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Goal:

Understand bubble wall velocities at strong coupling...
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Introduction

I At a 1st order phase transition T = Tc , we can have domains of
coexisting phases separated by domain walls

I The pressures on both sides are balanced and the domain wall can
be static...

Question: What happens when we move away from T = Tc?

I This can occur for nucleated bubbles of a stable phase within an
supercooled medium

I At an interface between phases away from T = Tc

I Or an interface between phases at different temperatures
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I The pressures on both sides are not balanced so one would expect
accelerated motion...

I ...but this does not happen — the domain wall ultimately moves
with a constant velocity...

I Common lore: friction in the second phase balances the net force
— challenging to calculate...

Our claim: At strong coupling (+ some entropy ratio assumptions),
the domain wall velocity can be understood in a much simpler way
using essentially only the equation of state...
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Recall the standard picture:

I The net force across the domain wall implies that the pressure
difference is localized close to the domain wall...

I It is not obvious a-priori if this is always the case...

Perform holographic simulations and read off the pressure profile...
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Holographic setups

1. Holographic gravity+scalar bottom-up model with a transition
between two deconfined phases

full holographic simulation

2. Witten model in 3D – confinement/deconfinement transition

use simplified model
(basically extended hydrodynamics)
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Nonconformal bottom-up model

I We use a gravity+scalar field system in D = 3 + 1 bulk dimensions

V (Φ) = −6 cosh
(

Φ√
3

)
− 0.2 Φ4

I The theory exhibits two deconfined phases

studied in RJ, Jankowski, Soltanpanahi 1704.05387, +Belantuono 1906.00061

I Since there is a horizon in both phases it is much easier to setup a
numerical relativity computation

I Consequently, we can study directly the gravitational holographic
description... includes all non-equilibirum/dissipative effects!
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Confinement/deconfinement transition – the Witten model
I As an example of a holographic theory with a 1st order

confinement/deconfinement phase transition we use (a d = 3 variant
of) the Witten model of ’98

I A domain wall solution interpolating between confining and deconf.
phase was found numerically Aharony, Minwalla, Weisman ’05

I Due to different topologies for the two phases, incorporating time
dependence numerically is extremely nontrivial...
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Interlude: an extension of hydrodynamics

Use instead an effective boundary description:
RJ, M. Järvinen, J. Sonnenschein 2106.02642

1. Should incorporate hydrodynamics for the deconfined phase

T deconf
µν = phydro(T ) (ηµν + 4uµuν)

for the d = 3 Witten model phydro(T ) = T 4

2. Should incorporate confining vacuum

T conf
µν = ηµν

ignoring the compactified φ circle...

3. Should reasonably describe the AMW domain wall...
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Interlude: an extension of hydrodynamics

I 1
2 (Ttt + Tφφ) from the numerical holographic AMW solution

I Excellent fit by

1− γ(x) =
1
2

(
1 + tanh

q∗x
2

)
γ = 0 deconf. phase, γ = 1 conf. phase

I The field γ looks like a QNM with ω = 0 and imaginary k
(c.f. Sonner, Withers)

I Add γ to the hydrodynamic degrees of freedom!
I The tanh x profile could come from a scalar field Lagrangian with a

quartic potential
V (γ) = γ2(1− γ)2
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Interlude: an extension of hydrodynamics

How to couple γ to hydrodynamics?

I We would like to have

Tµν ∼ (1− γ)T deconf
µν + γT conf

µν + T Σ
µν(γ, uµ,T )︸ ︷︷ ︸
surface tension

I Use a Lagrangian formulation to get the Tµν ...
I The first term can be obtained using an action formulation for

hydrodynamics of Haehl, Loganayagam, and Rangamani

L = (1− γ)phydro(T ) + γ + L(γ,T )

which would lead to the above energy-momentum tensor...
I The Lagrangian L(γ,T ) should be essentially scalar field + quartic

potential
I uµ dependence in T Σ

µν follows from T -dependence in L(γ,T )
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Interlude: an extension of hydrodynamics

L = [(1− Γ(γ))phydro(T ) + Γ(γ)]−a(γ)Tα

(
1
2

(∂γ)2 + Tβ q2∗
2
γ2(1− γ)2

)
close to T = Tc = 1

with

This description (option B) promotes the “order parameter”
characterizing the phase to a dynamical field and couples it in a natural
way to hydrodynamics...

Equations of motion:

∂µTµν = 0 for uµ, T

EOM(L) = 0 for γ

This framework seems to be very general...
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Return to domain wall velocities:
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Domain wall velocity – simplest scenario

I We increase the temperature of the high energy phase...
I The initial conditions can be easily constructed as

gµν(x , z , t = 0) =
1
2

(1− tanh q∗x) g HIGH
µν (z) +

1
2

(1 + tanh q∗x) g LOW
µν (z)

or as

γ(x , t = 0) =
1
2

(1 + tanh q∗x)

I The pressure in each phase may be read off from the T yy

component of the energy-momentum tensor
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Spacetime pressure profiles

We obtain a similar picture both in

1. the simplified treatment of the Witten model

2. the full holographic simulations of the nonconformal gravity+scalar
model

Key features:

I The large pressure difference appears away from the domain wall
I The change in pressures occurs in the high energy density phase

−→ hydrodynamic description
I The pressure is essentially constant across the domain wall, and very

close to p(Tc )...
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What happens in the high energy phase?
Recall the pressure profiles:

Analyze

I T xt can be translated into hydrodynamic velocity vhydro

I The velocity of the plasma close to the domain wall very close to the
domain wall velocity...
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Why vhydro ' vdomain wall ?

I Consider the rest frame of the domain wall between high-energy and
low-energy phases vhydro = vH + vdomain wall

I Conservation of energy-momentum links the respective
hydrodynamic parameters on both sides of the domain wall

Gyulassy, Kajantie et.al. ’84, Espinoza et.al. 1004.4187

vH

vL
=
εL + pH

εH + pL
vH vL =

pH − pL

εH − εL

I We have
vH =

εL + pH

εH + pL
vL <

εL + pH

εH + pL︸ ︷︷ ︸
small?

∼ sL

sH

I Then vH is small −→ fluid velocity in the high energy phase should
be close to the domain wall velocity

It is enough to compute the hydrodynamic fluid velocity to get the
domain wall velocity!
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Formula for domain wall velocity

I Since vdomain wall ' vfluid , we may access the domain wall velocity
through a hydrodynamic computation!

I The hydrodynamic wave solution supporting the pressure difference
should interpolate between static plasma with pA > pc and plasma
with p = pc moving with the domain wall velocity.

Linearized approximation

p = pref + δp uµ = (coshα, sinhα, 0)

then

δp = f (x + cst) α = − f (x + cst)

(εref + pref )cs
+ const

imposing boundary conditions yields

vdomain wall ' vfluid ∼ tanh
∆p

(εref + pref )cs

Consistent with numerics for small ∆p
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How good is the linearized approximation?

I For moderate ∆p we see a dependence on the reference point used
for the linearized approximation

I This implies that hydrodynamics should be treated at the nonlinear
level...
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Nonlinear treatment

I A nonlinear analog of the linearized hydrodynamic wave moving in
one direction is a so-called simple wave (c.f. Landau, Fluid
mechanics)

I One assumes that all hydrodynamic quantities are functions of a
single variable (e.g. pressure)

I Then one gets

vdomain wall = tanh
∫ pA

pc

1
(ε+ p)cs

dp = tanh
∫ TA

Tc

1
Tcs

dT
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Second scenario: nucleated bubbles in a supercooled phase

velocity profile
I The small bubble of the stable low energy

phase is on the left
I The environment is the supercooled high

energy phase
I Inside the bubble the fluid is eventually at

rest...
I There is a hydrodynamic “wave” travelling in

front of the expanding bubble...
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I Use the exterior supercooled phase for the hydrodynamic simple
wave... high entropy phase

I The pressure profile (at around t = 1000 from the previous plot):

overall pressure difference is again accounted by the hydrodynamic
wave in the supercooled (high energy) phase!

I The hydrodynamic wave moves now in the same direction as the
domain wall

I As the boundary condition for the simple wave take the pressure in
the bubble...
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(provisional formula):

vdomain wall ∼ vhydro = tanh
∫ pC

pA

1
(ε+ p)cs

dp = tanh
∫ TC

TA

1
Tcs

dT

this can be slightly improved...
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I Recall from the velocity profile that the fluid in the bubble was
practically at rest...

I This means that the velocity of the low energy phase in the domain
wall rest frame is vL = −vdomain wall

I Compute from the junction condition vH = εL+pH
εH +pL

vL...
I Move back to the laboratory frame

v lab
H =

(
1− εL + pH

εH + pL

)
· vdomain wall

I This leads to a correction term in the formula

vdomain wall =
1

1− εL+pH
εH +pL

tanh
∫ pC

pA

1
(ε+ p)cs

dp
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Nucleated bubble wall velocity

We also checked our formula with
the numerical simulations of

Bea, Mateos et.al. 2104.05708
– a 5D gravity+scalar system

slope =
εH

εH − εL

1
cs |T =Tc
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Summary

I At strong coupling, the pressure difference between the phases is not
localized in the vicinity of the domain wall

I ... but within a hydrodynamic wave in the high entropy phase
I The fluid velocity in the vicinity of the domain wall is close to the

fluid velocity
I This allows for providing a very simple hydrodynamic formula for the

domain wall velocity
I The resulting formula is expressed purely in terms of the equation of

state
I The formula may give a simple reference estimate for domain wall

velocity...
I Interesting to apply this physical picture to other settings...
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