Monodromy Relations in Higher-Loop String Amplitudes

$\overline{\text { Max-Planck-Institut für Physik }}$

Stephan Stieberger, MPP München

Scattering Amplitudes: from Gauge Theory to Gravity Kavli Institute for Theoretical Physics University of California, Santa Barbara April 17-21, 2017
S. Hohenegger, St.St.:

Monodromy Relations in Higher-Loop String Amplitudes, [arXiv:1702.04963]
work in progress

Tree-level disk world-sheet:

I. Tree-level amplitude relations

$$
A(1, \ldots, N)=V_{\mathrm{CKG}}^{-1} \int_{z_{1}<\ldots<z_{N}}\left(\prod_{j=1}^{N} d z_{j}\right) \sum_{\mathcal{K}_{I}} \mathcal{K}_{I} \prod_{i<j}^{N}\left|z_{i}-z_{j}\right|^{s_{i j}}\left(z_{i}-z_{j}\right)^{n_{i j}^{I}}
$$

by analytically continuing the z_{1}-integration to the whole complex plane and integrating z_{1} along the contour integral

$$
A(1,2, \ldots, N)+e^{i \pi s_{12}} A(2,1,3, \ldots, N-1, N)+e^{i \pi\left(s_{12}+s_{13}\right)} A(2,3,1, \ldots, N-1, N)
$$

$$
+\ldots+e^{i \pi\left(s_{12}+s_{13}+\ldots+s_{1 N-1}\right)} A(2,3, \ldots, N-1,1, N)=0
$$

monodromy relations

- proof does not rely on any kinematic properties of subamplitudes
- for any open string state: boson or fermion
- these relations hold in any space-time dimensions D
- for any amount of supersymmetry

Take $\alpha^{\prime} \rightarrow 0$ limit: $\quad e^{\pi i s_{i j}}=1+\pi i s_{i j}+\mathcal{O}\left(\alpha^{\prime 2}\right)$
(real part) field-theory relations (Kleiss-Kuijf relations):
$A_{Y M}(1,2, \ldots, N)+A_{Y M}(2,1,3, \ldots, N-1, N)+\ldots+A_{Y M}(2,3, \ldots, N-1,1, N)=0$
(imaginary part) field-theory relations (BCJ relations):
$s_{12} A_{Y M}(2,1,3, \ldots, N-1, N)+\ldots+\left(s_{12}+s_{13}+\ldots+s_{1 N-1}\right) A_{Y M}(2,3, \ldots, N-1,1, N)=0$
proof of BCJ relations from string theory !
subamplitude relations in string theory

$$
\text { E.g. } N=4: \quad \frac{A(1,2,4,3)}{A(1,2,3,4)}=\frac{\sin (\pi u)}{\sin (\pi t)} \quad, \quad \frac{A(1,3,2,4)}{A(1,2,3,4)}=\frac{\sin (\pi s)}{\sin (\pi t)}
$$

As a result these relations allow to express all six partial amplitudes in terms of one, say $A(1,2,3,4)$:

$$
\begin{aligned}
& A(1,4,3,2)=A(1,2,3,4) \\
& A(1,2,4,3)=A(1,3,4,2)=\frac{\sin (\pi u)}{\sin (\pi t)} A(1,2,3,4) \\
& A(1,3,2,4)=A(1,4,2,3)=\frac{\sin (\pi s)}{\sin (\pi t)} A(1,2,3,4) .
\end{aligned}
$$

generic N :
these relations allow for a complete reduction of the full string subamplitudes to a minimal basis of
(N-3)! dimensional basis of subamplitudes

II. One-loop amplitude relations

$$
\begin{aligned}
\mathfrak{A}_{N}^{(1)} & =g_{Y M}^{N}\left\{N_{c} \sum_{\sigma \in S_{N-1}} \operatorname{Tr}\left(T^{a_{\sigma(1)}} \ldots T^{a_{\sigma(N)}}\right) A^{(1)}(\sigma(1), \ldots, \sigma(N))\right. \\
& +\sum_{c=2}^{\left\lfloor\frac{N}{2}\right\rfloor+1} \sum_{\sigma \in S_{N} / S_{N ; c}} \operatorname{Tr}\left(T^{a_{\sigma(1)}} \ldots T^{\left.a_{\sigma(c-1)}\right)} \operatorname{Tr}\left(T^{a_{\sigma(c)}} \ldots T^{a_{\sigma(N)}}\right)\right. \\
& \left.\times A^{(1)}(\sigma(1), \ldots, \sigma(c-1) \mid \sigma(c), \ldots, \sigma(N))\right\}
\end{aligned}
$$

One-loop cylinder world-sheet:

dual (closed string) channel:

bosonic Green functions: $\quad G(z, \tau)=\ln \left|\frac{\theta_{1}(z, \tau)}{\theta_{1}^{\prime}(0, \tau)}\right|^{2}$ $G_{T}(z, \tau)=\ln \left|\frac{\theta_{4}(z, \tau)}{\theta_{1}^{\prime}(0, \tau)}\right|^{2}$
$A^{(1)}(1, \ldots, N)=\delta\left(k_{1}+\ldots k_{N}\right) \int_{0}^{\infty} d l V_{\mathrm{CKG}}^{-1} \int_{\mathcal{I}_{1}} \prod_{i=1}^{N} d z_{i} P_{N}\left(z_{1}, \ldots, z_{N}, \tau\right) \exp \left\{\frac{1}{2} \sum_{1 \leq i<j \leq N} s_{i j} G\left(z_{j i}, \tau\right)\right\}$

elliptic functions (Jacobi theta functions):

$$
\begin{gathered}
\theta_{1}(z, \tau)=\theta\left[\begin{array}{l}
1 \\
1
\end{array}\right](z, \tau) \quad, \quad \theta_{4}(z, \tau)=\theta\left[\begin{array}{l}
0 \\
1
\end{array}\right](z, \tau) \\
\theta\left[\begin{array}{l}
a \\
b
\end{array}\right]\left(z+\frac{\epsilon_{1}}{2} \tau+\frac{\epsilon_{2}}{2}, \tau\right)=e^{-\frac{i \pi \tau}{4}} \epsilon_{1}^{2}-\frac{i \pi \epsilon_{1}}{2}(2 z-b)-\frac{i \pi}{2} \epsilon_{1} \epsilon_{2} \\
\theta\left[\begin{array}{l}
a-\epsilon_{1} \\
b-\epsilon_{2}
\end{array}\right](z, \tau) \\
\ln \frac{\theta_{1}(z+1, \tau)}{\theta_{1}^{\prime}(0, \tau)}=\ln \frac{\theta_{1}(z, \tau)}{\theta_{1}^{\prime}(0, \tau)}+i \pi \\
\ln \frac{\theta_{4}(z+1, \tau)}{\theta_{1}^{\prime}(0, \tau)}=\ln \frac{\theta_{4}(z, \tau)}{\theta_{1}^{\prime}(0, \tau)} \\
\ln \frac{\theta_{1}\left(z+\frac{\tau}{2}, \tau\right)}{\theta_{1}^{\prime}(0, \tau)}=\ln \frac{\theta_{4}(z, \tau)}{\theta_{1}^{\prime}(0, \tau)}-\frac{1}{4} i \pi \tau+\frac{1}{2} i \pi-i \pi z \\
\ln \frac{\theta_{4}\left(z+\frac{\tau}{2}, \tau\right)}{\theta_{1}^{\prime}(0, \tau)}=\ln \frac{\theta_{1}(z, \tau)}{\theta_{1}^{\prime}(0, \tau)}-\frac{1}{4} i \pi \tau+\frac{1}{2} i \pi-i \pi z
\end{gathered}
$$

planar monodromy relation:

consider contour integral w.r.t. holomorphic coordinate x_{1} :

$a^{(1)}\left(i_{1}, i_{2}, i_{3}, i_{4}\right)=V_{\mathrm{CKG}}^{-1} P_{4} \int_{0}^{1} d x_{i_{4}} \int_{0}^{x_{i_{4}}} d x_{i_{3}} \int_{0}^{x_{i_{3}}} d x_{i_{2}} \int_{0}^{x_{i_{2}}} d x_{i_{1}} \prod_{1 \leq a<b \leq 4}\left(\frac{\theta_{1}\left(x_{i_{b} i_{a}}, i \ell\right)}{\theta_{1}^{\prime}(0, i \ell)}\right)^{s_{i_{a} i_{b}}}$
$\tilde{a}^{(1)}\left(i_{1}, i_{2}, i_{3} \mid j\right)=V_{\mathrm{CKG}}^{-1} P_{4} \int_{0}^{1} d x_{i_{3}} \int_{0}^{x_{i_{3}}} d x_{i_{2}} \int_{0}^{x_{i_{2}}} d x_{i_{1}} \int_{0}^{x_{i_{1}}} d x_{j} \exp \left\{i \pi \sum_{l=1}^{3} s_{j i_{l}} x_{j i_{l}}\right\}$
$\times \prod_{a=1}^{3}\left(\frac{\theta_{4}\left(x_{j i_{a}}, i l\right)}{\theta_{1}^{\prime}(0, i l)}\right)^{s_{j i_{a}}} \prod_{1 \leq a<b \leq 3}\left(\frac{\theta_{1}\left(x_{i_{b} i_{a}}, i l\right)}{\theta_{1}^{\prime}(0, i l)}\right)^{s_{i_{a} i_{b}}}$

Monodromy relations

planar monodromy relation:

$$
\begin{aligned}
& A^{(1)}(1,2,3,4)+e^{i \pi s_{12}} A^{(1)}(2,1,3,4)+e^{i \pi\left(s_{12}+s_{13}\right)} A^{(1)}(2,3,1,4) \\
= & \tilde{A}^{(1)}(2,3,4 \mid 1)+e^{i \pi s_{12}} \tilde{A}^{(1)}(3,4,2 \mid 1)+e^{i \pi\left(s_{12}+s_{13}\right)} \tilde{A}^{(1)}(4,2,3 \mid 1)
\end{aligned}
$$

generalization to arbitrary N is straightforward

non-planar monodromy relation:

consider contour integral w.r.t. holomorphic coordinate x_{1} :
integrate along
single-valued function

generalization to arbitrary N is straightforward

field-theory limit (I):

$$
A_{Y M}^{(1)}(1 \mid 2,3,4)=-A_{Y M}^{(1)}(1,2,3,4)-A_{Y M}^{(1)}(2,1,3,4)-A_{Y M}^{(1)}(2,3,1,4)
$$

$$
\begin{aligned}
A_{Y M}^{(1)}(1,2 \mid 3,4) & =A_{Y M}^{(1)}(1,2,3,4)+A_{Y M}^{(1)}(1,3,2,4)+A_{Y M}^{(1)}(2,1,3,4) \\
& +A_{Y M}^{(1)}(2,3,1,4)+A_{Y M}^{(1)}(3,1,2,4)+A_{Y M}^{(1)}(3,2,1,4)
\end{aligned}
$$

corresponds to leading order in field-theory (real part or KK like relations) agrees with Bern, Dixon, Dunbar, Kosower (1994)

We have performed various checks by computing α^{\prime} - expansions in two regimes:

- field-theory limit: non-analytic terms, branch cuts in kinematic invariants stemming from boundaries of moduli space of Riemann surface effects can be decoupled in the limit $\tau \rightarrow i \infty$
lowest order yields N=4 SYM
- finite τ : perform α^{\prime} - expansion and get analytic terms

$$
\begin{aligned}
\exp \left\{\frac{1}{2} \sum_{1 \leq i<j \leq N} s_{i j} G\left(z_{j}-z_{i}, \tau\right)\right\} & =1+\frac{1}{2} \sum_{1 \leq i<j \leq N} s_{i j} G\left(x_{j}-x_{i}, \tau\right)+\mathcal{O}\left(\alpha^{\prime 2}\right), \\
\exp \left\{\frac{1}{2} \sum_{\substack{1 \leq i \leq N_{1} \\
N_{1}+1 \leq j \leq N_{2}}} s_{i j} G_{T}\left(z_{j}-z_{i}+\frac{i l}{2}, \tau\right)\right\} & =1+\frac{1}{2} \sum_{\substack{1 \leq i \leq N_{1} \\
N_{1}+1 \leq j \leq N_{2}}} s_{i j} G_{T}\left(x_{j}-x_{i}, \tau\right)+\mathcal{O}\left(\alpha^{\prime 2}\right)
\end{aligned}
$$

$$
x_{l} \in[0,1]
$$

yields iterated integrals over elliptic polylogarithms (elliptic iterated integrals)

$$
\begin{aligned}
\int_{0}^{z} \omega^{\left(n_{1}\right)}\left(z_{1}\right) \int_{0}^{z_{1}} \omega^{\left(n_{2}\right)}\left(z_{2}\right) \ldots & \int_{0}^{z_{r-1}} \omega^{\left(n_{r}\right)}\left(z_{r}\right) \\
& \omega^{(k)}=\text { family of one-forms on } E_{\tau}^{\times}
\end{aligned}
$$

may be integrated over A and B-cycle $\left\{\begin{array}{l}\text { Enriquez A-elliptic multiple zeta values } \\ \text { Enriquez B-elliptic multiple zeta values }\end{array}\right.$

This program has been accomplished for
planar-amplitude in: Broedel, Mafra, Matthes, Schlotterer, arXiv:1412.5535
non-planar amplitude in: Hohenegger, St.St, arXiv:1702.04963
Broedel, Matthes, Richter, Schlotterer, arXiv:1704.03449

Example:

$$
\begin{gathered}
A^{(1)}(2,3,4 \mid 1)=\left(s_{12} s_{14}\right) A_{Y M}^{(0)}(1,2,3,4) \int_{0}^{\infty} d l[g(s, u)+g(t, s)+g(u, t)] \\
g(s, u)=\int_{0}^{1} d x_{4} \int_{0}^{x_{4}} d x_{3} \int_{0}^{x_{3}} d x_{2} \exp \left\{\frac{1}{2} \sum_{2 \leq i<j \leq 4} s_{i j} G\left(x_{j}-x_{i}, \tau\right)\right\} \exp \left\{\frac{1}{2} \sum_{j=2}^{4} s_{1 j} G_{T}\left(x_{j}-x_{1}, \tau\right)\right\} \\
\exp \left\{\frac{1}{2} \sum_{2 \leq i<j \leq 4} s_{i j} G\left(x_{j}-x_{i}, \tau\right)\right\} \exp \left\{\frac{1}{2} \sum_{j=2}^{4} s_{1 j} G_{T}\left(x_{j}-x_{1}, \tau\right)\right\} \\
=1+\frac{1}{2} s\left[G_{T}\left(x_{21}\right)+G\left(x_{43}\right)-G_{T}\left(x_{31}\right)-G\left(x_{42}\right)\right] \\
+\frac{1}{2} u\left[G_{T}\left(x_{41}\right)+G\left(x_{32}\right)-G_{T}\left(x_{31}\right)-G\left(x_{42}\right)\right]+\mathcal{O}\left(\alpha^{\prime 2}\right) \\
\text { e.g.: } \quad \frac{1}{2} \int_{0}^{1} d z_{4} \int_{0}^{z_{4}} d z_{3} \int_{0}^{z_{3}} d z_{2} G_{T}\left(z_{2}\right)=-\frac{1}{6} \ln (2 \pi)-\frac{1}{48} \ln q+\sum_{m \geq 1} \frac{q^{m / 2}}{1-q^{m}}\left(\frac{1}{3 m}-\frac{1}{2 \pi^{2} m^{3}}\right)+\frac{1}{6} Q_{3} \\
g(s, u)=\frac{1}{6}-(s+u)\left\{\frac{3}{4 \pi^{2}} \zeta_{3}+\frac{3}{2 \pi^{2}} \sum_{n=1}^{\infty}\left[\mathcal{L} i_{3}\left(q^{n}\right)+\mathcal{L} i_{3}\left(q^{n-1 / 2}\right)\right]\right\}+\mathcal{O}\left(\alpha^{\prime 2}\right)
\end{gathered}
$$

field-theory limit (II):

$$
\begin{aligned}
& A^{(1)}(1,2,3,4)+e^{i \pi s_{12}} A^{(1)}(2,1,3,4)+e^{i \pi\left(s_{12}+s_{13}\right)} A^{(1)}(2,3,1,4) \\
& =\tilde{A}^{(1)}(2,3,4 \mid 1)+e^{i \pi s_{12}} \tilde{A}^{(1)}(3,4,2 \mid 1)+e^{i \pi\left(s_{12}+s_{13}\right)} \tilde{A}^{(1)}(4,2,3 \mid 1)
\end{aligned}
$$

consider field-theory expansion: use: $\quad A^{(1)}(1,2,3,4)=A_{Y M}^{(1)}(1,2,3,4)+\mathcal{O}\left(\alpha^{\prime}\right)$,

$$
\tilde{A}^{(1)}(2,3,4 \mid 1)=\tilde{A}_{Y M}^{(1)}(2,3,4 \mid 1)+i \pi \tilde{A}_{Y M}^{(1)}(1,2,3,4)\left[k_{1}\right]+\mathcal{O}\left(\alpha^{\prime}\right)
$$

with: $\quad A_{Y M}^{(1)}(2,3,4 \mid 1)=\tilde{A}_{Y M}^{(1)}(2,3,4 \mid 1)+\tilde{A}_{Y M}^{(1)}(3,4,2 \mid 1)+\tilde{A}_{Y M}^{(1)}(4,2,3 \mid 1)$

$$
\tilde{A}_{Y M}^{(1)}(1,2,3,4)\left[k_{1}\right]=s_{12} s_{23} A_{Y M}^{(0)}(1,2,3,4) \tilde{g}_{Y M}\left(s_{12}, s_{23}\right)
$$

with field-theory object:

$$
\begin{aligned}
\tilde{g}_{Y M}(s, u) & =\int_{0}^{\infty} \frac{d \lambda}{\lambda^{D / 2-3}} \int_{0}^{1}\left(\prod_{i=1}^{4} d \eta_{i}\right) \delta\left(1-\sum_{i=1}^{4} \eta_{i}\right)\left(\eta_{3} s-\eta_{4} u\right) e^{-\lambda\left(s \eta_{1} \eta_{3}+u \eta_{2} \eta_{4}\right)} \\
& =\frac{1}{2} \frac{(1+\gamma) \Gamma(1+\gamma)^{2} \Gamma(-\gamma)}{(2+\gamma) \Gamma(2 \gamma+4)}\left(s^{\gamma+1}-u^{\gamma+1}\right) \quad, \quad \gamma=\frac{D}{2}-4
\end{aligned}
$$

altogether:

$$
\begin{aligned}
& \tilde{A}_{Y M}^{(1)}(1,2,3,4)\left[k_{1}\right]=s_{12} s_{23} A_{Y M}^{(0)}(1,2,3,4) \tilde{g}_{Y M}\left(s_{12}, s_{23}\right), \\
& \tilde{A}_{Y M}^{(1)}(1,3,4,2)\left[k_{1}\right]=s_{12} s_{23} A_{Y M}^{(0)}(1,2,3,4) \tilde{g}_{Y M}\left(s_{13}, s_{34}\right) \text {, } \\
& \tilde{A}_{Y M}^{(1)}(1,4,2,3)\left[k_{1}\right]=s_{12} s_{23} A_{Y M}^{(0)}(1,2,3,4) \tilde{g}_{Y M}\left(s_{14}, s_{24}\right) \text {. }
\end{aligned}
$$

"new" field-theory relation:

$$
\tilde{A}_{Y M}^{(1)}(1,2,3,4)\left[k_{1}\right]+\tilde{A}_{Y M}^{(1)}(1,3,4,2)\left[k_{1}\right]+\tilde{A}_{Y M}^{(1)}(1,4,2,3)\left[k_{1}\right]=0
$$

let us understand, what this relation does mean in field-theory box diagram with momentum insertion $l k_{i}$:

$$
\begin{aligned}
\square_{i}(s, u) & :=\left(\frac{\alpha^{\prime}}{2 \pi}\right)^{\gamma} \int d^{D} l \frac{l k_{i}}{l^{2}\left(l+k_{1}\right)^{2}\left(l+k_{1}+k_{2}\right)^{2}\left(l-k_{4}\right)^{2}}=\frac{1}{2} \int_{0}^{\infty} \frac{d \lambda}{\lambda^{D / 2-3}} \int_{0}^{1}\left(\prod_{j=1}^{4} d \eta_{j}\right) \\
& \times \delta\left(1-\sum_{i=1}^{4} \eta_{i}\right)\left[\eta_{4} s_{4 i}-\eta_{3}\left(s_{1 i}+s_{2 i}\right)-\eta_{2} s_{1 i}\right] e^{-\lambda\left(s \eta_{1} \eta_{3}+u \eta_{2} \eta_{4}\right)}, i=1, \ldots, 4 .
\end{aligned}
$$

actually we have:

$$
\left.\begin{array}{ll}
\tilde{g}_{Y M}(s, u) & =-2 \square_{1}(s, u) \\
\tilde{g}_{Y M}(t, s) & =-2 \square_{2}(s, u)+\Delta_{4}(s, u), \\
\tilde{g}_{Y M}(u, t) & =-2 \square_{3}(u, t)+u \square(u, t) \\
\hline & =-\Delta_{3}(s, t)+\Delta_{1}(s, t), \\
\end{array}\right)+\Delta_{2}(u, t) .
$$

with:

$$
\begin{aligned}
& \Delta_{i}=\int d^{D} l \frac{d_{i}}{d_{1} d_{2} d_{3} d_{4}} \quad, \quad i=1, \ldots, 4 \\
& d_{i}=\left(l+q_{i}\right)^{2}
\end{aligned}
$$

i.e.:

$$
\tilde{g}_{Y M}(s, u)+\tilde{g}_{Y M}(t, s)+\tilde{g}_{Y M}(u, t)=0
$$

turns into:
$\Delta_{1}(s, u)-\Delta_{4}(s, u)+\Delta_{2}(s, t)-\Delta_{1}(s, t)+\Delta_{3}(u, t)-\Delta_{2}(u, t)=0$
identity between triangles

this is just the (integrated) integrand relation:

$2 \square_{1}(s, u)+2 \square_{2}(s, t)+s \square(s, t)+2 \square_{3}(u, t)-u \square(u, t)=0$

$s_{1 l} I(1,2,3,4)+\left(s_{12}+s_{1 l}\right) I(2,1,3,4)+\left(s_{12}+s_{13}+s_{1 l}\right) I(2,3,1,4)=0$

$$
I(1,2,3,4)=\frac{1}{l^{2}\left(l+k_{1}\right)^{2}\left(l+k_{1}+k_{2}\right)^{2}\left(l-k_{4}\right)^{2}}=\frac{1}{d_{1} d_{2} d_{3} d_{4}}
$$

III. Amplitudes in non-commutative background

 introduce constant background B-field (metric g)open string anti-symmetric tensor: $\quad \Theta^{\mu \nu}=\left(-2 \pi \alpha^{\prime}\right)\left(\frac{1}{g+B} B \frac{1}{g-B}\right)^{\mu \nu}$
open string metric:

$$
G^{\mu \nu}=\left(\frac{1}{g+B} g \frac{1}{g-B}\right)^{\mu \nu}
$$

Seiberg, Witten (1999)

$$
\begin{equation*}
A_{N C}^{(0)}(1, \ldots, N)=A^{(0)}(1, \ldots, N) \exp \left\{-\frac{i}{2} \sum_{1 \leq i<j \leq N} k_{i} \times k_{j}\right\} \tag{1996}
\end{equation*}
$$

one-loop open string theory:

$$
\begin{aligned}
& A^{(1)}(2,3,4 \mid 1)=-i \sqrt{\operatorname{det} G} \frac{g_{o}^{4}}{4 \alpha^{\prime 2}}\left(2 \alpha^{\prime}\right)^{4}(2 \pi)^{p-3} \delta^{(p+1)}\left(\sum_{q=1}^{4} k_{q}\right) \mathcal{K} \int_{0}^{\infty} \frac{d l}{2} l^{-5} \\
& \times\left(\frac{8 \pi^{2} \alpha^{\prime}}{l}\right)^{-\frac{p+1}{2}} \exp \left\{\frac{k_{\mu}(\Theta G \Theta)^{\mu \nu} k_{\nu} l}{8 \pi \alpha^{\prime}}\right\}\left(\prod_{q=1}^{4} \int_{0}^{1} d x_{q}\right) \prod_{2 \leq i<j \leq 4}\left|\frac{\theta_{1}\left(x_{i j}, i l\right)}{\theta_{1}^{\prime}(0, i l)}\right|^{2 \alpha^{\prime} k_{i} \cdot k_{j}} \\
& \times \prod_{i=2}^{4}\left|\frac{\theta_{4}\left(x_{1 i}, i l\right)}{\theta_{1}^{\prime}(0, i l)}\right|^{2 \alpha^{\prime} k_{1} \cdot k_{i}} \exp \left\{-i \sum_{2 \leq i<j \leq 4}\left(k_{i} \times k_{j}\right)\left[x_{i j}-\frac{1}{2}\right]\right\}
\end{aligned}
$$

$$
k=k_{2}+k_{3}+k_{4}=-k_{1} \quad=\text { non-planar momentum }
$$

equate: $\quad-i \pi \sum_{i=2}^{4} s_{1 i} x_{i} \stackrel{!}{=}-i \sum_{2 \leq i<j \leq 4}\left(k_{i} \times k_{j}\right)\left(x_{i}-x_{j}\right)$
yields:

$$
k_{1 \mu}\left(2 \pi \alpha^{\prime} G^{\mu \nu}-\Theta^{\mu \nu}\right)=0
$$

has solution:

$$
\Theta^{\mu \nu}=2 \pi \alpha^{\prime}\left(\begin{array}{ccc}
0 & -1 & \\
1 & 0 & \\
& & \vartheta^{m n}
\end{array}\right)
$$

for the choice: $\quad k_{1 \mu}=(k, k, 0, \ldots, 0)$,
$G^{\mu \nu}=\operatorname{diag}(-1,1, \ldots, 1)$

IV. Monodromy relations at g-loop

E.g. only n boundaries involved: \mathbf{Z}_{2} involution of Riemann surface of genus $g=n-1$

$$
n=4
$$

$$
\begin{aligned}
& A^{(g)}(1,2, \ldots, N)+e^{i \pi s_{12}} A^{(g)}(2,1, \ldots, N)+\ldots+e^{i \pi \sum_{j=2}^{N-1} s_{1 j}} A^{(g)}(2, \ldots, 1, N) \\
& =\tilde{A}^{(g)}(2,3, \ldots, N \mid 1)+e^{i \pi s_{12}} \tilde{A}^{(g)}(3,4, \ldots, N, 2 \mid 1)+\ldots+e^{i \pi \sum_{j=2}^{N-1} s_{1 j}} \tilde{A}^{(g)}(N, 2, \ldots, N-1 \mid 1)
\end{aligned}
$$

Concluding remarks

- correct monodromy relations for N -point at g-loop

> additional "boundary" terms necessary to cancel tachyonic poles

- expansion in terms of elliptic multiple zeta values
subamplitude relations play crucial role for KLT at higher loops !
basis of independent subamplitudes ?
include closed strings ?

