress-energy tensor of the system at time t

and the spatial location x

=⇒ We also have a theory — the hydrodynamics — that describes the

approach to that equilibrium (assuming we are not-far from it):

• ∇µT
µν = 0

• Tµν = Tµν
(0) + Tµν

(1) + Tµν
(2) + · · ·



•

Tµν = E uµuν + P (gµν + uµuν)
︸ ︷︷ ︸

O(∂0u)

+

[

−ησµν − ζ(gµν + uµuν)∇ · u
]

︸ ︷︷ ︸

O(∂1u): σµν∼∂µuν

+ [ · · · ]
︸ ︷︷ ︸

O(∂2u,(∂u)2)

+ · · ·

uµ — local fluid velocity

gµν — background metric

η, ζ — shear and bulk viscosities

expansion parameter of hydro as EFT:

1

T
· |∂u| ≪ 1

where T = T (t,x) is the local temperature

E + P = sT , dE = Tds



•

Sµ = s uµ
︸︷︷︸

O(∂0u)

+

[

− 1

T
· Tµν

(1)uν

]

︸ ︷︷ ︸

O(∂1u)

+ [ · · · ]
︸ ︷︷ ︸

O(∂2u,(∂u)2)

+ · · ·

from the conservation of the stress-energy tensor,

∇µT
µν = 0 =⇒

T ∇ · S = ζ (∇ · u)2 + η

2
σµνσ

µν ≥ 0

=⇒ As one approaches the equilibrium,

lim
t→∞

uµ = uµ
eq = (1,0) =⇒ lim

t→∞
T ∇ · S = 0

i.e., in the approach to equilibrium the entropy production rate vanishes



We can now provide a formal definition of a dynamical fixed point (DFP):

A Dynamical Fixed Point is an internal state of a quantum

field theory with spatially homogeneous and time-independent one-

point correlation functions of its stress energy tensor Tµν , and

(possibly additional) set of gauge-invariant local operators {Oi},
and

strictly positive divergence of the entropy current at late-times:

lim
t→∞

(

∇ · S
)

> 0

=⇒ Apart from the requirement of the strictly non-zero entropy production

rate at late times, characteristics of a DFP coincide with that of the

thermodynamic equilibrium.



Example: N = 2∗ QGP — one of the best understood non-conformal top-down holography

• N = 2∗: N = 4 SYM with mb/mf 6= 0 for bosonic/fermionic

components of a hypermultiplet

• in Minkowski space time:

gµν = ηµν

Eeq =
3

8
π2N2T 4

[

1+

{
ln T

mb

9π4

(mb

T

)4

+ · · ·
}

+

{

−2Γ
(
3
4

)4

3π4

(mf

T

)2

+ · · ·
}]

η

s
=

1

4π
,

ζ

η
= βΓ

f · Γ
(
3
4

)4

3π3

(mf

T

)2

+ βΓ
b · 1

432π2

(mb

T

)4

+ · · ·

where

βΓ
f ≈ 0.9672 , βΓ

b ≈ 8.0000



• in FLRW:

ds24 = gµνdx
µdxν = −dt2 + a(t)2 dx2

FLRW cosmology as hydro:

local/comoving : uµ = (1,0)

BUT : ∇ · u = 3
ȧ

a
6= 0

T ∇ · S
︸ ︷︷ ︸
T

a3 · d
dt

[a3s]

= ζ (∇ · u)2
︸ ︷︷ ︸

9( ȧ
a )

2

+
η

2
σµνσ

µν

︸ ︷︷ ︸

=0

+ · · ·

=⇒ prediction verified in (1603.05344)

d

dt
ln[a3s]

︸ ︷︷ ︸

computed from dynamical horizon

=
1

T
· (∇ · u)2 · ζ

s
︸ ︷︷ ︸

agreement from Minkowski ζ
s

+ · · ·



We can prove a theorem (from Einstein equations applied to the area

growth of dynamical horizon):

d(a3s)

dt
≥ 0

Contribution to the production rate from operator of dimension ∆ in, e.g,

de-Sitter cosmology (to leading order in m
T ) reads:

d(a3s)

dt
= N2(aT )2 a7−2∆ × Ω2

∆

where

Ω∆ ≡
∞∑

n=0

cn(∆)

(
H

T

)n

c0 coefficient describes entropy production due to bulk viscosity

=⇒ cn for n ≥ 1 can be computed (semi-)analytically:

cn ∼ n! , n ≫ 1



=⇒ Thus, “hydrodynamics” of strongly coupled gauge theories in de Sitter

is an asymptotic expansion, with zero radius of convergence

=⇒ To rephrase,

Tµν = T eq
µν +Πµν(ȧ, {ȧ2, ä}, · · · ),

when organized as a series expansion in derivatives of the scale factor a is a

divergent series

=⇒ This asymptotic series can be Borel-resumed; there are poles in the

Borel transform (resummation)



=⇒ Usually, there is an interesting physics associated with the poles of the

Borel transform of asymptotic expansion:

in QED, it is related to the vacuum instability due to e+e− pair production

once

e2 → −e2

in theory of nonlinear elasticity, it is rated to the physics of the material

fracture (under stress)

Here, it is related to the presence of the ’non-hydrodynamic’ excitations in

strongly coupled gauge theory plasma (black hole quasinormal modes —

QNM — in the dual gravitational description).



We used Pade approximation of

Ω
(B)
∆ (ξ) =

∞∑

n=0

cn
n!

ξn

to determine to location of the 10 leading singularities (poles) on the complex

Borel plane

These poles were compared with the BH QNM computations for the

∆ = {2, 3} computed by Nunez and Starinets in 2003



Positions on the Borel plane of 10 singularities ξ0 closest to the origin for

Ω
(B)
∆=2 (left) and Ω

(B)
∆=3 (right) are given by solid circles. Crosses correspond

to QNM frequencies. One observes a remarkable agreement between the

singularities and the QNMs at a fraction of a percent or better.



=⇒ We now move to study FLRW/de Sitter attractors:

N = 4 SYM in FLRW CFT perspective

• FLRW is Weyl equivalent to Minkowski:

ds24 = −dt2 + a2(t) dx2 = a(t)2
(

− dt2

a(t)2
+ dx2

)

= a2
(

−dτ2 + dx2

)

︸ ︷︷ ︸

ds2
Minkowski

• if O∆ is a primary operator of dimension ∆,

〈O∆〉
∣
∣
∣
∣
FLRW

= a−∆ 〈O∆〉
∣
∣
∣
∣
Minkowski

• stress-energy tensor is not a primary field:

〈Tµν〉
∣
∣
∣
∣
FLRW

= a−4 〈Tµν〉
∣
∣
∣
∣
Minkowski

+ conformal anomaly



=⇒ for a trace of the stress-energy tensor

〈Tµ
µ 〉

∣
∣
∣
∣
FLRW

= a−4 〈Tµ
µ 〉

∣
∣
∣
∣
Minkowski

︸ ︷︷ ︸

=0

+
c

24π3

(

RµνR
µν − 1

3
R2

)

︸ ︷︷ ︸

=−12 (ȧ)2ä

a3

e.g., for N = 4 SU(N) SYM,

− 〈T t
t 〉
∣
∣
∣
∣
FLRW

=
1

a(t)4
E +

3N2

32π2

(ȧ)4

a4

〈Tx

x
〉
∣
∣
∣
∣
FLRW

=
1

a(t)4
P +

N2

8π2

{
(ȧ)4

4a4
− (ȧ)2ä

a3

}

〈Tµ
µ 〉

∣
∣
∣
∣
FLRW

= a−4

(

−E + 3P

)

︸ ︷︷ ︸

=0

−3N2

8π2

(ȧ)2ä

a3



=⇒ Minkowski space-time thermal equilibrium states of N = 4 SYM (strong

coupling) of temperature T0:

E0 =
3

8
π2N2T 4

0 , P0 =
1

3
E0

=⇒ in FLRW cosmology,

E(t) = 3

8
π2N2T (t)4 +

3N2

32π2

(ȧ)4

a4
, P (t) =

1

3
E(t)− N2

8π2

(ȧ)2ä

a3

where T (t) is the effective temperature

T (t) =
T0

a(t)

=⇒ Stress-energy tensor in FLRW is covariantly conserved:

0 = 〈∇µT ν
µ 〉 ⇐⇒ dE(t)

dt
+ 3

ȧ

a
(E(t) + P (t)) = 0



=⇒ entropy density

• In Minkowski space-time:

s0 =
π2

2
N2T 3

0

• Assuming the adiabatic expansion in FLRW, the co-moving entropy

density, scomoving,

scomoving ≡ a(t)3s(t)

is conserved:

d

dt
scomoving = 0 =⇒ scomoving = scomoving

∣
∣
∣
∣
t=0

= s0

=⇒
s(t) =

π2

2
N2T (t)3

• In expanding FLRW, with a(t) → ∞ as t → ∞,

lim
t→∞

s(t) = 0



=⇒ Let’s rephrase the de Sitter entropy discussion in the language of the

entropy current Sµ:

• A locally static observer has uµ = (1,0)

• The entropy current (in Landau frame Tµν
(1)uν = 0) is

Sµ = s uµ

=⇒
∇ · S =

1

a(t)3
d

dt

(
a(t)3s

)
=

1

a(t)3
d

dt
scomoving(t) = 0

That is is why N = 4 SYM (same is true for any conformal theory!) in de

Sitter evolved to a trivial DFP



How would a non-trivial DFP arise?

• Imagine that

lim
t→∞

s(t) = sent 6= 0

This limit is natural to call the vacuum entanglement entropy density,

hence ent

• Then,

lim
t→∞

(

∇ · S
)

= 3 H sent

where

H = lim
t→∞

d

dt
ln a(t)

=⇒ In strongly coupled non-conformal theories with holographic dual

sent > 0



=⇒ N = 4 SYM in FLRW holographic perspective

SN=4 =
1

16πG5

∫

M5

d5ξ
√−g

[

R+
12

L2

]

L4 = ℓ4s Ng2YM , G5 =
πL3

2N2
, 4πgs = g2YM

=⇒ Consider general spatially homogeneous, time-dependent states:

ds25 = 2dt (dr −Adt) + Σ2 dx2

A = A(t, r) , Σ = Σ(t, r)



=⇒ We are interested in spatially homogeneous and isotropic states

of N = 4 SYM in FLRW, so the bulk metric warp approach the AdS

boundary r → ∞ as

Σ =
a(t)r

L
+O(r0) , A =

r2

2L2
+O(r1)

Indeed, as r → ∞,

ds25 =
r2

L2

(

−dt2 + a(t)2dx2

)

︸ ︷︷ ︸

boundary FLRW

+ · · ·



=⇒ Given the metric ansatz, we can derive derive EOMs

(without loss of generality we set L = 2):

0 = (d+Σ)
′ + 2Σ′ d+ lnΣ− Σ

2

0 = A′′ − 6(lnΣ)′ d+ lnΣ +
1

2

0 = Σ′′

0 = d2+Σ− 2AΣ′ − (4AΣ′ +A′Σ) d+ lnΣ + ΣA

where

′ =
∂

∂r
, ˙ =

∂

∂t
, d+ =

∂

∂t
+A

∂

∂r



=⇒ These equations can be solve in all generality for arbitrary a(t):

A =
(r + λ)2

8
− (r + λ)

ȧ

a
− λ̇− r40

8a4(r + λ)2
,

Σ =
(r + λ)a

2

where

r0 is a single constant parameter

λ(t) is an arbitrary function - the leftover diffeomorphism of the 5d

gravitational metric reparametrization r → r̄ = r − λ(t):

A(t, r) → Ā(t, r̄) = A(t, r + λ(r))− λ̇(t)

Σ(t, r) → Σ̄(t, r̄) = Σ(t, r + λ(t))

=⇒
ds25 =⇒ ds̄25 = 2dt (dr̄ − Ādt) + Σ̄2 dx2



=⇒ Identifying
r0
2

≡ T0

=⇒ from holographic computation of the boundary stress energy tensor,

E(t) = 3

8
π2N2T (t)4 +

3N2

32π2

(ȧ)4

a4
, P (t) =

1

3
E(t)− N2

8π2

(ȧ)2ä

a3

T (t) =
T0

a(t)

Precisely as expected from the Weyl transformation of the thermal

state from Minkowski to FLRW!



=⇒ Holography buys us more:

• Chesler-Yaffe pioneered numerical studies of EF metrics:

ds25 = 2dt (dr −Adt) + Σ2 dx2

• such metrics has an apparent horizon (AH) at rAH

d+Σ

∣
∣
∣
∣
r=rAH

= 0 =⇒ rAH =
r0
a(t)

− λ(t)

• causal dependence must include

r ∈ [rAH ,+∞)

• region

r < rAH

is causally disconnected from the holographic dynamics and must be

excised



• AH is a dynamical horizon

•

Σ3

4G5

∣
∣
∣
∣
r=rAH

︸ ︷︷ ︸

comoving Bekenstein entropy of the AH

=
N2r30
128π

= scomoving
︸ ︷︷ ︸

SYM comoving entropy density in FLRW

= a(t)3s(t) =
π2

2
N2T 3

0

Precisely as expected from the CFT arguments!



=⇒ Nontrivial DFP

• The model:

S4 =
1

2κ2

∫

M4

dx4√−γ

[

R+ 6− 1

2
(∇φ)

2
+ φ2

]

• φ is dual to Oφ,

L2m2
φ = −2 =⇒ dim(Oφ) = 2

• source terms for the gravitational evolution:

the boundary metric is dS3,

ds23 = −dt2 + e2Htdx2

mass scale Λ of the boundary QFT3,

φ =
Λ

r
+O(r−2)



Recall: sent = limt→∞ s(t)

2 4 6 8 10

0.05

0.10

0.15

0.20

0.25

0.30

96
πc

sent

H2

p1 ≡ Λ
H

κ2

2π

sent
H2

=
1

6
61/3 p

4/3
1 − 1

12
p21 −

5

216
62/3 p

8/3
1 − 3359

311040
61/3 p

10/3
1 +O

(
p41
)

Important:

d(a2s)

dt
=

2π

κ2
(Σ2)′

(d+φ)
2

φ2 + 6

∣
∣
∣
∣
r=rAH

≥ 0



=⇒ DFP as a late-time attractor:

1 2 3 4 5 6

-0.10

-0.05

0.05

Ht

384
c

Oφ(t)
H2 − Λ

H



=⇒ Spectrum of DFP fluctuations (aka QNMs):

2 4 6 8 10

2.5

3.0

3.5

4.0

4.5

5.0

−Im[ω̂(n)]

Λ
H 2 4 6 8 10

0.5

1.0

1.5

Re[ω̂(3)]

Λ
H

ω̂ ≡ ω

H



=⇒ Approach to DFP via ’QNMs’:

4.1 4.2 4.3 4.4

5.×10-8

1.×10-7

1.5×10-7

2.×10-7

2.5×10-7

3.×10-7

Ht

δ = |1−OQNM
φ (t)/Oφ(t)|

4.1 4.2 4.3 4.4

5.×10-10

1.×10-9

1.5×10-9

2.×10-9

Ht

δ = |1−OQNM
φ (t)/Oφ(t)|

OQNM
φ (t) = ODFP

φ +
∑

QNM spectrum

Ae−i(ω̂Ht+phase)

• blue: n = 2 QNM only

• red: n = 2, 3 QNMs

• green: n = 2, 3, 4 QNMs



=⇒ Holographic gravitational reheating:

•

d(a2s)

dt
=

2π

κ2
(Σ2)′

(d+φ)
2

φ2 + 6

∣
∣
∣
∣
r=rAH

≥ 0

• consider a scale factor a(t) with a Hubble parameter:

H(t) ≡ ȧ

a
=

H

1 + exp(2γt)

- 10 - 5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0

DFP

initiate exit

terminate exit

thermalization

γt

H
(t
)/
H



- 10 - 5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0

DFP

initiate exit

terminate exit

thermalization

γt
H
(t
)/
H

• in the fast inflationary exit

ln
at
ai

=

∫ 5/γ

−5/γ

dt H(t) =
5H

γ
→ 0 as

H

γ
→ 0

•

d(a2s)

dt
≥ 0 =⇒ sta

2
t ≥ sia

2
i =⇒ st ≥ si

(
ai
at

)2

≈
︸︷︷︸

H/γ→0

sDFP
ent

•

sDFP
ent −→

︸︷︷︸

with further thermalization

s(t)

∣
∣
∣
∣
t→+∞

= sthermal ≥ sDFP
ent



log10
γ

H
=

{

−1
︸︷︷︸

blue

, 0
︸︷︷︸

green

, 1
︸︷︷︸

magenta

, 2
︸︷︷︸

grey dashed

, 3
︸︷︷︸

black

}



=⇒ evolve until the inflationary exit state thermalizes at Tr: tTr ∼ 1

Λ

H
=

{

0.55
︸︷︷︸

orange

, 1.1
︸︷︷︸

magenta

, 2.2
︸︷︷︸

blue

}

-1 0 1 2 3

0.05

0.10

0.15

log10
γ

H

T
r

H

0.0 0.5 1.0 1.5 2.0 2.5

0.00

0.05

0.10

0.15

0.20

Λ

H
with

H

γ
=0

T
rm
a
x

H

Tmax
r

H
≈ 32/3

27/3π

(
Λ

H

)2/3

, as
Λ

H
→ 0



Conclusions:

• A new concept of DFP

• Massive QFT in de Sitter has finite physical entropy density sent

• In the exit from inflation sent can be harvested — this solves the problem

of the initial Hot Big Bang entropy without the inflaton reheating

=⇒ To do:

• understanding of weakly coupled DFP is missing

• finite coupling, finite-N corrections

• formal: relation of sent to “simple entropy” of Engelhardt-Wall

• other examples (not dS flows) of DFPs


