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Figure 1: (a) String theory description for the scattering of M gluons in the large N limit. Putting
the M D3-branes at di�erent positions zi 6= 0 serves as a regulator and also allows us to exhibit dual
conformal symmetry. (b) Gauge theory analogue of (a): a generic scattering amplitude at large N (here:
a sample two-loop diagram).

moving M D3-branes away from the N parallel D3-branes and also separating these M distinct
branes from one another. One then has “light” gauge fields corresponding to strings stretching
between the M separated D3-branes, which are our external scattering states. Then there are
the “heavy” gauge fields corresponding to the strings stretching between the coincident N D3-
branes and one of the M branes. These are the massive particles running on the outer line of the
diagrams, see figure 1. In doing so, we argue that dual conformal symmetry, suitably extended to
act on the Higgs masses as well, is an exact, i.e. unbroken, symmetry of the scattering amplitudes.

This exact symmetry has very profound consequences. It was already noticed in [18] that
the integrals contributing to loop amplitudes in N = 4 SYM have very special properties under
dual conformal transformations, but this observation was somewhat obscured by the infrared
regulator. With our infrared regularisation, the dual conformal symmetry is exact and hence so
is the symmetry of the integrals. Therefore, the loop integrals appearing in our regularisation will
have an exact dual conformal symmetry. This observation severely restricts the class of integrals
allowed to appear in an amplitude. As a simple application, triangle sub-graphs are immediately
excluded.

The alert reader might wonder whether computing a scattering amplitude with several, dis-
tinct Higgs masses might not be hopelessly complicated. In fact, this is not the case. The
di�erent masses are crucial for the exact dual conformal symmetry to work. However, once we
have used this symmetry in order to restrict the number of basis loop integrals, we can set all
Higgs masses equal and think about the common mass as a regulator. As we will show in several
examples, computing the small mass expansion in this regulator is particularly simple. In fact,
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Figure 4: (a) Double line notation of the gauge factor corresponding to the two-loop box integral in
the Higgsed theory. The integral is dual conformally invariant. (b) Diagram for the same integral in
the equal mass case mi = m. Dashed thin lines denote massless propagators, thick black lines denote
massive propagators.

If we think about the masses mi as regulating the amplitude, then it is interesting to know the
integral I(1) for the equal mass case mi = m and m small compared to the kinematical variables
s and t. If we did not know the result of [40], we could carry out a simpler calculation for mi = m
and obtain
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We remark that from (32) it follows that the function f in (31) is given by f(u, v) = 2 ln(u) ln(v)�
�2 + O(m2).

3.3 Higher loops and four-point exponentiation

If the inversion symmetry found in section 3.2 is present at any loop order then it dramatically
restricts the set of scalar integrals that can appear. We would basically find the integrals con-
sidered in [18], with the di�erence that the outer loop carries masses, with the mass assignments
as explained in section 3.1. E.g. at two loops we expect to find the following integral only (cf.
figure 3.3),
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where x̂2
i,i+1 = 0 as in the one-loop case. The momentum space notation may be more familiar

to some readers, which in the equal mass case is given by
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Figure 1. The scattering amplitude A(s, t, m2) has various physically interesting limits. In many
of the latter, exact results are known or conjectures (e.g. high-energy limit), while other limits are
known to be governed by integrability.

The amplitude M can be expanded perturbatively in the coupling g2
⌘ g2

YMNc/(16⇡2), as

M = 1 + g2M (1) + g4M (2) + g6M (3) + . . . . (2.3)

The expression for the loop integrand of M up to three loops [check loop order] was
derived using unitarity cuts [27]. The loop integrals up to three loops were evaluated
analytically in ref. [6]. The main focus of this paper is to investigate the various limits
discussed above and to understand additional structures appearing in them. We use the
technology of ref. [6] to derive the expansions, and present the results below.

In this section, we use the one-loop expressions as a pedagogical example, and point
out the all-loop structure, whenever the latter is known. The one-loop term M (1) of eq.
(2.3) is given by a massive one-loop box integral, which evaluates to (the form below is due
to [28])
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Wilson lines important in gauge theories
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Figure 1: Feynman diagrams up to three-loop order contributing to V [c]. Thick lines
represent static quarks, thin solid lines massless fermions and curled lines gluons.

A further generalization of the three-loop corrections to V [1] has been considered in
Ref. [16] where it is still assumed that the heavy sources form a colour singlet state,
however, the colour representation is kept general.

The remainder of the paper is organized as follows: in the next Section we explain in
detail how we treat the diagrams involving pinches. Afterwards we present our results in
Section 3 and conclude in Section 4.

2 Calculation

As compared to the singlet case the calculation of the octet potential is substantially
more complicated which is connected to the occurrence of so-called pinch contributions
as shall be discussed in the following. Pinch contributions occur in those cases where a
deformation of the integration contour, needed to circumvent poles in the complex plane
of the zero-component of the integration momentum, is not possible.

For illustration let us consider the planar ladder diagram in Fig. 1(a). Since the mo-
mentum transfer q between the heavy quarks is space-like and the static propagators
only contain the energy component of the momentum we obtain for the loop integral the
expression

∫

dDk f(k, q⃗ )
1

(k0 + i0)(k0 − i0)
, (2)

where f(q⃗ ) collects all prefactors and the contribution from the gluon propagators, and
D = 4− 2ϵ is the space-time dimension.

There are several possibilities to treat the one-loop diagram in Eq. (2) and obtain a
relation to a well-defined integral. For example, it is possible to apply the principle value
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Figure 1. The integration contour C entering the definition (2.1) of the cusped Wilson loop.

conventions, Appendix B discusses the heavy quark effective theory (HQET) approach to

computing the cusped Wilson loop, Appendices C and D contain a calculation of certain

infinite classes of large nf terms of the cusp anomalous dimension and quark-antiquark

potential.

2 Cusped Wilson loop

In a generic four-dimensional Yang–Mills theory a cusped Wilson loop is defined as

W =
1

NR

〈
0| trR P exp

(
ig

˛

C
dxµAµ(x)

)
|0
〉
, (2.1)

where the gauge field Aµ(x) = Aa
µ(x)T

a is integrated along a closed integration contour

C. The latter is smooth everywhere, except for a single point where is has a cusp. Here

T a are the generators of the SU(N) gauge group in an arbitrary representation R and

the normalization factor NR = trR 1 is introduced to ensure that W = 1 + O(g2). The

cusped Wilson loop depends on the choice of the representation R, which we take to be

an arbitrary irreducible representation of SU(N). Later in the paper we shall discuss the

dependence of the cusp anomalous dimension on R.

For our purposes we shall choose the integration contour C in (2.1) to consist of two

semi-infinite rays running along two directions vµ1 and vµ2 (with v21 = v22 = 1), with the

Euclidean cusp angle φ (see figure 1)

cosφ = v1 · v2 . (2.2)

In Minkowski space-time the analogous angle is defined as cosh φM = v1 · v2 and it is

related to (2.2) as φ = iφM . The reason for such a choice of the integration contour is

twofold. Firstly, the corresponding cusped Wilson loop W has a clear physical meaning in

the context of heavy quark effective theory (after analytical continuation from Euclidean

to Minkowski space). Namely, it describes the amplitude for a heavy quark with velocity

v1 to undergo the transition into the final state with velocity v2. We shall make use of this

interpretation later in this section. Secondly, the above choice of the contour facilitates

significantly the evaluation of perturbative corrections to W . In particular, it allows us
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Simplicity in soft anomalous dimension

Massless case:

[Almelid, Duhr, Gardi 2015]
[Almelid Duhr, Gardi, McLeod, White, 2017]

Two-loop result very simple, despite 
complicated intermediate steps.
[Mitov, Sterman, Sung; Ferroglia, Neubert Pecjak, Yang, 2009]
[Chien, Schwartz, Simmons-Duffin, Stewart, 2011]

Corrections to dipole formula 
starting from three loops. Formula 
has relatively simple functional 
dependence, heavily constrained 
(bootstrap ideas).
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FIG. 1: Representative 3-loop connected webs contributing to the soft anomalous dimension with 4 coloured lines.

state and �ij = 0 otherwise; Ti are colour generators
in the representation of parton i, acting on the colour in-
dices of the amplitude as described in Ref. [11]; b�K(↵s)
is the universal cusp anomalous dimension [7, 46, 47],
with the quadratic Casimir of the appropriate represen-
tation scaled out (Casimir scaling of the cusp anomalous
dimension holds through three loops [46]; it may be bro-
ken by quartic Casimirs starting at four loops); �Ji are
the anomalous dimensions of the fields associated with
external particles, which govern hard collinear singular-
ities, currently known up to three loops [28, 48]. Equa-
tion (4) is known as the dipole formula, and captures the
entirety of the soft anomalous dimension matrix up to
two loops. According to the non-Abelian exponentiation
theorem [44] the colour factors in �n must all correspond
to connected graphs as shown in Fig. 1. Tripole cor-
rections correlating three partons, with colour factors of
the form ifabcTa

iT
b
jT

c
k, which could appear starting from

two loops, are not present in the soft anomalous dimen-
sion at any order because the corresponding kinematic
dependence on the three momenta is bound to violate
the rescaling symmetry constraints [18–20]. While a con-
stant correction proportional to ifabcTa

iT
b
jT

c
k is excluded

by Bose symmetry, kinematic-independent corrections in-
volving three lines of the form f

abe
f
cde

�
Ta

i ,T
d
i

 
Tb

jT
c
k

(last two diagrams in Fig. 1) are admissible and we will
see that they do indeed appear. The first admissible
corrections involving kinematic dependence in Eq. (3)
are then quadrupoles, because four momenta can form
conformally-invariant cross ratios,

⇢ijkl ⌘
(�sij)(�skl)

(�sik)(�sjl)
, (5)

which are invariant under a rescaling of any of the mo-
menta. Since diagrams with four colour generators con-
tribute for the first time at three loops, this is the first
order at which contributions to �n in Eq. (3) may ap-
pear,

�n ({⇢ijkl}) =
1X

`=3

⇣
↵s
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⌘`
�(`)

n ({⇢ijkl}) . (6)

Three-loop graphs can connect at most four lines, and
so the general form of the three-loop correction is com-
pletely determined by the four-parton case and can be

written as
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where C is a constant and F is a function of two
conformally-invariant cross ratios. Both C and F are
independent of the colour degrees of freedom. Moreover,
Eq. (7) is the most general three-loop ansatz consistent
with Bose and rescaling symmetry, so C and F are inde-
pendent of the number of legs n. Note that the terms in
this sum are not all independent, because of the antisym-
metry of the structure constants and the Jacobi identity.

�(3)
n is independent of the details of the underlying the-

ory and completely determined by soft gluon interactions.

In particular, this implies that �(3)
n is the same in QCD

and in N = 4 Super Yang-Mills, and it is therefore ex-
pected to be a pure polylogarithmic function of weight
five. Its functional form has been constrained by consid-
ering collinear limits and the Regge limit [18–26], but
it has so far remained unclear whether three-loop correc-
tions to the dipole formula are present. The purpose of

the present paper is to compute �(3)
n . We will present

its complete functional form, hence determining soft sin-
gularities of any massless multi-leg amplitude at three

loops. Since C and F can be extracted from �(3)
4 , we

restrict our computation to the case n = 4. Before pre-
senting the final result, we give a brief summary of the
computation. A complete account of the computation
will be presented in a forthcoming publication [49].
We set up the calculation of the soft anomalous dimen-

sion through the renormalization of a product of semi-
infinite Wilson lines with four-velocities �k, with �

2
k 6= 0.

By considering non-lighlike lines we avoid collinear sin-
gularities, and obtain kinematic dependence via cusp an-

gles �ij ⌘ 2�i ·�j/

q
�
2
i �

2
j . We eventually extract �(3)

n for
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FIG. 1: Diagrams whose ultraviolet poles determine the soft
anomalous dimension at two loops. The crossed vertex rep-
resents the point at which the Wilson lines are linked. The
straight lines represent eikonal propagators. Referring to the
number of Wilson lines linked by gluons, in the text we refer
to these as 3E diagrams (a-c) and 2E diagrams (d-f).

Examples of the diagrams involved in the calculation
of the two-loop anomalous dimension are shown in Fig.
1. In momentum space, the propagators and vertices
from Wilson lines are given by eikonal expressions [9].
The corresponding two-loop corrections to the anomalous
dimensions are found in the usual way [11] from the two-
loop UV single poles of these diagrams after one-loop
renormalization.
The result (4) for massless partons is a consequence of

the vanishing of the single poles of those two-loop “3E”
diagrams in which color is exchanged coherently between
three eikonal lines in the figures. The arguments of Ref.
[11] do not, however, generalize directly to massive Wil-
son lines, with velocity vectors β2

i ̸= 0. While an ana-

lytic determination of Γ(2)
S would, of course, be desirable,

numerical determination is also of interest, and is cer-
tainly adequate to determine how far Eq. (4) generalizes
to the production of massive particles. We provide the
necessary analysis below, and show that when the β2

i are
nonzero, Eq. (4) no longer holds. A generalization of Eq.
(4), however, given by Eq. (30) below, does holds for two-
to-two processes for special momentum configurations.
Much of our analysis will be carried out in position,

rather than momentum space. In the following, we will
take every parton as massive, and use the scale invariance

of Wilson lines to set β2
i = 1. Because we are calculating

renormalization constants, we can carry out our analysis
in Euclidean space. Indeed, a numerical result in Eu-
clidean space is adequate to establish that the matrix
does not follow Eq. (4) in Minkowski space. Otherwise,
analytic continuation through Wick rotation would im-
ply that the same result would hold in Euclidean space
as well.
We begin with the diagram, Fig. 1a, in which three

eikonal lines are coupled by gluons that are linked at
a three-gluon coupling [11]. In the configuration space
evaluation of this diagram, we must integrate the posi-
tion of the three-gluon vertex over all space. The three
propagators each have one end fixed at this vertex and
the other end fixed at a point λiβi along the ith Wilson
line. Each parameter λi is integrated from the composite
vertex to infinity. This diagram vanishes in Minkowski
space for massless Wilson lines [11].
Suppressing color factors, we represent the 3E diagram

Fig. 1a as

F (2)
3g (βI) =

∫

dDx
3
∏

i=1

∫ ∞

0
dλiV (x,βI) . (5)

Here βI = {β1,β2,β3} denotes the set of three massive
velocities of the lines to which the gluons attach, while
the propagators and numerator factors of the integrand
are given by a sum over six terms,

V (x,βI) =
3
∑

i,j,k=1

ϵijkvijk(x,βI) . (6)

Each of these terms involves the derivative of one of the
propagators, according to the usual gauge theory rules
for the three-vector coupling,

vijk(x,βI) = −i(gµε)4βi · βj ∆(x− λjβj)∆(x − λkβk)

× βk · ∂x∆(x− λiβi) , (7)

where ∆ represents the position-space scalar propagator,

∆(x− λiβi) = − Γ(1− ε)

4π2−ε

1

(x− λiβi)
2(1−ε)

. (8)

We work in Feynman gauge. The contribution of this
(scaleless) diagram to the anomalous dimension matrix
is found from the residue of its simple ultraviolet pole.
We note that all diagrams found from products of Wil-
son lines are scaleless overall, and are defined by their
renormalization constants [11].
At fixed x, for massive eikonals the λ integrals in Eq.

(5) are all finite in four dimensions. After these integrals
are carried out, the βi-dependence enters only through
the combination

ζi ≡
βi · x√
x2

, (9)



Properties cusp anomalous dimension
Matter-dependent terms to three loops follow simple 
recursive pattern. Holds for some but not all four-loop 
color structures.

To three loops, color dependence only via           .
At four loops, quartic Casimir terms: 

CF, CA

[Grozin, Henn, Korchemsky, Marquard, 2014]

[Grozin, Henn, Stahlhofen 2017; Brüser, Grozin, Henn, Stahlhofen,2019]

We wish to determine the matter-dependent quartic 
Casimir terms at four loops:

dR ∼ TrR(TaTbTcTd)
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NR
[nf B(ϕ) + nsC(ϕ)]
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Few Feynman diagrams contribute to 
the quartic Casimir color structure 2
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Figure 1: Feynman diagrams contributing to the
four-loop quartic Casimir term B in eq. (1).

CF = TF = dRdF /NR = 1 [19], and by replacing the
strong coupling strength ↵s = g

2
YM/(4⇡) by the fine

structure constant ↵.
We are interested in the matter-dependent quartic

Casimir term of the four-loop cusp anomalous dimension,

�cusp|↵4
s
=

⇣
↵s

⇡

⌘4 dRdF

NR
[nfB(x) + nsC(x)] + . . . , (1)

where B(x) and C(x) are the functions we wish to deter-
mine, x = e

i�, and where the number of (light) fermions
and scalars (canonically coupled to the gauge field) is
denoted by nf and ns, respectively. The dots stand
for other color structures [18] which we do not consider.
The Feynman diagrams relevant for the calculation of
B(x) are shown in Fig. 1. We evaluate them, and the
ones needed for C(x), in dimensional regularization, with
D = 4 � 2✏. The cusp anomalous dimension is obtained
from the coe�cient of the 1/✏ pole [18].

We relate the integrals appearing in the Feynman di-
agrams to a conveniently chosen integral basis [20], and
then determine the basis integrals by the method of dif-
ferential equations (DEs). In the process, we need to
handle large systems of linear equations representing in-
tegration by parts identities, which we generate and solve
using the codes FIRE6 [21] and LiteRed [22]. For most
of the calculations we use FIRE6’s finite field methods,
and reconstruct the full x and D dependence using the
techniques of [23]. We reconstruct only the DEs and
the Feynman diagrams we need, as opposed to creating
integral tables. Thanks to choosing an improved basis,
relatively few finite field evaluations are required for this
step.

The DEs for the integral families shown in Fig. 1 in-
volve of the order of 500 integrals (needed to describe all
integrals sharing the same or fewer propagators), with
coupled sub-systems of size up to 17, and denominators of
up to degree-20 polynomials in x and D. We wish to find
an integral basis that significantly simplifies the di↵eren-
tial equations [20]. To solve this complicated problem in
an automated way we develop further the algorithm of
[24] that relies on only a partial knowledge of a canonical
basis.

Figure 2: Integral sector involving special functions that
do not appear in the final result.

To provide input for the algorithm, we use several
ideas: for up to nine propagators, we find candidate uni-
form weight HQET integrals by a position-space analysis
[11], while for integrals with ten or more propagators we
perform a leading singularity analysis with the help of
the algorithm [14]. Moreover, we adapt [24] to scan over
a larger set of candidate integrals automatically, and to
use knowledge of all basis integrals that are known to be
uniform weight. Finally, we also make use of the comple-
mentary method [25, 26]. Given the information found by
this means, we first transform the diagonal blocks (this
is equivalent to considering integrals where propagators
are replaced by delta functions) of the DE into canonical
form. In a second step, we transform the o↵-diagonal
blocks of the full DEs.
In this way we obtain a canonical form of the DEs for

family (a), (b), (d) and (f),

d~f(x, ✏) = ✏

X
k
mk [d log↵k(x)] ~f(x, ✏) , (2)

where ~f is the vector of basis integrals for each inte-
gral family, mk are matrices with constant entries, and

~↵ = {x, 1+x, 1�x, 1+x
2
, 1�x+x

2
,
1�

p
�x

1+
p
�x

,
1�

p
�x+x

1+
p
�x+x

}.

Setting x = �z
2, we solve eq. (2) in terms of multiple

polylogarithms [27] to the order in ✏ needed. The bound-
ary values are taken from [17], or are determined from
physical consistency conditions.
For the families (c) and (e), we proceed in the same way

for all integrals up to nine propagators, and for all diag-
onal blocks, except for the ten-propagator sector shown
in Fig. 2. For this sector we suspect that algebraic basis
transformations are insu�cient to bring them into canon-
ical form (see Appendix). A canonical form can likely be
achieved by enlarging the function space [27], but for the
scope of this paper we can proceed in a simpler way.
We find that the issue can be bypassed in the com-

putation of the cusp anomalous dimension, which only
sees the 1/✏ pole of each HQET diagram. This sug-
gests that complicated terms in individual basis integrals
might drop out of the final answer. Having this in mind,
we organize the basis in a way such that each basis el-
ement only needs to be computed to O(✏0). Remark-
ably, the new basis forms a closed di↵erential system
up to O(✏) corrections (which are irrelevant for �cusp),

d~f � da(✏, x) ~f = O(✏), where the matrix a is finite as
✏ ! 0, and it is nilpotent. To the order needed, the
solution is given by multiple polylogarithms.

We write them in covariant gauge, and use state-of-the 
art IBP programs for integral reduction.

[Smirnov 2019 (FIRE6)][Lee 2013 (LiteRed)][Peraro 2019 (FiniteFlow)]
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method for the calculation of the Feynman integrals

Automation needed, since each integral family 
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Figure 1: Feynman diagrams contributing to the
four-loop quartic Casimir term B in eq. (1).

CF = TF = dRdF /NR = 1 [19], and by replacing the
strong coupling strength ↵s = g

2
YM/(4⇡) by the fine

structure constant ↵.
We are interested in the matter-dependent quartic

Casimir term of the four-loop cusp anomalous dimension,

�cusp|↵4
s
=

⇣
↵s

⇡

⌘4 dRdF

NR
[nfB(x) + nsC(x)] + . . . , (1)

where B(x) and C(x) are the functions we wish to deter-
mine, x = e

i�, and where the number of (light) fermions
and scalars (canonically coupled to the gauge field) is
denoted by nf and ns, respectively. The dots stand
for other color structures [18] which we do not consider.
The Feynman diagrams relevant for the calculation of
B(x) are shown in Fig. 1. We evaluate them, and the
ones needed for C(x), in dimensional regularization, with
D = 4 � 2✏. The cusp anomalous dimension is obtained
from the coe�cient of the 1/✏ pole [18].

We relate the integrals appearing in the Feynman di-
agrams to a conveniently chosen integral basis [20], and
then determine the basis integrals by the method of dif-
ferential equations (DEs). In the process, we need to
handle large systems of linear equations representing in-
tegration by parts identities, which we generate and solve
using the codes FIRE6 [21] and LiteRed [22]. For most
of the calculations we use FIRE6’s finite field methods,
and reconstruct the full x and D dependence using the
techniques of [23]. We reconstruct only the DEs and
the Feynman diagrams we need, as opposed to creating
integral tables. Thanks to choosing an improved basis,
relatively few finite field evaluations are required for this
step.

The DEs for the integral families shown in Fig. 1 in-
volve of the order of 500 integrals (needed to describe all
integrals sharing the same or fewer propagators), with
coupled sub-systems of size up to 17, and denominators of
up to degree-20 polynomials in x and D. We wish to find
an integral basis that significantly simplifies the di↵eren-
tial equations [20]. To solve this complicated problem in
an automated way we develop further the algorithm of
[24] that relies on only a partial knowledge of a canonical
basis.

Figure 2: Integral sector involving special functions that
do not appear in the final result.

To provide input for the algorithm, we use several
ideas: for up to nine propagators, we find candidate uni-
form weight HQET integrals by a position-space analysis
[11], while for integrals with ten or more propagators we
perform a leading singularity analysis with the help of
the algorithm [14]. Moreover, we adapt [24] to scan over
a larger set of candidate integrals automatically, and to
use knowledge of all basis integrals that are known to be
uniform weight. Finally, we also make use of the comple-
mentary method [25, 26]. Given the information found by
this means, we first transform the diagonal blocks (this
is equivalent to considering integrals where propagators
are replaced by delta functions) of the DE into canonical
form. In a second step, we transform the o↵-diagonal
blocks of the full DEs.
In this way we obtain a canonical form of the DEs for

family (a), (b), (d) and (f),

d~f(x, ✏) = ✏

X
k
mk [d log↵k(x)] ~f(x, ✏) , (2)

where ~f is the vector of basis integrals for each inte-
gral family, mk are matrices with constant entries, and

~↵ = {x, 1+x, 1�x, 1+x
2
, 1�x+x

2
,
1�

p
�x

1+
p
�x

,
1�

p
�x+x

1+
p
�x+x

}.

Setting x = �z
2, we solve eq. (2) in terms of multiple

polylogarithms [27] to the order in ✏ needed. The bound-
ary values are taken from [17], or are determined from
physical consistency conditions.
For the families (c) and (e), we proceed in the same way

for all integrals up to nine propagators, and for all diag-
onal blocks, except for the ten-propagator sector shown
in Fig. 2. For this sector we suspect that algebraic basis
transformations are insu�cient to bring them into canon-
ical form (see Appendix). A canonical form can likely be
achieved by enlarging the function space [27], but for the
scope of this paper we can proceed in a simpler way.
We find that the issue can be bypassed in the com-

putation of the cusp anomalous dimension, which only
sees the 1/✏ pole of each HQET diagram. This sug-
gests that complicated terms in individual basis integrals
might drop out of the final answer. Having this in mind,
we organize the basis in a way such that each basis el-
ement only needs to be computed to O(✏0). Remark-
ably, the new basis forms a closed di↵erential system
up to O(✏) corrections (which are irrelevant for �cusp),

d~f � da(✏, x) ~f = O(✏), where the matrix a is finite as
✏ ! 0, and it is nilpotent. To the order needed, the
solution is given by multiple polylogarithms.

Canonical differential equations method. [Henn, 2013]

Equations are canonical if all integrals are UT 
(uniform transcendental weight). The new 
method requires only one UT integral! [Höschele, Hoff, Ueda 2014]

[Dlapa, Henn, Yan 2019]

Public algorithm:
https://github.com/UT-team/INITIAL



Algorithm is efficient for many coupled 
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Figure 1: Planar three-loop four-point integrals. The number of MI is 26 for (a) and 41
for (b).

3.1 Full di�erential equation for planar three-loop integrals

As a first example, we apply the algorithm to the two three-loop four-point integral families
shown in figure 1. The definition of the factors in eq. (3.1) is

D1 = ≠k
2
1, D2 = ≠(k1 + p1 + p2)2

, D3 = ≠k
2
2,

D4 = ≠(k2 + p1 + p2)2
, D5 = ≠k

2
3, D6 = ≠(k3 + p1 + p2)2

,

D7 = ≠(k1 + p1)2
, D8 = ≠(k1 ≠ k2)2

, D9 = ≠(k2 ≠ k3)2
,

D10 = ≠(k3 ≠ p3)2
, D11 = ≠(k1 ≠ p3)2

, D12 = ≠(k2 + p1)2
,

D13 = ≠(k2 ≠ p3)2
, D14 = ≠(k3 + p1)2

, D15 = ≠(k1 ≠ k3)2

(3.2)

and

D1 = ≠(k1 ≠ k3)2
, D2 = ≠(k1 + p1)2

, D3 = ≠(k1 + p1 + p2)2
,

D4 = ≠(k2 + p1 + p2)2
, D5 = ≠(k2 ≠ p3)2

, D6 = ≠(k2 ≠ k3)2
,

D7 = ≠(k1 ≠ k2)2
, D8 = ≠k

2
3, D9 = ≠(k3 + p1)2

,

D10 = ≠(k3 ≠ p3)2
, D11 = ≠(k3 + p1 + p2)2

, D12 = ≠(k2 + p1)2
,

D13 = ≠(k1 ≠ p3)2
, D14 = ≠k

2
1, D15 = ≠k

2
2

(3.3)

for integral families 1(a), and 1(b), respectively. The top sector is defined by G1,1,1,1,1,1,1,1,1,1,0,0,0,0,0
in both cases.

The integrals were computed previously in ref. [26] with the di�erential equations
method. In this case it is relatively straightforward to find a complete UT basis as in
[26], or even a complete dlog integrand basis [30]. Nevertheless, we find it instructive
to benchmark our new method using these sets of integrals. We will see that, for each
integral family, a single UT integral from the top sector is su�cient to derive the full
canonical di�erential equation. The corresponding matrices are of size 26◊26 and 41◊41,
respectively. A suitable initial integral is easily found using [30], or by taking inspiration
from the perturbative expansion of N = 4 super Yang-Mills [31].

Concretely, we took the following integrals as our starting point,

f1 = g1 = ‘
6
G1,1,1,1,1,1,1,1,1,1,≠1,0,0,0,0 (3.4)
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Figure 1: Planar three-loop four-point integrals. The number of MI is 26 for (a) and 41
for (b).
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As a first example, we apply the algorithm to the two three-loop four-point integral families
shown in figure 1. The definition of the factors in eq. (3.1) is
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for integral families 1(a), and 1(b), respectively. The top sector is defined by G1,1,1,1,1,1,1,1,1,1,0,0,0,0,0
in both cases.

The integrals were computed previously in ref. [26] with the di�erential equations
method. In this case it is relatively straightforward to find a complete UT basis as in
[26], or even a complete dlog integrand basis [30]. Nevertheless, we find it instructive
to benchmark our new method using these sets of integrals. We will see that, for each
integral family, a single UT integral from the top sector is su�cient to derive the full
canonical di�erential equation. The corresponding matrices are of size 26◊26 and 41◊41,
respectively. A suitable initial integral is easily found using [30], or by taking inspiration
from the perturbative expansion of N = 4 super Yang-Mills [31].

Concretely, we took the following integrals as our starting point,

f1 = g1 = ‘
6
G1,1,1,1,1,1,1,1,1,1,≠1,0,0,0,0 (3.4)
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Figure 2: Planar four-loop four-point integral. The number of MI is 19.

and

f1 = g1 = ‘
6
x

2
G1,1,1,1,1,1,1,1,1,1,≠1,0,0,0,0 (3.5)

for integral families 1(a), and 1(b), respectively. We completed them to basis by taking
linearly independent integrals suggested by the integral reduction programs. In other
words, no optimization was done on the other integrals.

The integrals depend on one dimensionless variable x = t/s. See [26] for more details.
The di�erential equation matrix A(x) has the singular points x = 0, ≠1, Œ, and conse-
quently we take the alphabet in eq. (2.18) to be –̨ = {x, 1 + x}. With this as input, our
algorithm e�ortlessly found the transformation matrix T , see table 1.

3.2 New result for a four-loop four-point integral

Let us now present an application to previously unknown four-loop integrals. The definition
of the integral family is

D1 = ≠k
2
4, D2 = ≠(k1 + p1)2

, D3 = ≠(k2 + p1 + p2)2
,

D4 = ≠(k3 + p1 + p2 + p3)2
, D5 = ≠(k1 ≠ k2)2

, D6 = ≠(k2 ≠ k3)2
,

D7 = ≠(k3 ≠ k4)2
, D8 = ≠(k1 ≠ k4)2

, D9 = ≠k
2
1,

D10 = ≠(k2 + p1)2
, D11 = ≠(k3 + p1 + p2)2

, D12 = ≠(k4 + p1 + p2 + p3)2
,

D13 = ≠k
2
2, D14 = ≠k

2
3, D15 = ≠(k1 ≠ k3)2

,

D16 = ≠(k1 + p1 + p2)2
, D17 = ≠(k1 + p1 + p2 + p3)2

, D18 = ≠(k2 ≠ k4)2
,

D19 = ≠(k2 + p1 + p2 + p3)2
, D20 = ≠(k3 + p1)2

, D21 = ≠(k4 + p1)2
,

D22 = ≠(k4 + p1 + p2)2
.

(3.6)
The sector shown in figure 2 is G1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0 and, together with the
subsectors, there are 19 MI.

This case is particularly interesting for the following reason. After taking certain
residues, the scalar integrand exhibits a double pole. This can be understood from a power
counting argument and comes from the fact that the integral has relatively few propagators.
As a consequence, the scalar integral, or integrals with the same propagator structure, and
numerators, do not have a dlog form in four dimensions. There are possible remedies to
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Figure 3: Non-planar four-loop integral appearing in the calculation of the cusp anomalous
dimension. The sector shown has 17 coupled master integrals, according to FIRE6.

with pySecDec [35] for x = 0, x = 0.5 and x = 2.

3.3 Canonical form for non-planar four-loop sector with 17 master integrals
Here we discuss one of the most complicated applications of our algorithm. In the previous
cases, the maximal size of individual sectors (i.e., the number of coupled integrals) was
three in section 3.1, and twelve in section 3.2. In contrast, here we will apply the algorithm
to a case of a sector with 17 coupled master integrals. It is shown in figure 3. The definition
of the integral family is

D1 = 1 ≠ 2k1 · v1, D2 = 1 ≠ 2k2 · v1, D3 = 1 ≠ 2k2 · v2,

D4 = 1 ≠ 2k3 · v2, D5 = ≠k
2
1, D6 = ≠k

2
3,

D7 = ≠k
2
4, D8 = ≠(k1 ≠ k2)2

, D9 = ≠(k1 ≠ k4)2
,

D10 = ≠(k2 ≠ k3)2
, D11 = ≠(k3 ≠ k4)2

, D12 = ≠(k1 ≠ k2 + k3 ≠ k4)2
,

D13 = ≠(k2 ≠ k4)2
, D14 = ≠(k2 ≠ k3 ≠ k4)2

, D15 = 1 ≠ 2k4 · v1,

D16 = 1 ≠ 2k4 · v2, D17 = 1 ≠ 2k3 · v1, D18 = 1 ≠ 2k1 · v2,

(3.9)
where we consider the sector G1,0,1,1,0,1,1,1,1,0,0,1,0,0,0,0,0,0. Inspecting the di�erential equa-
tion for the cut integral, we identify the alphabet of the sector to be {x, 1+x, 1≠x}, where
2v1 · v2 = x + 1/x.

The algorithm needs one UT integral to start with. We used the following procedure
to find this integral:

1. We use heuristic rules to find likely UT candidates (see [26, 36] for more information).
2. We use our algorithm to test the UT property for each integral individually. If

only the appropriate normalization factor is missing, we find it in the same ways as
mentioned in the previous subsection.

Following this procedure, we found the following integral to be UT on the maximal cut:

‘
6

A
1 ≠ x

2

x

B2
G1,0,1,1,0,1,1,2,2,0,0,1,0,0,0,0,0,0 . (3.10)
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Figure 4: The non-planar double-pentagon integral family.

Starting from (3.10), our algorithm finds a UT basis in less than two minutes.

3.4 Four-variable example: Non-planar double pentagon integrals

Here we apply the algorithm to the cutting-edge example of a coupled system of two-loop
five-point integrals, whose di�erential equation depends on four dimensionless variables
[17, 27]. Consider the non-planar double-pentagon integral family figure 4, where the
inverse propagators are,

D1 = ≠k
2
1, D2 = ≠(k1 ≠ p1)2

, D3 = ≠(k1 ≠ p1 ≠ p2)2
,

D4 = ≠k
2
2, D5 = ≠(k2 + p4 + p5)2

, D6 = ≠(k2 + p5)2
,

D7 = ≠(k1 ≠ k2)2
, D8 = ≠(k3 + k1 ≠ k2)2

, D9 = ≠(k1 + p5)2
,

D10 = ≠(k2 ≠ p1)2
, D11 = (k2 ≠ p1 ≠ p2)2

,

(3.11)

We focus on the top sector G1,1,1,1,1,1,1,1,0,0,0 which contains 9 master integrals. We start
with an ansatz for the alphabet containing 31 letters {Wi}, suggested by [37, 38]. The
five-point external kinematics can be parametrized via (a variation of) momentum-twistor
variables b = {b1, . . . , b5}, which rationalize all letters of the alphabet, see e.g. [39].

s12 = b1, s23 = b1b4, s34 = b1(1 + b3)b4
b2

≠ b1b3(1 ≠ b5), (3.12)

s45 = b1b5, s15 = b1b3(b2 ≠ b4 + b5) (3.13)

where b1 sets the overall kinematic scale. The di�erential equation depends on four dimen-
sionless variables b2, . . . , b5. The algorithm takes derivatives with respect to one preferred
variable. It is convenient for us to choose this variable to be b2. Given the ansatz {Wi}, the
canonical partial di�erential matrix B2(b, ‘) ©

ˆ
ˆb2

B depends on 22 independent letters,

B2(b, ‘) © ‘

22ÿ

l=1
ml

ˆ

ˆb2
log –l(b) . (3.14)

To proceed, we need to select a suitable UT integral as an input to the algorithm. In order
to investigate the parity dependence of the di�erential equations, we tested the algorithm
starting with both a parity-even and parity-odd integral taken from the canonical basis
given in [17]. Fixing the value of b3, b4, b5 to be certain constants, we execute the algorithm
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Type of 
problem #MI #vars #letters time [min.] Memory 

[MB]

Full three-
loop DE 26 | 3 1 2 2 330

41 | 3 1 2 34 1710

Full four-
loop DE 19 | 12 1 2 1 240

HQET    
DE on cut 17 | 17 1 3 2 390

Five-point 
integrals 

DE on cut
9 | 9 4 17 5 510

[Dlapa, Henn, Yan 2019]
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Figure 1: Feynman diagrams contributing to the
four-loop quartic Casimir term B in eq. (1).

CF = TF = dRdF /NR = 1 [19], and by replacing the
strong coupling strength ↵s = g

2
YM/(4⇡) by the fine

structure constant ↵.
We are interested in the matter-dependent quartic

Casimir term of the four-loop cusp anomalous dimension,

�cusp|↵4
s
=

⇣
↵s
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⌘4 dRdF

NR
[nfB(x) + nsC(x)] + . . . , (1)

where B(x) and C(x) are the functions we wish to deter-
mine, x = e

i�, and where the number of (light) fermions
and scalars (canonically coupled to the gauge field) is
denoted by nf and ns, respectively. The dots stand
for other color structures [18] which we do not consider.
The Feynman diagrams relevant for the calculation of
B(x) are shown in Fig. 1. We evaluate them, and the
ones needed for C(x), in dimensional regularization, with
D = 4 � 2✏. The cusp anomalous dimension is obtained
from the coe�cient of the 1/✏ pole [18].

We relate the integrals appearing in the Feynman di-
agrams to a conveniently chosen integral basis [20], and
then determine the basis integrals by the method of dif-
ferential equations (DEs). In the process, we need to
handle large systems of linear equations representing in-
tegration by parts identities, which we generate and solve
using the codes FIRE6 [21] and LiteRed [22]. For most
of the calculations we use FIRE6’s finite field methods,
and reconstruct the full x and D dependence using the
techniques of [23]. We reconstruct only the DEs and
the Feynman diagrams we need, as opposed to creating
integral tables. Thanks to choosing an improved basis,
relatively few finite field evaluations are required for this
step.

The DEs for the integral families shown in Fig. 1 in-
volve of the order of 500 integrals (needed to describe all
integrals sharing the same or fewer propagators), with
coupled sub-systems of size up to 17, and denominators of
up to degree-20 polynomials in x and D. We wish to find
an integral basis that significantly simplifies the di↵eren-
tial equations [20]. To solve this complicated problem in
an automated way we develop further the algorithm of
[24] that relies on only a partial knowledge of a canonical
basis.

Figure 2: Integral sector involving special functions that
do not appear in the final result.

To provide input for the algorithm, we use several
ideas: for up to nine propagators, we find candidate uni-
form weight HQET integrals by a position-space analysis
[11], while for integrals with ten or more propagators we
perform a leading singularity analysis with the help of
the algorithm [14]. Moreover, we adapt [24] to scan over
a larger set of candidate integrals automatically, and to
use knowledge of all basis integrals that are known to be
uniform weight. Finally, we also make use of the comple-
mentary method [25, 26]. Given the information found by
this means, we first transform the diagonal blocks (this
is equivalent to considering integrals where propagators
are replaced by delta functions) of the DE into canonical
form. In a second step, we transform the o↵-diagonal
blocks of the full DEs.
In this way we obtain a canonical form of the DEs for

family (a), (b), (d) and (f),

d~f(x, ✏) = ✏

X
k
mk [d log↵k(x)] ~f(x, ✏) , (2)

where ~f is the vector of basis integrals for each inte-
gral family, mk are matrices with constant entries, and
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Setting x = �z
2, we solve eq. (2) in terms of multiple

polylogarithms [27] to the order in ✏ needed. The bound-
ary values are taken from [17], or are determined from
physical consistency conditions.
For the families (c) and (e), we proceed in the same way

for all integrals up to nine propagators, and for all diag-
onal blocks, except for the ten-propagator sector shown
in Fig. 2. For this sector we suspect that algebraic basis
transformations are insu�cient to bring them into canon-
ical form (see Appendix). A canonical form can likely be
achieved by enlarging the function space [27], but for the
scope of this paper we can proceed in a simpler way.
We find that the issue can be bypassed in the com-

putation of the cusp anomalous dimension, which only
sees the 1/✏ pole of each HQET diagram. This sug-
gests that complicated terms in individual basis integrals
might drop out of the final answer. Having this in mind,
we organize the basis in a way such that each basis el-
ement only needs to be computed to O(✏0). Remark-
ably, the new basis forms a closed di↵erential system
up to O(✏) corrections (which are irrelevant for �cusp),

d~f � da(✏, x) ~f = O(✏), where the matrix a is finite as
✏ ! 0, and it is nilpotent. To the order needed, the
solution is given by multiple polylogarithms.
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where B(x) and C(x) are the functions we wish to deter-
mine, x = e

i�, and where the number of (light) fermions
and scalars (canonically coupled to the gauge field) is
denoted by nf and ns, respectively. The dots stand
for other color structures [18] which we do not consider.
The Feynman diagrams relevant for the calculation of
B(x) are shown in Fig. 1. We evaluate them, and the
ones needed for C(x), in dimensional regularization, with
D = 4 � 2✏. The cusp anomalous dimension is obtained
from the coe�cient of the 1/✏ pole [18].

We relate the integrals appearing in the Feynman di-
agrams to a conveniently chosen integral basis [20], and
then determine the basis integrals by the method of dif-
ferential equations (DEs). In the process, we need to
handle large systems of linear equations representing in-
tegration by parts identities, which we generate and solve
using the codes FIRE6 [21] and LiteRed [22]. For most
of the calculations we use FIRE6’s finite field methods,
and reconstruct the full x and D dependence using the
techniques of [23]. We reconstruct only the DEs and
the Feynman diagrams we need, as opposed to creating
integral tables. Thanks to choosing an improved basis,
relatively few finite field evaluations are required for this
step.

The DEs for the integral families shown in Fig. 1 in-
volve of the order of 500 integrals (needed to describe all
integrals sharing the same or fewer propagators), with
coupled sub-systems of size up to 17, and denominators of
up to degree-20 polynomials in x and D. We wish to find
an integral basis that significantly simplifies the di↵eren-
tial equations [20]. To solve this complicated problem in
an automated way we develop further the algorithm of
[24] that relies on only a partial knowledge of a canonical
basis.

Figure 2: Integral sector involving special functions that
do not appear in the final result.

To provide input for the algorithm, we use several
ideas: for up to nine propagators, we find candidate uni-
form weight HQET integrals by a position-space analysis
[11], while for integrals with ten or more propagators we
perform a leading singularity analysis with the help of
the algorithm [14]. Moreover, we adapt [24] to scan over
a larger set of candidate integrals automatically, and to
use knowledge of all basis integrals that are known to be
uniform weight. Finally, we also make use of the comple-
mentary method [25, 26]. Given the information found by
this means, we first transform the diagonal blocks (this
is equivalent to considering integrals where propagators
are replaced by delta functions) of the DE into canonical
form. In a second step, we transform the o↵-diagonal
blocks of the full DEs.
In this way we obtain a canonical form of the DEs for

family (a), (b), (d) and (f),

d~f(x, ✏) = ✏

X
k
mk [d log↵k(x)] ~f(x, ✏) , (2)

where ~f is the vector of basis integrals for each inte-
gral family, mk are matrices with constant entries, and

~↵ = {x, 1+x, 1�x, 1+x
2
, 1�x+x

2
,
1�

p
�x

1+
p
�x

,
1�

p
�x+x

1+
p
�x+x

}.

Setting x = �z
2, we solve eq. (2) in terms of multiple

polylogarithms [27] to the order in ✏ needed. The bound-
ary values are taken from [17], or are determined from
physical consistency conditions.
For the families (c) and (e), we proceed in the same way

for all integrals up to nine propagators, and for all diag-
onal blocks, except for the ten-propagator sector shown
in Fig. 2. For this sector we suspect that algebraic basis
transformations are insu�cient to bring them into canon-
ical form (see Appendix). A canonical form can likely be
achieved by enlarging the function space [27], but for the
scope of this paper we can proceed in a simpler way.
We find that the issue can be bypassed in the com-

putation of the cusp anomalous dimension, which only
sees the 1/✏ pole of each HQET diagram. This sug-
gests that complicated terms in individual basis integrals
might drop out of the final answer. Having this in mind,
we organize the basis in a way such that each basis el-
ement only needs to be computed to O(✏0). Remark-
ably, the new basis forms a closed di↵erential system
up to O(✏) corrections (which are irrelevant for �cusp),

d~f � da(✏, x) ~f = O(✏), where the matrix a is finite as
✏ ! 0, and it is nilpotent. To the order needed, the
solution is given by multiple polylogarithms.
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gests that complicated terms in individual basis integrals
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Canonical differential equations:

Possibly non-polylogarithmic integral sector:

5

Integrals beyond multiple polylogarithms?

Two of the integral families contain the integral sector shown in Fig. 2. It contains 11 coupled basis integrals.
Following the procedure outlined in the main text, we find the following obstacle to reaching a canonical form for the
DE. At order ✏0 we encounter the following two-by-two system (after eliminating spurious singularities [25]),
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where y ⌘ �
(1�x)2

x and y± = 3
p
3 e±

i⇡
6 . While the residue matrices at the singular points 0, y± have eigenvalues

0, at y = 1 we find eigenvalues -1 and 1. We were not able to find a balancing transformation [25] that sets all
eigenvalues to zero. It would be interesting to prove that this two-by-two system cannot be balanced via algebraic
transformations, as it would mean that this integral sector involves functions beyond multiple polylogarithms.
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Figure 1: Feynman diagrams contributing to the
four-loop quartic Casimir term B in eq. (1).

CF = TF = dRdF /NR = 1 [19], and by replacing the
strong coupling strength ↵s = g

2
YM/(4⇡) by the fine

structure constant ↵.
We are interested in the matter-dependent quartic

Casimir term of the four-loop cusp anomalous dimension,

�cusp|↵4
s
=

⇣
↵s

⇡

⌘4 dRdF

NR
[nfB(x) + nsC(x)] + . . . , (1)

where B(x) and C(x) are the functions we wish to deter-
mine, x = e

i�, and where the number of (light) fermions
and scalars (canonically coupled to the gauge field) is
denoted by nf and ns, respectively. The dots stand
for other color structures [18] which we do not consider.
The Feynman diagrams relevant for the calculation of
B(x) are shown in Fig. 1. We evaluate them, and the
ones needed for C(x), in dimensional regularization, with
D = 4 � 2✏. The cusp anomalous dimension is obtained
from the coe�cient of the 1/✏ pole [18].

We relate the integrals appearing in the Feynman di-
agrams to a conveniently chosen integral basis [20], and
then determine the basis integrals by the method of dif-
ferential equations (DEs). In the process, we need to
handle large systems of linear equations representing in-
tegration by parts identities, which we generate and solve
using the codes FIRE6 [21] and LiteRed [22]. For most
of the calculations we use FIRE6’s finite field methods,
and reconstruct the full x and D dependence using the
techniques of [23]. We reconstruct only the DEs and
the Feynman diagrams we need, as opposed to creating
integral tables. Thanks to choosing an improved basis,
relatively few finite field evaluations are required for this
step.

The DEs for the integral families shown in Fig. 1 in-
volve of the order of 500 integrals (needed to describe all
integrals sharing the same or fewer propagators), with
coupled sub-systems of size up to 17, and denominators of
up to degree-20 polynomials in x and D. We wish to find
an integral basis that significantly simplifies the di↵eren-
tial equations [20]. To solve this complicated problem in
an automated way we develop further the algorithm of
[24] that relies on only a partial knowledge of a canonical
basis.

Figure 2: Integral sector involving special functions that
do not appear in the final result.

To provide input for the algorithm, we use several
ideas: for up to nine propagators, we find candidate uni-
form weight HQET integrals by a position-space analysis
[11], while for integrals with ten or more propagators we
perform a leading singularity analysis with the help of
the algorithm [14]. Moreover, we adapt [24] to scan over
a larger set of candidate integrals automatically, and to
use knowledge of all basis integrals that are known to be
uniform weight. Finally, we also make use of the comple-
mentary method [25, 26]. Given the information found by
this means, we first transform the diagonal blocks (this
is equivalent to considering integrals where propagators
are replaced by delta functions) of the DE into canonical
form. In a second step, we transform the o↵-diagonal
blocks of the full DEs.
In this way we obtain a canonical form of the DEs for

family (a), (b), (d) and (f),

d~f(x, ✏) = ✏

X
k
mk [d log↵k(x)] ~f(x, ✏) , (2)

where ~f is the vector of basis integrals for each inte-
gral family, mk are matrices with constant entries, and

~↵ = {x, 1+x, 1�x, 1+x
2
, 1�x+x
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}.

Setting x = �z
2, we solve eq. (2) in terms of multiple

polylogarithms [27] to the order in ✏ needed. The bound-
ary values are taken from [17], or are determined from
physical consistency conditions.
For the families (c) and (e), we proceed in the same way

for all integrals up to nine propagators, and for all diag-
onal blocks, except for the ten-propagator sector shown
in Fig. 2. For this sector we suspect that algebraic basis
transformations are insu�cient to bring them into canon-
ical form (see Appendix). A canonical form can likely be
achieved by enlarging the function space [27], but for the
scope of this paper we can proceed in a simpler way.
We find that the issue can be bypassed in the com-

putation of the cusp anomalous dimension, which only
sees the 1/✏ pole of each HQET diagram. This sug-
gests that complicated terms in individual basis integrals
might drop out of the final answer. Having this in mind,
we organize the basis in a way such that each basis el-
ement only needs to be computed to O(✏0). Remark-
ably, the new basis forms a closed di↵erential system
up to O(✏) corrections (which are irrelevant for �cusp),

d~f � da(✏, x) ~f = O(✏), where the matrix a is finite as
✏ ! 0, and it is nilpotent. To the order needed, the
solution is given by multiple polylogarithms.

y = (1 − x2)/x

But final answer is polylogarithmic, 
only alphabet                         needed!
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Figure 3: The shape of the four-loop term B agrees well with the rescaled one-loop function A. The dashed line in
the insets shows their ratio, which agrees with unity within a few per cent, except for (d). The plots show di↵erent

kinematic regions, for Minkowskian angle ' = �i� (a), Euclidean angle � (c), and for x 2 (�1, 0) (b,d).

RESULTS

Full result for the QED cusp anomalous dimension

We obtain the following result for the four-loop cusp
anomalous dimension in QED,

�cusp(x,↵) = �(↵)A(x) +
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nfB(x) +O(↵5) , (3)

where

�(↵) =
⇣
↵

⇡

⌘
�

5nf

9

⇣
↵

⇡

⌘2
+

 
�
n
2
f

27
�

55nf

48
+ nf⇣3

!⇣
↵

⇡

⌘3

+


n
3
f

✓
�

1

81
+

2⇣3
27

◆
+ n

2
f

✓
299

648
+

⇡
4

180
�

10⇣3
9

◆

+nf

✓
143

288
+

37⇣3
24

�
5⇣5
2

◆�⇣
↵

⇡

⌘4
, (4)

and

A = �
1 + x

2

1� x2
log x� 1 , (5)

is the one-loop function.
The first term in eq. (3) comes from propagator-type

diagrams [28], while the term B, our main new result,
comes from the Feynman diagrams shown in Fig. 1. We
write it in the following way

B =
1 + x

2

1� x2
B1 +

x

1� x2
B2 +

1� x
2

x
B3 +B4 , (6)

that makes the rational dependence on x manifest. The
functions Bi are given by linear combinations (in Q) of
multiple polylogarithms of transcendental weight four to
seven. We provide them as computer-readable ancillary
files. Remarkably, only four of the integration kernels of
eq. (2) appear, namely ↵ = {x, 1± x, 1 + x

2
}.

Previously it was conjectured [10] that B(x) equals

Bc(x) =

✓
⇡
2

6
�

⇣3

3
�

5⇣5
3

◆
A(x) ⇡ �0.484A(x) . (7)

This was found to be inconsistent with the small angle
expansion, but curiously it approximately agrees numer-
ically with the exact answer [17]. We can now evaluate
our exact result B(x) � Bc(x) for any value of x, us-
ing [29]. Remarkably, we find that the shape of B(x) is
very well described by Bc(x). It turns out that one can
improve the quantitative agreement by adjusting the pro-
portionality constant in eq. (7). Fig. 3(a) and Fig. 3(c)
show that �0.458A(x) approximates B(x) within 6% in
a large part of the kinematic regions for Minkowskian
angles ' = �i�, and Euclidean angles, respectively, and
similarly for the imaginary part in the region x 2 (�1, 0),
as shown in Fig. 3(b). These last two regions can be inter-
preted as below and above threshold for the production
of two massive quarks, see e.g. [30]. For the real part for
x 2 (�1, 0), the deviation can reach 25% near x = �0.2,
see Fig. 3(d). Still, we find it remarkable that the simple
one-loop function A(x) captures the main features of the
four-loop result.

[Lee, 2014]We used our algorithm plus other ideas to obtain this.



Four-loop result and checks

• Gauge invariance check

• Anti-parallel lines limit                    : 
quark-antiquark potential checked  [Lee, Smirnov^2, Steinhauser, 2016]
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that makes the rational dependence on x manifest. The
functions Bi are given by linear combinations (in Q) of
multiple polylogarithms of transcendental weight four to
seven. We provide them as computer-readable ancillary
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This was found to be inconsistent with the small angle
expansion, but curiously it approximately agrees numer-
ically with the exact answer [17]. We can now evaluate
our exact result B(x) � Bc(x) for any value of x, us-
ing [29]. Remarkably, we find that the shape of B(x) is
very well described by Bc(x). It turns out that one can
improve the quantitative agreement by adjusting the pro-
portionality constant in eq. (7). Fig. 3(a) and Fig. 3(c)
show that �0.458A(x) approximates B(x) within 6% in
a large part of the kinematic regions for Minkowskian
angles ' = �i�, and Euclidean angles, respectively, and
similarly for the imaginary part in the region x 2 (�1, 0),
as shown in Fig. 3(b). These last two regions can be inter-
preted as below and above threshold for the production
of two massive quarks, see e.g. [30]. For the real part for
x 2 (�1, 0), the deviation can reach 25% near x = �0.2,
see Fig. 3(d). Still, we find it remarkable that the simple
one-loop function A(x) captures the main features of the
four-loop result.

(x = eiϕ)We find

Polylogarithms of weight three to seven. 

 [Lee, Smirnov^2, Steinhauser, 2019; Henn, Peraro, Stahlhofen, Wasser, 2019]

• Massless limit           : light-like cusp anomalous 
dimension correctly reproduced

x → 0

ϕ → π, x → − 1

• Small angle limit                 agreesϕ → 0, x → 1 [Grozin, Henn, Stahlhofen 2017]
[Brüser, Grozin, Henn, Stahlhofen,2019]



A surprising zero in the anti-parallel lines limit

Similarly, we produce systematic expansions in small 
angle and light-like limits.

Anti-parallel lines limit:

4

Let us now expand our novel results in several inter-
esting limits. This serves both as a check and allows us
to produce novel results, by computing additional terms.

1. In the small angle limit � ! 0, i.e. x ! 1, we find
agreement with known terms up to �

6 [17, 31][32]. The
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The first log x term agrees with the light-like cusp anoma-
lous dimension [12, 13], and the finite part is new.

3. In the anti-parallel lines limit x ! �1, the cusp
anomalous dimension is related to the quark-antiquark

potential V [33], �cusp
�!0
�! �CR

↵s
� V , where � = ⇡ � �.

This relation is true up to beta function terms [11], which
do not a↵ect the quartic Casimir term considered here.
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where l2 = log(2). The pole term is in agreement with
[34]. It is remarkable that the subleading terms in eq.
(9) start at O(�) only.

Quark-antiquark potential in N = 4 sYM

The quark-antiquark potential in N = 4 sYM is known
up to two loops for both the bosonic and supersymmetric
Wilson loop [35]. At three loops, it has the following color
dependence,

VsYM|↵3
s
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3
AV1 + dRdA/(NRCR)V2

⇤
. (10)

We can determine V2 for bosonic static charges by using
a supersymmetric decomposition, as in [14]. Taking into
account the known results for the gluon and the fermion
quartic Casimir terms [34], we only need the scalar con-
tribution. We obtain the latter from our result C(x) in
eq. (1). (The full formula for C(x) is provided in an
ancillary file.) We find
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This constitutes the first non-planar correction to the
quark-antiquark potential in N = 4 sYM. It would be
interesting if integrability methods [36] could be extended
to this case.

DISCUSSION AND CONCLUSIONS

We computed the matter-dependent quartic Casimir
term of the four-loop angle-dependent cusp anomalous
dimension, in a generic gauge theory involving massless
matter fields. In particular, this determines the full QED
result for this quantity, and includes for the first time
contributions from light-by-light scattering diagrams.
Our calculation revealed new structures compared to

previous three-loop results: the answer contains four as
opposed to previously two rational structures. The func-
tion space is given by iterated integrals, and compared to
three loops, there is one new integration kernel, namely
d log(1 + x

2), in addition to d log x, d log(1 � x) and
d log(1 + x). This relative simplicity is remarkable given
that intermediate steps (and higher order terms in the di-
mensional regulator) contain further integration kernels,
cf. eq. (2). This hints at better approaches that avoid
the complicated intermediate terms.
The information on the function space is valuable input

for bootstrap approaches [37]. In particular, our result
implies constraints (via collinear limits) on the multi-leg
soft anomalous dimension matrix for massive particles,
which currently is known at two loops only [8].
We analyzed the novel four-loop result numerically,

and found that, surprisingly, it is described within a few
per cent by a rescaled one-loop function (and up to 25%
for the real part in the above threshold region). Clearly
this could be improved even further by using some of
the known limiting behaviour, as in [38], for example.
It would be interesting to understand why the approx-
imation works so well here, in view of other problems
where fully analytic results are not yet known, such as
scattering processes with many mass scales.
To obtain all color contributions of the complete QCD

cusp anomalous dimension at four loops, only two further
contributions are needed [18]. The first one is the planar
limit, which is conceptually easier compared to our calcu-
lation. The HQET integrals we computed should cover a
large part of the integrals needed, and are available upon
request from the authors. The second one is the gluonic
quartic Casimir term. Thanks to our calculation of the
scalar terms, the latter can equivalently be obtained from
the non-planar N = 4 sYM contribution. This opens up
novel approaches to this problem [14].
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account the known results for the gluon and the fermion
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this could be improved even further by using some of
the known limiting behaviour, as in [38], for example.
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where fully analytic results are not yet known, such as
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large part of the integrals needed, and are available upon
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account the known results for the gluon and the fermion
quartic Casimir terms [34], we only need the scalar con-
tribution. We obtain the latter from our result C(x) in
eq. (1). (The full formula for C(x) is provided in an
ancillary file.) We find

V2 =7⇡2
�

47⇡4

24
+

413⇡6

1440
+

116⇡2
l2

3
+

3⇡4
l2

3
+

2

3
⇡
4
l
2
2

�
17

12
⇡
2
l
4
2 � 34⇡2Li4

✓
1

2

◆
�

89

4
⇡
2
⇣3 � 14⇡2

l2⇣3 . (11)

This constitutes the first non-planar correction to the
quark-antiquark potential in N = 4 sYM. It would be
interesting if integrability methods [36] could be extended
to this case.

DISCUSSION AND CONCLUSIONS

We computed the matter-dependent quartic Casimir
term of the four-loop angle-dependent cusp anomalous
dimension, in a generic gauge theory involving massless
matter fields. In particular, this determines the full QED
result for this quantity, and includes for the first time
contributions from light-by-light scattering diagrams.
Our calculation revealed new structures compared to

previous three-loop results: the answer contains four as
opposed to previously two rational structures. The func-
tion space is given by iterated integrals, and compared to
three loops, there is one new integration kernel, namely
d log(1 + x

2), in addition to d log x, d log(1 � x) and
d log(1 + x). This relative simplicity is remarkable given
that intermediate steps (and higher order terms in the di-
mensional regulator) contain further integration kernels,
cf. eq. (2). This hints at better approaches that avoid
the complicated intermediate terms.
The information on the function space is valuable input

for bootstrap approaches [37]. In particular, our result
implies constraints (via collinear limits) on the multi-leg
soft anomalous dimension matrix for massive particles,
which currently is known at two loops only [8].
We analyzed the novel four-loop result numerically,

and found that, surprisingly, it is described within a few
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imation works so well here, in view of other problems
where fully analytic results are not yet known, such as
scattering processes with many mass scales.
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limit, which is conceptually easier compared to our calcu-
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large part of the integrals needed, and are available upon
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Few color structures missing for full QCD result

2) In addition to this, only (simpler) planar calculation 
needed. The integrals we computed should be helpful.

1) We computed all matter-dependent quartic Casimir 
terms. This means that the gluon quartic Casimir term 
could be obtained from N=4 super Yang-Mills result! 
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RESULTS

Full result for the QED cusp anomalous dimension

We obtain the following result for the four-loop cusp
anomalous dimension in QED,
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is the one-loop function.
The first term in eq. (3) comes from propagator-type

diagrams [28], while the term B, our main new result,
comes from the Feynman diagrams shown in Fig. 1. We
write it in the following way

B =
1 + x
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B2 +
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B3 +B4 , (6)

that makes the rational dependence on x manifest. The
functions Bi are given by linear combinations (in Q) of
multiple polylogarithms of transcendental weight four to
seven. We provide them as computer-readable ancillary
files. Remarkably, only four of the integration kernels of
eq. (2) appear, namely ↵ = {x, 1± x, 1 + x
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Previously it was conjectured [10] that B(x) equals

Bc(x) =
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This was found to be inconsistent with the small angle
expansion, but curiously it approximately agrees numer-
ically with the exact answer [17]. We can now evaluate
our exact result B(x) � Bc(x) for any value of x, us-
ing [29]. Remarkably, we find that the shape of B(x) is
very well described by Bc(x). It turns out that one can
improve the quantitative agreement by adjusting the pro-
portionality constant in eq. (7). Fig. 3(a) and Fig. 3(c)
show that �0.458A(x) approximates B(x) within 6% in
a large part of the kinematic regions for Minkowskian
angles ' = �i�, and Euclidean angles, respectively, and
similarly for the imaginary part in the region x 2 (�1, 0),
as shown in Fig. 3(b). These last two regions can be inter-
preted as below and above threshold for the production
of two massive quarks, see e.g. [30]. For the real part for
x 2 (�1, 0), the deviation can reach 25% near x = �0.2,
see Fig. 3(d). Still, we find it remarkable that the simple
one-loop function A(x) captures the main features of the
four-loop result.
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First non-planar terms in N=4 sYM 
quark-antiquark potential

4

Let us now expand our novel results in several inter-
esting limits. This serves both as a check and allows us
to produce novel results, by computing additional terms.

1. In the small angle limit � ! 0, i.e. x ! 1, we find
agreement with known terms up to �

6 [17, 31][32]. The

leading term is B =
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The first log x term agrees with the light-like cusp anoma-
lous dimension [12, 13], and the finite part is new.

3. In the anti-parallel lines limit x ! �1, the cusp
anomalous dimension is related to the quark-antiquark

potential V [33], �cusp
�!0
�! �CR

↵s
� V , where � = ⇡ � �.

This relation is true up to beta function terms [11], which
do not a↵ect the quartic Casimir term considered here.
We find
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where l2 = log(2). The pole term is in agreement with
[34]. It is remarkable that the subleading terms in eq.
(9) start at O(�) only.

Quark-antiquark potential in N = 4 sYM

The quark-antiquark potential in N = 4 sYM is known
up to two loops for both the bosonic and supersymmetric
Wilson loop [35]. At three loops, it has the following color
dependence,
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s
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3
AV1 + dRdA/(NRCR)V2

⇤
. (10)

We can determine V2 for bosonic static charges by using
a supersymmetric decomposition, as in [14]. Taking into
account the known results for the gluon and the fermion
quartic Casimir terms [34], we only need the scalar con-
tribution. We obtain the latter from our result C(x) in
eq. (1). (The full formula for C(x) is provided in an
ancillary file.) We find
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This constitutes the first non-planar correction to the
quark-antiquark potential in N = 4 sYM. It would be
interesting if integrability methods [36] could be extended
to this case.

DISCUSSION AND CONCLUSIONS

We computed the matter-dependent quartic Casimir
term of the four-loop angle-dependent cusp anomalous
dimension, in a generic gauge theory involving massless
matter fields. In particular, this determines the full QED
result for this quantity, and includes for the first time
contributions from light-by-light scattering diagrams.
Our calculation revealed new structures compared to

previous three-loop results: the answer contains four as
opposed to previously two rational structures. The func-
tion space is given by iterated integrals, and compared to
three loops, there is one new integration kernel, namely
d log(1 + x

2), in addition to d log x, d log(1 � x) and
d log(1 + x). This relative simplicity is remarkable given
that intermediate steps (and higher order terms in the di-
mensional regulator) contain further integration kernels,
cf. eq. (2). This hints at better approaches that avoid
the complicated intermediate terms.
The information on the function space is valuable input

for bootstrap approaches [37]. In particular, our result
implies constraints (via collinear limits) on the multi-leg
soft anomalous dimension matrix for massive particles,
which currently is known at two loops only [8].
We analyzed the novel four-loop result numerically,

and found that, surprisingly, it is described within a few
per cent by a rescaled one-loop function (and up to 25%
for the real part in the above threshold region). Clearly
this could be improved even further by using some of
the known limiting behaviour, as in [38], for example.
It would be interesting to understand why the approx-
imation works so well here, in view of other problems
where fully analytic results are not yet known, such as
scattering processes with many mass scales.
To obtain all color contributions of the complete QCD

cusp anomalous dimension at four loops, only two further
contributions are needed [18]. The first one is the planar
limit, which is conceptually easier compared to our calcu-
lation. The HQET integrals we computed should cover a
large part of the integrals needed, and are available upon
request from the authors. The second one is the gluonic
quartic Casimir term. Thanks to our calculation of the
scalar terms, the latter can equivalently be obtained from
the non-planar N = 4 sYM contribution. This opens up
novel approaches to this problem [14].
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3. In the anti-parallel lines limit x ! �1, the cusp
anomalous dimension is related to the quark-antiquark

potential V [33], �cusp
�!0
�! �CR

↵s
� V , where � = ⇡ � �.

This relation is true up to beta function terms [11], which
do not a↵ect the quartic Casimir term considered here.
We find
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where l2 = log(2). The pole term is in agreement with
[34]. It is remarkable that the subleading terms in eq.
(9) start at O(�) only.

Quark-antiquark potential in N = 4 sYM

The quark-antiquark potential in N = 4 sYM is known
up to two loops for both the bosonic and supersymmetric
Wilson loop [35]. At three loops, it has the following color
dependence,
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We can determine V2 for bosonic static charges by using
a supersymmetric decomposition, as in [14]. Taking into
account the known results for the gluon and the fermion
quartic Casimir terms [34], we only need the scalar con-
tribution. We obtain the latter from our result C(x) in
eq. (1). (The full formula for C(x) is provided in an
ancillary file.) We find
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This constitutes the first non-planar correction to the
quark-antiquark potential in N = 4 sYM. It would be
interesting if integrability methods [36] could be extended
to this case.

DISCUSSION AND CONCLUSIONS

We computed the matter-dependent quartic Casimir
term of the four-loop angle-dependent cusp anomalous
dimension, in a generic gauge theory involving massless
matter fields. In particular, this determines the full QED
result for this quantity, and includes for the first time
contributions from light-by-light scattering diagrams.
Our calculation revealed new structures compared to

previous three-loop results: the answer contains four as
opposed to previously two rational structures. The func-
tion space is given by iterated integrals, and compared to
three loops, there is one new integration kernel, namely
d log(1 + x

2), in addition to d log x, d log(1 � x) and
d log(1 + x). This relative simplicity is remarkable given
that intermediate steps (and higher order terms in the di-
mensional regulator) contain further integration kernels,
cf. eq. (2). This hints at better approaches that avoid
the complicated intermediate terms.
The information on the function space is valuable input

for bootstrap approaches [37]. In particular, our result
implies constraints (via collinear limits) on the multi-leg
soft anomalous dimension matrix for massive particles,
which currently is known at two loops only [8].
We analyzed the novel four-loop result numerically,

and found that, surprisingly, it is described within a few
per cent by a rescaled one-loop function (and up to 25%
for the real part in the above threshold region). Clearly
this could be improved even further by using some of
the known limiting behaviour, as in [38], for example.
It would be interesting to understand why the approx-
imation works so well here, in view of other problems
where fully analytic results are not yet known, such as
scattering processes with many mass scales.
To obtain all color contributions of the complete QCD

cusp anomalous dimension at four loops, only two further
contributions are needed [18]. The first one is the planar
limit, which is conceptually easier compared to our calcu-
lation. The HQET integrals we computed should cover a
large part of the integrals needed, and are available upon
request from the authors. The second one is the gluonic
quartic Casimir term. Thanks to our calculation of the
scalar terms, the latter can equivalently be obtained from
the non-planar N = 4 sYM contribution. This opens up
novel approaches to this problem [14].
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Here

This is for the bosonic Wilson loop. Can it be obtained 
from integrability? [Correa, Maldacena, Sever 2012; Drukker 2012; Gromov, 

Levkovich-Maslyuk, 2016; Correa, Leoni, Luque, 2018]



Conclusions and discussion

• Obtained full four-loop QED angle-dependent 
cusp anomalous dimension

• Analytic result depends on relatively simple 
function alphabet. Are there better methods for 
obtaining this? Gives valuable input for 
bootstrap of soft anomalous dimension.

• Result is qualitatively well described by 
rescaled one-loop function


