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Motivation:
• understand properties of theories with infinite number of states:
e.g. consistent massless higher spin theory in AdS (vector dual)
or tensionless limit of string theory in AdS (adjoint dual)

• HS theory in AdS is complicated:
action? locality? consider some simpler limit

• HS theory in flat-space ... no-go theorems ...
such theory may exist if relax locality condition?
what about its symmetries? trivial S-matrix?

There are more things in heaven and earth, Horatio,
Than are dreamt of in your philosophy.
- Hamlet (1.5.167-8)



Summary:
• construction of quartic HS interaction vertices
for single tower of massless even spins s = 0, 2, 4, ...

using the Lorentz-covariant S-matrix-based approach
• 000s: 4-vertices making amplitudes on-shell gauge invariant
local for s = 2, 4 only
• locality can be restored by extending set of fields:
add extra tower of even spins s > 0 with specific couplings
• indications that extended local action has trivial S-matrix
• would be in agreement with soft limit constraints on S-matrix
from gauge invariance under assumption of locality
• underlying global symmetry of flat-space HS theory?
analogy with conformal extension of Einstein theory:
invariance under conformal HS algebra?
then possible reason for trivial S-matrix



Plan:

• scattering via massless HS exchanges:
0000 and 000s amplitudes

• constraints from gauge invariance of S-matrix in soft limit

• S-matrix approach to construction of gauge-invariant action:
non-local 000s 4-vertices

• resolving non-locality by introducing extra tower of states

• conformal off-shell extension:
Einstein theory and possible HS generalization



Massless higher spins in flat 4d space
• free theory: symmetric double-traceless rank s tensors
S =

∫
d4x ∂nφm1...ms∂nφm1...ms + ...

δφm1...ms = ∂(m1εm2...ms), s = 0, 1, 2, ...

• cubic interactions with linearized gauge invariance known
• quartic interactions? consistent interacting theory?
• various s > 2 “no-go theorems”
e.g. no minimal interactions – no long-range forces
[Weinberg; Cachazo, Benincasa ,...

review: Bekaert, Boulanger, Sundell 1007.0435]

• assumptions? locality of quartic and higher interactions
• demand gauge invariance: which type of non-locality required?
• resolve non-locality introducing new fields?
• resulting S-matrix is trivial? underlying symmetries?



Why of interest?
• tensionless limit of string theory in flat space?
degenerate, not well defined ...
but is well-defined in AdS:
“leading Regge trajectory” – massless tower of higher spins
• massless HS theory in AdS
• consistent non-linear equations known [Vasiliev]

but complicated, many auxiliary fields, so far no action
• action for physical Fronsdal fields

can be reconstructed in principle using AdS/CFT:
match correlators of boundary CFT
[Bekaert,Erdmenger,Ponomarev,Sleight 15; Taronna, Sleight 16]

• cubic vertices known; quartic are complicated
issue of locality is subtle / unclear – kernels f(a ∂), Λ = 1/a2



• flat-space limit of AdS HS theory?
non-local theory for HS tower s = 0, 1, 2, ...?
infinite global symmetry? S-matrix ?

• consistent theory requires
– infinite tower of spins s = 0, 1, 2, 3, ...,∞
– higher derivative (non-minimal) cubic interactions (s16 s26 s3)
∂nφs1φs2φs3 , s2 + s3 − s16n6 s2 + s3 + s1

e.g. l.c. 2-2-2 vertex – ∂2, ∂4, ∂6 and 2-3-3 vertex – ∂4, ..., ∂6

[light-cone: Bengtsson, Bengtsson, Brink; Metsaev;
covariant: Fotopoulos, Tsulaia; Boulanger, Leclerc, Sundell;

Manvelyan, Mkrtchyan, Ruhl; Sagnotti, Taronna, ... ]

• Noether procedure: deform δφs = ∂εs−1 + ..., add 4-vertex,...



• 3-point coupling constants [Metsaev]

cs1s2s3 = g
`s1+s2+s3−1

(s1 + s2 + s3 − 1)!

• two constants (cf. string th.): g and `= length
structure of action:

1

g2

∫
d4x
[∑

s

∂φs∂φs+
∑

`n−1∂nφs1φs2φs3+
∑

`k−2∂kφ4+...
]

effectively “non-local”: no. of ∂ grows with s and no. of φ

• ` should be hidden scale in background-independent
generalization of HS theory in AdS (cf. Einstein theory)

Aim: find quartic interactions required by gauge invariance



Free higher spin action
• symmetric higher spin tensors

φs(x, u) = φa1...as(x)ua1 . . . uas

• Fronsdal action: gauge-inv
∫
φs�φs, 2 d.o.f.

S(2)[φs] =

∫
d4xφs(x, ∂u) T̂

[
�x − (u · ∂x) D̂

]
φs(x, u)

∣∣∣
u=0

T̂ = 1− 1
4
u2∂2

u, D̂ ≡ (∂x · ∂u)− 1
2
(u · ∂x)∂2

u

• φs double-traceless

(∂2
u)

2φs(x, u) = 0

• free equations[
�x − (u · ∂x) D̂

]
φ(x, u) = 0



• linearized gauge transformations

δ(0)
s φs(x, u) = (u · ∂x)εs−1(x, u)

with traceless parameter ∂2
u εs−1(x, u) = 0

• de Donder gauge:

D̂ φs(x, u) = 0 → ∂a1φa1...as + ... = 0

S(2)[φs] = s!

∫
d4x φs(x, ∂u) T̂ �x φs(x, u)

∣∣∣
u=0

• equations of motion

�x φs(x, u) = 0



Cubic interaction vertices:
• requiring gauge invariance of combined action
δ(0)S(3) + δ(1)S(2) = 0 [Manvelyan et al; Sagnotti,Taronna; Joung et al 11]

• traceless-transverse part of cubic vertex (∂xij ≡ ∂xi − ∂xj )

S(3)[φ0, φs2 , φs3 ] =c0s2s3

∫
ddx
[
(∂u2 · ∂x31)s2(∂u3 · ∂x12)s3

× φ0(x1)φs2(x2, u2)φs3(x3, u3)
]
ui=0
xi=x

• cs1s2s3 fixed in l.c. approach [Metsaev 91]

cs1s2s3 = g
`s1+s2+s3−1

(s1 + s2 + s3 − 1)!

• same cs1s2s3 for massless HS in AdS4 constructed from AdS/CFT
[Skvortsov 15; Sleight,Taronna 16]



Free HS propagator in de Donder gauge

Ds(u, u′; p) = − i

p2
Ps(u, u′)

Ps(u, u′) = 2
(s!)2

(
1
2

√
u2u′2

)s
Ts
(

u·u′√
u2u′2

)
Ts(z) ≡ s

2

∑[s/2]
k=0

(−1)k(s−k−1)!
k!(s−2k)!

(2z)s−2k

= 1
2

[(
z +
√
z2 − 1

)s
+
(
z −
√
z2 − 1

)s]
Ts – Chebyshev polynomial of 1st kind

Cubic 0s2s3 vertex : (pij ≡ pi − pj)

V(∂u2 , ∂u3 ; p1, p2, p3) = 2ic0s2s3(−ip31 · ∂u2)s2(−ip12 · ∂u3)s3

Consider scattering of spin 0 via all spin s exchanges





4-scalar scattering amplitude: exchange part
exchange of tower of higher spin fields
[Bekaert, Joung, Mourad 09; Ponomarev, AT 16]

• scalar: s = 0 member of HS tower
interactions with even spins only
contribution of contact 4-vertex is yet to be fixed

• s-channel exchange of spin j field

≡ Ajexch(s, t, u)

Mandelstam variables (p2
i = p′2i = 0, s + t + u = 0)

s ≡ −(p1 + p2)2, t ≡ −(p1 + p′1)2, u ≡ −(p1 + p′2)2

Ajexch(s, t, u) = −
ic2

00j

s
2−j+1 (t + u)j Ts

(
t−u
t+u

)



Aexch(s, t, u) =
∞∑

j=0,2,4,...

Ajexch(s, t, u)

= − i
s

[
F
(√

s + t +
√

t
)

+ F
(√

s + t−
√

t
)]

F (z) ≡
∞∑

j=0,2,4,...

c2
00 j ( z

2

4
)j = g2

∞∑
k=0

1
[(2k−1)!]2

( `
2z2

4
)2k

= 1
8
g2 (`z)2

[
I0(`z)− J0(`z)

]
• sum over spins is convergent
• non-trivial dependence on Mandelstam variables and `
• full exchange amplitude

Âexch(s, t, u) = Aexch(s, t, u) +Aexch(t, s, u) +Aexch(u, t, s)



• Regge limit of exchange part: t→∞, s=fixed

Âexch(s, t, u) ∼ −ig
2

s
`2t I0(`

√
8t) ∼ −ig

2

s

(`2t)3/4

25/4π1/2
e`
√

8t

• fixed angle limit:
s, t, u→∞, t

s
= − sin2 θ

2
, u

s
= − cos2 θ

2
, θ =fixed

Âexch(s, t, u) ∼ ig2|s|3/4 e`
√
|s| f(θ) →∞ , f(θ) > 0

• exponential growth: indication of UV divergences in loops
but this is not full amplitude: still to add 4-vertex contribution
[cf. string theory: Shapiro-Virasoro amplitude is UV-soft]

A4 = g2 Γ(−1− 1
4
α′s)Γ(−1− 1

4
α′s)Γ(−1− 1

4
α′s)

Γ(2+ 1
4
α′s)Γ(2+ 1

4
α′s)Γ(2+ 1

4
α′s)

→ g2|s|−6(sin θ)−6e−α
′|s|h(θ) → 0

h(θ) = −1
4

(
sin2 θ

2
log sin2 θ

2
− cos2 θ

2
log cos2 θ

2

)
> 0



4-vertex contribution
add contribution of 0-0-0-0 vertex

• expected to be effectively non-local: infinite series in ∂n

• may cancel or “soften” large p behaviour of exchange
• try to guess 4-scalar vertex in flat-space HS action from
its form in AdS action reconstructed from AdS/CFT
[Bekaert, Erdmenger, Ponomarev, Sleight 2015]: ∇ → ∂

S(4)[φ0] = g2

∫
d4x
[ ∞∑
j=0

f2j

(
∆x34

) (
∂x12 · ∂x34

)2j

× φ0(x1)φ0(x2)φ0(x3)φ0(x4)
]
xi=x

∆x34 ≡ (∂x3 + ∂x4)
2, ∂x12 ≡ ∂x1 − ∂x2



f2j(z) = infinite series in z, regular at z = 0: no poles
• choose large z asymptotics same as in AdS 4-scalar vertex:

z →∞ : f2j(z)→ c2j
`4j−2

z
, c2j = 1

[(2j−1)!]2

• then asymptotic contribution to 4-scalar amplitude is∑∞
j=0 f2j(s) (t− u)2j = 2t+s

2s

[
I0

(
2`
√

2t + s
)
− J0

(
2`
√

2t + s
)]

• contact term may cancel against the exchange contribution
– full amplitude may be trivial?



Remarks:
• soft UV behaviour is expected in higher-spin theory in AdS:
4-scalar amplitude = free CFT 4-point correlator (φ0 → Φ∗Φ)
•Witten diagrams in AdS in Mellin representation
look similar to scatt amplitudes in flat space [Penedones 2010]
[AdS exch – Mellin ampl with poles related to dim’s of ops;
contact interactions with ∂2n→Mellin amps
∼ n-order polynomials in s, t, u =Mellin variables]
• total AdS scatt amp similar to Mellin transform (in u, v)
of 4-point correlator of spin 0 operator in free O(N) CFT:
distribution δ(s− 1

2
)δ(t− 3

2
) + ... [Taronna; Bekaert et al]

• suggests (?) exch + 4-vertex tree-level 4-scalar amplitude
in flat space may also have trivial large p asymptotics



Comment on BCFW constructibility
• requires that amplitudes vanish under infinite
complex shifts of momenta [Benincasa, Cachazo 07]
assumption of analyticity (vanishing at∞→
ampl can be reconstructed from poles and residues)
• leads to recurrence relations which allow to express
any tree-level amplitude in terms of on-shell 3-point ones
• applied to 4-scalar amplitude would allow to determine
quartic scalar self-coupling in terms of cubic vertices
• but BCFW construction can be applied only if cubic vertices
satisfy non-trivial consistency condition - “four-particle” test;
cubic HS vertices fail to satisfy this test
[Fotopoulos, Tsulaia 08; Dempster, Tsulaia 12; Bengtsson 16]
• not clear if condition of BCFW constructibility should apply
to an effectively non-local HS theory containing infinite number of fields
with higher derivatives of any order in vertices
(e.g. assumption of analyticity may fail if sums over spins do not
converge fast or give amplitudes ∼ distributions)



S-matrix approach to gauge-invariant interactions
• direct construction of gauge-inv action via Noether procedure:
quadratic action, deform by higher-order terms while also
deforming linearized gauge transformations to make
full action invariant: ties construction of action
S = S2 + S3 + S4 + ... to that of gauge transformations
δ = δ(0) + δ(1) + δ(2) + ...

δ(0)S3 + δ(1)S2 = 0 , δ(0)S4 + δ(1)S3 + δ(2)S2 = 0, ....

• more efficient approach: start with S-matrix and demand its
on-shell gauge invariance: advantage - only linearized
transformations δ(0) act on physical amplitudes
non-linear φε terms in δφ ∼ ∂ε+ φ ε+ . . . ,

relate Green’s functions to Green’s functions but projected out
by leg amputation to get S-matrix element



• linearized gauge transformations

δ(0)φs = ∂εs−1 → δφµ1···µs(p) = p(µ1εµ2···µs)(p)

• non-trivial case: if S3 is invariant under linearized g.t.
only up to eqs of motion need to add S4 vertex:
3-point vertex in higher point amplitude – variation leads to
p2 × 1

p2
– higher point violation of invariance

– add higher vertex to cancel



Example: scalar electrodynamics

L = ∂mφ∗∂mφ+ iAm(φ∗∂mφ− φ∂mφ∗) + AmAmφ
∗φ

δAm = ∂mε, δφ = iφε

A(1)φ(2)φ(3)A(4) scattering amplitude:
Am → ζm(p)eip·x, p · ζ = 0

Aexch =
1

p2
12

ζ1 · p2 ζ4 · p3 +
1

p2
13

ζ1 · p3 ζ4 · p2

• gauge transformation in leg 1: δζ1 = p1ε1, δφ = 0

δAexch = (ζ4 · p3 + ζ4 · p2)ε1 = −ζ4 · p1 ε1
• can be cancelled by adding contact AmAmφ∗φ vertex
Acont = ζ1 · ζ4 → δAcont = p1 · ζ4 ε1
• thus 4-point vertex can be found from condition
of linearized gauge invariance of on-shell amplitude



• To get information about structure of possible 4-vertices
consider 0-0-0-s tree-level amplitude:
(i) find exchange contribution
(ii) add general 4-vertex contribution
(iii) impose on-shell gauge invariance w.r.t. spin s leg
(iv) determine “minimal” 4-vertex required by gauge invariance

• Parametrization of 000s 4-vertex in momentum space:

L000s =
s−2∑
k=0

Vsk(p1, p2, p3)

× φ0(p1) (2ip2 · ∂u)kφ0(p2) (2ip3 · ∂u)s−kφ0(p3) φj(p4, u)

• Aim: constrain coefficient functions Vsk
by demanding that S-matrix element 000s is gauge invariant



Gauge-invariance constraints on S-matrix
• soft momentum expansion of massless higher spin amplitudes
and gauge invariance constraints: [Low 58; Weinberg 64; Bern et al 14]

• soft limit of massless HS theory with generic 3-couplings
• assume locality: all poles in momentum in
amplitudes may only come from on-shell propagators
of particles present in the original action
• restrict to leading order of soft momentum expansion:
extends [Weinberg 64] to arbitrary couplings of HS [Taronna 11]

Soft momentum expansion of 0...0s amplitude
n spin-0 and one spin-s with pn+1 ≡ q → 0

two contributions: with pole at q → 0 and without



n + 1

i

n + 1

i

Aµ1...µs(p1, . . . , pn, q) = Pµ1...µs(p1, . . . , pn, q) +Rµ1...µs(p1, . . . , pn, q)

Pµ1...µs →
∑
i

∑
s′i

pµ1i . . . pµsi
q · pi

Ps′i(u, u
′)
[
(pi − q) · ∂u

]s′i Ws′i
(pi + q, ∂u′)

(pi + q)2 = 2q · pi + q2 → 2q · pi
Ps(u, u

′) – projector in spin-s propagator
Ws′i

– Green’s function with all but i-th leg (pi + q) on shell
• for q = 0: W is n-point amplitude



W is then gauge-invariant: (Ws′i
)q→0 = Ws′i

(pi, ∂u′)

Ws′i
(pi, ∂u′)Ps′i(pi, u

′) = 0 , s′i 6= 0

Ws′i
(pi, ∂u′)(pi · u′)kPs′i−k(pi, u

′) = 0 , k = 1, . . . s′i
• gauge invariance of full amplitude requires for any q

qµsAµ1...µs(p1, . . . , pn, q) = 0

leading term in q → 0:∑
i

∑
s′i

pµ1i . . . p
µs−1

i s′i! Ws′i
(pi, ∂u′)Ps′i(pi, u

′) = 0

• assumed locality: droppedR-term that has no poles in q
• gauge inv of Ws′i

(q = 0): only terms with s′i = 0 non-zero
• left with W0 = A0...0(p1, . . . , pn)

A0...0(p1, . . . , pn)
∑
i

pµ1i . . . p
µs−1

i = 0



• as
∑

i p
µ1
i . . . p

µs−1

i does not, in general, vanish if s > 2:

A0...0(p1, . . . , pn) = 0

local action→ scattering amplitude =0 [Weinberg]

Soft momentum expansion of s1...sns amplitude
again A = P +R, for q → 0

Pµ1...µs(p1, . . . , pn, q)→
∑
i,s′i

V µ1...µs
s,si,s′i

(q, pi, ∂u)
Ps′i(u, u

′)

q · pi
Ws′i

(pi+q, ∂u′)

Ws′i
: all but the i-th leg (q + pi) on shell

for q = 0 subject to gauge-invariance constraints
3-vertices V µ1...µs

s,si,s′i
(q, pi, ∂u) gauge inv on shell [Manvelyan et al]

non-trivial contribution to spin s gauge inv constraint:



0 =q · ∂uq
[
uµ1q . . . uµsq Aµ1...µs(p1, . . . , pn, q)

]
=
∑
i,s′i

Fj,ji,s′i(q, pi;uq; ∂u) Ws′i
(pi + q, ∂u′) Ps′i(u, u

′)

+ q · ∂uq
[
uµ1q . . . uµsq Rµ1...µs(p1, . . . , pn, q)

]
leading order at q → 0: using explicit form of vertices

0 =
∑
i

cssisi
1
si!

(uq · pi)s−1φsi(pi, ∂
si
u ) Ws′i

(pi, ∂u′) Ps′i(u, u
′)

= As1....sn(p1, . . . , pn)
∑
i

cssisi(uq · pi)s−1

• s = 2: c2sisi must be same for all si (can use
∑

k pk = 0)
– spin 2 coupling must be universal
• s > 2: sum cannot vanish for generic on-shell momenta



• thus gauge invariance requires that either As1...sn = 0

or constraint on coupling consts: cssisi = 0 , si < s

– no cubic diagonal coupling of spin-s with si < s fields

• 0...0s amplitude as special case:
if cs00 6= 0 and assume locality then A0...0

n = 0

n = 3: trivially absent
n = 4: vanishing comes from constraint on 5-point 0000s

(assuming locality of 5-vertex)

• assumed locality:
may still get gauge-inv S-matrix in a non-local theory
but if recover locality (by adding extra fields, relaxing unitarity)
then total gauge-inv amplitude should still vanish



0-0-0-s exchange amplitude: [Roiban, AT 17]

• no constraint from soft limit: A000
3 ≡ 0 – go beyond soft limit

• use 0-0-s′ and 0-s′-s: φs → ζs(p) e
ip·x

ζs(p, q
s) ≡ ζm1...ms(p) q

m1 ...qms , pij = pi · pj, p2
i = 0

• s-channel:

Aexch = − ig
2

p2
12

∑
s′

`2s
′+s−2

(s′−1)!(s+s′−1)!
(p2

12)s
′
Ts′(

p213−p223
p212

) ζs(p4, p
s
3)

Ts(z) = 1
2

[
(z +

√
z2 − 1)s + (z −

√
z2 − 1)s

]
Aexch = −2ig2

p2
12

[
Fs(z+) + Fs(z−)

]
ζs(p4, p

s
3)

Fs(z) = z2−s[Is(z)− Js(z)
]
, z± = `(

√
p2

13±
√
p2

12 + p2
13)

• add t and u channels: full Aexch



• impose linearized gauge invariance condition
δζm1...ms(p) = p(m1εm2...ms)

on full amplitude: A4 = Aexch +Acont

δAexch = −2sg2
[
Fs(z+) + Fs(z−)

]
εs−1(p4, p

s−1
3 ) + ...

cancel this against variation of contribution of 0-0-0-s vertex∑s/2
k=0 Vsk(p1, p2, p3)φ0(p1)(p2·∂u)kφ0(p2)(p3·∂u)s−kφ0(p3) ζs(p4, u)

δAcont = sVs0(p1, p2, p3) p2
24 ζs−1(p4, p

s−1
2 ) + ...

• find required 4-point vertex V000s

get “minimal” solution consistent (?) with locality
• gauge-invariance: gives relation of Vsk to Bessels in Aexch

• local solution for 4-vertex exists only for s = 2 and s = 4



• s = 2:
local 4-vertex exists:
V20 = g2

p212

(
F2(z+) + F2(z−)

−1
2

[
p2

13R2(p2
13) + p2

23R2(p2
23) + p2

12R2(p2
12)
])

Rs(x) ≡ 1
2x

[
Is(
√
−x)− Js(

√
−x)

]
x→ 0 residue of F2(x)

• particular form of gauge-invariant 0-0-0-2 amplitude:
for special choice of local 4-vertex

A = g2
[
p2

13R2(p2
13) + p2

23R2(p2
23) + p2

12R2(p2
12)
]

×
( ζ2(p4,p23)

p212
+

ζ2(p4,p22)

p213
+

ζ2(p4,p21)

p223

)
• still need to fix possible extra terms in 4-vertex:
requires study of other amplitudes



• s = 4:
local 4-vertex ∼ R4 ∼ Bessels
particular form of gauge-invariant
exchange + contact 0004 amplitude:

A = U(p1, p2, p3) ζ4

(
p4, (p

2
12p2−p2

13p3)4
)
− ip212

15p213
ζ4(p4, p

4
2)+...

U = ( 1
p213

+ 1
p223

)R4(p2
12) + cycle

• s > 4: no local 4-vertex exist [Roiban, AT; Taronna]

• cf. constraint of soft theorem:
if assume locality then gauge invariance of 000ss′

implies vanishing of 000s
• similar conclusions assuming BCFW constructibility
[Benincasa, Cachazo; Benincasa, Conde; Dempster, Tsulaia]



Required non-local terms for s> 6

• minimal required non-local 4-vertex
to make 000s amplitude gauge invariant
coefficient functions Vs0(p1, p2, p3) have poles (` = 1)

s Vs0(p1, p2, p3)

6 1
22×3!×7!!

p213+p223
p12

+ local

8 1
23×4!×9!!

p213+p223
p12

+ 1
22×3!×5!×11!!

p413+p423
p12

+ local

10 1
24×5!×11!!

p213+p223
p12

+ 1
23×3!×6!×13!!

p413+p423
p12

+ 1
22×5!×7!×15!!

p613+p623
p12

+ local

V nonloc
s0 (p1, p2, p3) = − 1

p12

s/2−3∑
l=0

κsl
(
p2l+2

13 + p2l+2
23

)
κsl = 1

2s/2−1l!(2l+1)!!(l+ s
2

)!(2l+s+1)!!



• 4-vertex in position space (φ(u) ≡ φ(x, u))

Lnonloc
000s = g2

s/2−3∑
l=0

φ0 (∂µ1 . . . ∂µ2l+2φ0)
1

�

[
∂µ1 . . . ∂µ2l+2

(∂u·∂)sφ0

]
φs(u)

• observe factorization in sum over s: Csl ≡
√

8g
2s/2−l(l+ s

2
)!(2l+s+1)!!∑

s=6,8,...

Lnonloc
000s =

∞∑
l=0

C0l φ0 (∂µ1 . . . ∂µ2l+2φ0)

× 1

�

∞∑
s=6+2l

Csl

[
∂µ1 . . . ∂µ2l+2

(∂u · ∂)sφ0

]
φs(u)

• suggests that may eliminate non-locality by introducing
additional spin s = 2, 4, 6, ... ghosts-like fields ψs



L(φ, ψ) = −1
2

∞∑
l=0

ψ2l+2�ψ2l+2 −
∞∑
l=0

[
C0l φ0(∂ · ∂v)2l+2φ0

+
∞∑

s=2l+6

Csl

(
(∂u · ∂)s(∂v · ∂)2l+2φ0

)
φs(u)

]
ψ2l+2(v)

• integrating out ψj gives also other non-local terms

Lnonloc
0000 =

∞∑
l=0

(C0l)
2 φ0∂

µ1 . . . ∂µ2l+2φ0
1

�
φ0∂µ1 . . . ∂µ2l+2

φ0

Lnonloc00s1s2
=
∞∑
l=0

Cs1l Cs2l

[
(∂u1 · ∂)s1∂µ1 . . . ∂µ2l+2

φ0

]
φj1(u1)

× 1

�

[
(∂u2 · ∂)s2∂µ1 . . . ∂µ2l+2

φ0

]
φs2(u2)



• assume that these non-local quartic terms are indeed present
then extra contact contribution to 0000 amplitude

(Aexs )0000

∣∣∣
pole

=− 2ig2

p12

s13

[
I0(
√

8p13)− J0(
√

8p13)
]

(Acts )0000

∣∣∣
pole

=4i
∞∑
l=0

(C0l)
2(p13)2l+2 = 2ig2p13

p12

[
I0(
√

8p13)− J0(
√

8p13)
]

• sum vanishes – cancellation of s-channel pole in 0000

suggests full 0000 amplitude should vanish ?
• same may expect for s > 0 – if add proper non-minimal terms
• if local and gauge-invariant but non-unitary extended action
exists – such theory may have a trivial S-matrix
consistent with expectations based on soft theorem
• same should then apply to non-local HS theory:
consequence of hidden infinite-dimensional symmetry?



Conformal off-shell extension
• candidate symmetry: higher spin conformal symmetry –
symmetry of higher derivative conformal higher spins

∫
d4xφ�s φ

• analogy: Weyl gravity and conformal extension of Einstein∫
d4x
√
g (R + 6∂mϕ∂mϕ) have same symmetries

• similar conformal extension of Fronsdal ∂2 theory?
requires tower of auxiliary ghost fields
• non-local if one eliminates ghost fields:
non-local action with extra gauge symmetry but same S-matrix
• SE(h) =

∫
d4x
√
gR

depends on traceless tmn and trace h parts of hmn
hmn = tmn + 1

4
ηmnh , tmn ≡ hmn − 1

4
ηmnh , h ≡ hmm

• h – unphysical – can be gauged away on shell:
does not appear as asymptotic state in S-matrix



• integrate out h – non-local effective action for tmn
S̄E(t) =

∫
d4x(t∂2t+ ∂∂t∂−2∂∂t+ ∂2ttt

+∂2t∂−2∂t∂t+ ∂2tttt+ ∂t∂t∂−2∂t∂t+ ...)

produces same Einstein S-matrix for gravitons
cf. SW (t) =

∫
d4x
√
g C2 =

∫
d4x(t∂4t+ ∂4ttt+ ∂4tttt+ ...)

• closed form of such action: [Fradkin, Vilkovisky 75]

S ′ =
∫
d4x
√
g
(
R− 1

6
R∆−1R

)
Weyl-invariant off shell extension of Einstein theory
• generalize to HS case: quadratic plus cubic action for
Fronsdal HS fields φm1...ms subject to double-tracelessness
(i) split into “physical” traceless ts + “ghost-like” trace hs−2

(ii) integrate out hs−2

• resulting non-local action for ts should lead to same S-matrix:
analog of conformal off-shell extension of Einstein theory
invariant under infinite dim conformal HS symmetry?



Integrating out the trace from the Einstein action

LE(h) =
√
gR = X1 +X2 +X3 +X4 + ... ,

X1 = ∂m∂nhmn − ∂2h = ∂m∂ntmn − 3
4
∂2h

X2 = 3
4
∂ktmn∂ktmn − 1

2
∂ktmn∂ntmk + tmn∂

2tmn − ∂ntkn∂mtkm
+ 3

32
(∂kh)2 + 1

4
∂mtmn∂nh + 1

2
tmn∂m∂nh

X3 = 3
4
tmn∂mtsr∂ntsr + tms∂mtnr∂ntsr + 1

2
tns∂mtnr∂rtsm + ...

Solving for h:

L̄E(t) = L̄
(2)
E (t) + L̄

(3)
E (t) + L

(4)
E (t) + ...

L̄
(2)
E (t) = −1

4
∂ktmn∂ktmn + 1

2
∂ktmk∂ntmn + 1

6
∂m∂ntmn∂

−2∂k∂rtkr

= 1
2
Cmnkl∂

−2Cmnkl = 1
4
tabP

ab
mn∂

2tmn

P ab
mn = P a

(mP
b
n) −

1
3
P abPmn , Pmn = ηmn − ∂m∂n

∂2

L̄
(3)
E (t) = X3(t)+1

3
X1(t)∂−2X2(t) , Xn(t) ≡ Xn(t, h = 0)



• in transverse gauge ∂mtmn = 0

X̄1 = 0 , X̄2 = 3
4
∂ktmn∂ktmn − 1

2
∂ktmn∂ntmk + tmn∂

2tmn ,

X̄3 = −1
4
tab∂atmn∂btmn + tab∂atmn∂ntmb − 1

2
tab∂ntma∂ntmb + ...

X̄4 = − 1
16
tmntmn(∂rtab∂rtab − 2∂rtab∂btar) + ...

L̄E(t) = −1
4
∂ktmn∂ktmn+X̄3(t)+X̄4(t)+Y4 , Y4 = 1

6
X̄2∂

−2X̄2

3-graviton amplitude is given by X̄3(t)

• non-local contribution Y4 to 4-graviton amplitude

Y4 = 1
6

[
3
8
∂2(tmntmn)− 1

2
∂k∂n(tmntmk)

]
1
�

[
3
8
∂2(tabtab)− 1

2
∂r∂b(tabtar)

]
• non-local h-exchange term contributes to S-matrix?
h “unphysical” – “wrong” sign of kin term, pure gauge on shell
same 3-graviton amplitude – should be no change to S-matrix
constructed by BCFW prescription: unitarity-based arguments
imply that scattering amplitudes should be cut-constructible



• BCFW representation: Einstein 4-point S-matrix in terms of
t3 physical vertex (at complex momenta) – trace not involved
• complete 4-graviton amplitude =
tmn exchange X̄3∂

−2X̄3 + local X̄4(t) + non-local Y4(t)

is physical and gauge-independent
but split between exchange and contact contributions depends
on (on-shell) gauge or particular choice of polarization tensors
• non-local term Y4 (not gauge-invariant) does not contribute
to S-matrix in special gauge or for choice of polarization tensors
for which on-shell matrix element of Y4 vanishes
• cf . similar choices in gauge theories
when 4-gluon vertex does not contribute:
it is under this special choice BCFW construction applies
• in general, unphysical trace exchange cancels
other unphysical (time-like, etc) parts of the tmn exchange



Conformal off-shell extension of Einstein theory
• same L̄E(t) obtained by integrating out h can be found
from Weyl-invariant off-shell extension of Einstein theory

S(g, φ) = SE(φ2g) =

∫
d4x
√
g
(
Rφ2 + 6 ∂mφ∂mφ

)
invariant under g′mn = λ2(x)gmn, φ

′ = λ−1(x)φ

• perturbatively equivalent to the Einstein theory if assume φ
has a non-zero constant vacuum value in flat space
i.e. expansion gmn = ηmn + hmn, φ = 1 + ϕ

• if fix the Weyl gauge ϕ = 0→ Einstein theory
or if solve for ϕ in terms of the metric→

non-local “conformal off-shell extension” of Einstein gravity
• gives equivalent S-matrix but has an additional Weyl symm



φ(g) = 1 + ϕ(g) , −∇2ϕ+ 1
6
R(1 + ϕ) = 0

ϕ = −1
6
∆−1R , ∆ ≡ −∇2 + 1

6
R

Sc(g) ≡ S(g, φ(g)) = 6

∫
d4x
√
g φ(g)∆φ(g)

=

∫
d4x
√
g
(
R− 1

6
R∆−1R

)
•Weyl symmetry – can fix traceless gauge on hmn:
Sc depends only on traceless graviton tmn even off-shell
• resulting action is equivalent to S̄E =

∫
d4xL̄E(t)

found by integrating out h from the Einstein action:
either gauge-fixing ϕ = 0 and solving for h

or first gauge-fixing h = 0 and solving for ϕ
leads to same action for tmn



Higher spin generalization?
•Weyl gravity→ conformal higher spin theory
invariant under conformal higher spin symmetry
generalizing both reparametrizations and algebraic Weyl symm
• conformal extension of Einstein theory→
2-derivative higher spin generalization?
should contain extra tower of ghost-like “compensator” fields
making it invariant under conformal higher spin symmetry
• solving for this extra tower of fields should give
non-local action with extra higher spin conformal symmetry
depending only on “physical” traceless parts ts
of the original (double-traceless) Fronsdal fields φs
• equivalent action (leading to same S-matrix)
from integrating out traces hs−2 of the fields φs in
massless HS Lagrangian L =

∑
s φs∂

2φs+V3(φ)+V4(φ)+ ...



• kin term in non-local action depends only on traceless ts
represented in terms of linearized Weyl tensors Cs ∼ ∂sts
conf HS theory: L2 = CsCs = ts�sts + ...

conf Fronsdal: L2 = Cs�1−sCs = ts�ts + ...

• analogy with “extended” cubic+ quartic theory from
condition of on-shell gauge invariance:
also has extra “ghost-like” HS fields ψj needed for locality
• suggests interpretation of additional fields ψj as
conformal compensators of conformal off-shell extension
that should not appear as asymptotic states in S-matrix
• action should have extra hidden symmetry
– conformal higher symmetry –
• while speculative this proposal
may be explaining possible triviality of resulting S-matrix



Conclusions
• motivation to study flat space HS theory:

limit or simplified version of massless HS theory in AdS
• using S-matrix gauge invariance to constrain Lagrangian:
exist local quartic Lagrangians such that
0002 and 0004 amplitudes are gauge invariant
but 000s with s > 4 require non-local 4-vertices
• may be eliminated by tower of extra ghost-like HS fields
• requires additional 0000 vertex that cancels
exchange part of 0000 amplitude
same may apply for other amplitudes: full S-matrix trivial?
• tests required – e.g. gauge invariance of the 00s1s2 amplitude
• analogy with conformal off-shell extension:
higher symmetry explaining triviality of S-matrix?


