Superstring Amplitudes beyond Tree-level

Eric D'Hoker

Kavli Institute for Theoretical Physics – Scattering Amplitudes and Beyond – 2017

Outline

• QFT: proliferation of the number of Feynman diagrams

- with increasing number of external states
- with the number of loops

• Closed strings: a single diagram per loop order

- compact (super) Riemann surface Σ
- genus = number of handles = number of loops

(open-closed strings: cfr talks by Schlotterer and Stieberger)

• Main topics

- I prototypes of closed superstring loop amplitudes
- II construction of amplitudes in the RNS formulation
- III supermoduli
- IV low energy effective interactions
- V speculation on ambi-twistors

I. Prototypes

• Type IIB four-graviton amplitude to one-loop order (Green, Schwarz 1982)

$$\mathcal{A}^{(1)}(\varepsilon_i, k_i) = \mathcal{K}\tilde{\mathcal{K}} \int_{\mathcal{M}_1} \frac{d^2\tau}{(\mathrm{Im}\tau)^2} \mathcal{B}^{(1)}(s_{ij}|\tau)$$

– Factorized basis of polarization tensors $\varepsilon^{\mu\nu}_i = \varepsilon^{\mu}_i \tilde{\varepsilon}^{\nu}_i$

$$s_{ij} = -\alpha'(k_i + k_j)^2/4$$
 $\mathcal{K} = t_8 \varepsilon_1 \cdots \varepsilon_4 k_1 \cdots k_4$

– Partial amplitude \mathcal{B} is a modular function in $\tau \in \mathcal{M}_1 = \mathbb{H}/SL(2,\mathbb{Z})$

$$\mathcal{B}^{(1)}(s_{ij}|\tau) = \int_{\Sigma^4} \prod_{i=1}^4 \frac{d^2 z_i}{\mathrm{Im}\tau} \exp\left(\sum_{i< j} s_{ij} G(z_i - z_j|\tau)\right)$$

 $-G(z|\tau)$ is the scalar Green function on the torus Σ of modulus τ .

- Analogous formulas for Heterotic strings and more external states.

• Singularity structure

- For fixed τ integrations over Σ produce poles in \mathcal{B} at positive integers s_{ij} .
- The integral over τ converges absolutely only for $\operatorname{Re}(s_{ij}) = 0$.
- Analytic continuation requires decomposition of \mathcal{M}_1 .
- Massless singularities are produced by $\tau \rightarrow i\infty$ (cfr ambi-twistor string).

Loop momenta

- Loop momenta were hidden but may be exposed
 - Choose a canonical basis of cycles A, B of $H_1(\Sigma, \mathbb{Z})$.
 - Choose loop momentum p_{μ} flowing through the cycle A,

$$\int_{\mathcal{M}_1} \frac{d^2 \tau}{(\mathrm{Im}\tau)^2} \, \mathcal{B}^{(1)}(s_{ij}|\tau) = \int_{\mathbb{R}^{10}} d^{10} p \int_{\mathcal{M}_1} \int_{\Sigma^4} \left| \mathcal{F}(z_i, k_i, p|\tau) \right|^2$$

– The partial amplitude ${\cal F}$ is **locally holomorphic** in au and z_i

$$\mathcal{F}(z_i, k_i, p|\tau) = d\tau \prod_{i=1}^4 dz_i \, e^{i\pi\tau p^2 + 2\pi i p \sum_i k_i z_i} \prod_{i < j} \vartheta_1 (z_i - z_j|\tau)^{-s_{ij}}$$

- at the cost of non-trivial monodromy

$$\mathcal{F}(z_i + \delta_{i,\ell}A, k_i, p|\tau) = e^{2\pi i k_{\ell} \cdot p} \mathcal{F}(z_i, k_i, p|\tau)$$
$$\mathcal{F}(z_i + \delta_{i,\ell}B, k_i, p|\tau) = \mathcal{F}(z_i, k_i, p + k_{\ell}|\tau)$$

- Modular invariance of $\mathcal{A}^{(1)}$ guarantees independence of choices.
- Hermitian pairing of \mathcal{F} and $\overline{\mathcal{F}}$ is familiar from 2-d CFT where loop momenta p_{μ} label conformal blocks of 10 copies of c = 1.

Genus two

• Siegel Upper half space S_2

 $S_{2} = \{\Omega_{IJ} = \Omega_{JI} \in \mathbb{C} \text{ with } I, J = 1, 2 \text{ and } Y = \text{Im}\Omega > 0\}$ - $Sp(4, \mathbb{R}) \text{ acts by } \Omega \rightarrow (A\Omega + B)(C\Omega + D)^{-1}$ $M^{t}JM = J \qquad M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \qquad J = \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}$

– \mathcal{S}_2 has $Sp(4,\mathbb{R})$ -invariant metric ds_2^2 and volume form $d\mu_2$

$$ds_2^2 = \sum_{I,J,K,L=1,2} Y_{IJ}^{-1} d\bar{\Omega}_{JK} Y_{KL}^{-1} d\Omega_{LI}$$

- Compact Riemann surfaces $\boldsymbol{\Sigma}$
 - Choose canonical homology basis of A_I, B_I cycles for $H_1(\Sigma, \mathbb{Z})$.
 - $-\omega_I$ dual holomorphic (1,0) forms,

$$\oint_{A_I} \omega_J = \delta_{IJ} \qquad \qquad \oint_{B_I} \omega_J = \Omega_{IJ}$$

- Riemann relations imply $\Omega \in \mathcal{S}_2$;
- Modular group $Sp(4,\mathbb{Z})$; moduli space $\mathcal{M}_2 = \mathcal{S}_2/Sp(4,\mathbb{Z})$.

Two-loop Type II superstring amplitudes

• Type II four-graviton amplitude at genus 2 (ED, Phong 2001 – 2005)

$$\mathcal{A}^{(2)}(\varepsilon_{i},k_{i}) = \mathcal{K}\tilde{\mathcal{K}} \int_{\mathcal{M}_{2}} d\mu_{2} \mathcal{B}^{(2)}(s_{ij}|\Omega)$$
$$\mathcal{B}^{(2)}(s_{ij}|\Omega) = \int_{\Sigma^{4}} \frac{\mathcal{Y} \wedge \bar{\mathcal{Y}}}{(\det \operatorname{Im} \Omega)^{2}} \exp\left(\sum_{i < j} s_{ij} G(z_{i}, z_{j}|\Omega)\right)$$

- $G(z_i, z_j)$ is the genus-two scalar Green function; $\mathcal{Y} = (t - u)\Delta(z_1, z_2) \wedge \Delta(z_3, z_4) + (s - t)\Delta(z_1, z_3) \wedge \Delta(z_4, z_2)$ $+(u - s)\Delta(z_1, z_4) \wedge \Delta(z_2, z_3)$

 $-\Delta(z_i, z_j)$ is a bi-holomorphic form independent of s, t, u.

 $\Delta(z,w)=\omega_1(z)\wedge\omega_2(w)-\omega_2(z)\wedge\omega_1(w)$

- Representation with loop momenta and holomorphic product as at 1-loop
- reproduced (with fermions) in pure spinor formulation (Berkovits, Mafra 2005)

• Singularity structure

- For fixed Ω integrations over Σ produce poles in \mathcal{B} at positive integers s_{ij} .
- The integral over Ω requires analytic continuation beyond $\operatorname{Re}(s_{ij}) = 0$.
- Leading massless singularities from $\Omega_{11}, \Omega_{22} \rightarrow i\infty$ (cfr ambi-twistor string).

Two-loop Heterotic string amplitudes

• Heterotic four NS boson amplitude at genus 2 (ED, Phong 2005)

$$\mathcal{A}_{\mathcal{O}}^{(2)}(\varepsilon_{i},\tilde{\varepsilon}_{i},k_{i}) = \mathcal{K} \int_{\mathcal{M}_{2}} d\mu_{2} \,\mathcal{B}_{\mathcal{O}}^{(2)}(\tilde{\varepsilon}_{i},k_{i}|\Omega)$$
$$\mathcal{B}_{\mathcal{O}}^{(2)}(s_{ij}|\Omega) = \int_{\Sigma^{4}} \frac{\mathcal{Y} \wedge \overline{\mathcal{W}_{\mathcal{O}}(\tilde{\varepsilon}_{i},k_{i})}}{(\det \operatorname{Im}\Omega)^{2} \overline{\Psi_{10}(\Omega)}} \exp\left(\sum_{i < j} s_{ij} \,G(z_{i},z_{j})\right)$$

– $\Psi_{10}(\Omega)$ is the Igusa cusp form.

– Dependence on \mathcal{O} according to channel:

 \star 4 gravitons \mathcal{R}^4

* 2 gravitons + 2 gauge bosons $\mathcal{R}^2 tr(\mathcal{F}^2)$;

 \star or 4 gauge with 2 channels $(\mathrm{tr}\mathcal{F}^2)(\mathrm{tr}\mathcal{F}^2)$ and $\mathrm{tr}(\mathcal{F}^4)$

- For example,

$$\mathcal{W}_{\mathcal{R}^{4}}(\tilde{\varepsilon}_{i},k_{i}) = \frac{\langle \prod_{i=1}^{4} \tilde{\varepsilon}_{i} \cdot \partial \tilde{x}(z_{i}) e^{ik_{i} \cdot \tilde{x}(z_{i})} \rangle}{\langle \prod_{i=1}^{4} e^{ik_{i} \cdot \tilde{x}(z_{i})} \rangle}$$
$$\langle \tilde{x}^{\mu}(z) \tilde{x}^{\nu}(w) \rangle = -\eta^{\mu\nu} \ln E(z,w)$$

- Gauge parts are obtained by the correlators of the current (0, 1)-forms.

II. Construction of amplitudes in RNS formulation

\bullet Spinors ψ^{μ} on the worldsheet

- With Minkowski worldsheet signature
 - \star opposite chirality spinors $\psi^{\mu}, ilde{\psi}^{\mu}$ are *independent* Majorana-Weyl
 - \star Dirac eq solved by $\psi^{\mu}(\tau \sigma)$ and $\tilde{\psi}^{\mu}(\tau + \sigma)$
- With Euclidean worldsheet signature
 - * right (-movers) $\tau \sigma \rightarrow z$
 - * left (-movers) $\tau + \sigma \rightarrow \tilde{z}$

 \star worldsheet spinors $\psi^{\mu}, \tilde{\psi}^{\mu}$ become complex conjugate Weyl spinors

- On a compact Riemann surface of genus \boldsymbol{g}
 - \star In local complex coordinates (z, \tilde{z}) solved by $\psi^{\mu}(z)$ and $\tilde{\psi}^{\mu}(\tilde{z})$
 - \star Globally, ψ^{μ} are sections of spin bundle S (resp. $\tilde{\psi}^{\mu}$ of \tilde{S})
 - ★ same bundle S (resp. \tilde{S}) for all μ by Lorentz invariance in \mathbb{R}^{10} ★ $S^{\otimes 2} \approx \tilde{S}^{\otimes 2} \approx T^*_{(1,0)}(\Sigma)$
 - $\star 2^{2g}$ distinct spin bundles labelled by their spin structure.
 - $\star S$ and $ilde{S}$ must be independent of one another.

Worldsheet fields

• Type II

- $\begin{array}{l} -x^{\mu}, \psi^{\mu}, \tilde{\psi}^{\mu}, \mu = 0, 1, \cdots, 9 \\ -g_{mn} \longrightarrow b, c, \tilde{b}, \tilde{c} \text{ ghosts} + g_{mn}^{0} \text{ (parametrizing even moduli)} \\ \chi_{m}, \tilde{\chi}_{m} \longrightarrow \beta, \gamma, \tilde{\beta}, \tilde{\gamma} \text{ ghosts} + \chi_{m}^{0}, \tilde{\chi}_{m}^{0} \text{ (parametrizing odd moduli)} \end{array}$
- $-\psi^{\mu}, \beta, \gamma, \chi_{m}$ all have the same spin structure $\delta \\ \tilde{\psi}^{\mu}, \tilde{\beta}, \tilde{\gamma}, \tilde{\chi}_{m}$ all have the same spin structure $\tilde{\delta}$

• Heterotic

- $-x^{\mu}, \psi^{\mu}, \tilde{\lambda}^{\alpha}, \alpha = 1 \cdots 32$
- $-g_{mn} \longrightarrow b, c, \tilde{b}, \tilde{c}$ ghosts $+g_{mn}^0$ (parametrizing even moduli) $\chi_m \longrightarrow \beta, \gamma$ ghosts $+\chi_m^0$ (parametrizing odd moduli)

 $-\psi^{\mu}, \beta, \gamma, \chi_m$ all have the same spin structure δ $\tilde{\lambda}^{lpha}$ grouped into $16_{\tilde{\delta}_1} \oplus 16_{\tilde{\delta}_2}$ for $E_8 \times E_8$ or into $32_{\tilde{\delta}}$ for $Spin(32)/\mathbb{Z}_2$

Chiral amplitudes

- Both Type II and Heterotic require chiral amplitudes
 - Link chirality with holomorphicity on (super) moduli space
 - Chiral amplitude from non-chiral by chiral splitting (ED, Phong 1988-91)
 - Approach via holomorphic super-Riemann surfaces (Witten, arXiv:1209.2459, 1209.5461, 1304.2832, 1306.3621)
- Full amplitudes will be constructed by pairing left and right
 - cfr "double copy construction"

Conformal structures and deformations

• An orientable 2-dim manifold with Riemannian metric is a Riemann surface

- complex manifold (holomorphic transition functions)
- complex structure $J: T(\Sigma) \to T(\Sigma), J^2 = -I$ is integrable
- in terms of the metric and local coordinates, $J^m{}_n = \sqrt{g} g^{mp} \varepsilon_{pn}$
- Moduli space $\mathcal{M}_h = \{J\}/\text{Diff}(\Sigma)$ of genus h Riemann surfaces

• Moduli space itself is a complex "manifold" (actually orbifold)

- Its tangent space splits $T(\mathcal{M}_g) = T_{(1,0)}(\mathcal{M}_g) \oplus T_{(0,1)}(\mathcal{M}_g)$
- associated Beltrami differentials $\delta J = \delta J_{\tilde{z}}^{z} \oplus \delta J_{z}^{\tilde{z}}$

$$\dim_{\mathbb{C}} \mathcal{M}_h = \begin{cases} 0 & h = 0\\ 1 & h = 1\\ 3h - 3 & h \ge 2 \end{cases}$$

- Beltrami differentials provide a parametrization of finite deformations
 - Fix complex structure J and associated local complex coordinates (z, \tilde{z})
 - metric is conformally flat $ds^2 = |dz|^2$
 - finite deformations to $ds^2 = |dz + \mu_{\bar{z}}{}^z d\bar{z}|^2$ with $\delta \mu_{\bar{z}}{}^z = \delta J_{\bar{z}}{}^z$

Super conformal structures

- Super Riemann surfaces (Friedan, Martinec, Shenker 1986)
 - complex dimension 1|1 locally isomorphic to $\mathbb{C}^{1|1}$
 - transition functions are superconformal in z| heta
 - transforming the superderivative $D_{\theta} = \partial_{\theta} + \theta \partial_z$ by scaling

$$f: (z|\theta) \to (\hat{z}|\hat{\theta}) \qquad D_{\theta} = F(z,\theta)D_{\hat{\theta}}$$

- Locally: generates the holomorphic $\mathcal{N}=1$ superconformal algebra
- Globally: $T\Sigma$ has a completely non-integrable subbundle ${\cal D}$ of rank 0|1
- Moduli space $\mathfrak{M}_h = \{\mathcal{J}\}/\mathrm{Diff}(\Sigma)$
 - = equivalence classes of superconformal structures ${\cal J}$

$$\dim_{\mathbb{C}} \mathfrak{M}_h = \begin{cases} 0|0 & h = 0\\ 1|0 \text{ or } 1|1 & h = 1\\ 3h - 3|2h - 2 & h \ge 2 \end{cases}$$
 even or odd spin structure

- odd modulus at h = 1 odd spin structure is a book keeping device
- odd moduli really first appear at genus 2
- Global extension to SRS with NS and R punctures (Witten 2011)

Superstring worldsheet and moduli spaces (Witten 2011)

• Heterotic

- Left : Riemann surface Σ_L , moduli space \mathcal{M}_L
- Right : super Riemann surface Σ_R , moduli space \mathfrak{M}_R
- Worldsheet is a cycle $\Sigma \subset \Sigma_L \times \Sigma_R$ of dimension 1|1|
 - subject to $\Sigma_{\rm red} = {\rm diag}(\Sigma_{L\,{\rm red}} \times \Sigma_{R\,{\rm red}})$: $\tilde{z} = \bar{z} + {\rm nilpotent}$
 - (reduced space obtained by setting all nilpotent variables to zero)
- Moduli space is a cycle $\Gamma \subset \mathcal{M}_L imes \mathfrak{M}_R$ of dim 3h 3|2h 2 for $h \ge 2$
- Type II
 - Left : super Riemann surface Σ_L , moduli space \mathfrak{M}_L
 - Right : super Riemann surface Σ_R , moduli space \mathfrak{M}_R
 - Worldsheet is a cycle $\Sigma \subset \Sigma_L \times \Sigma_R$ of dimension 1|2subject to $\Sigma_{red} = diag(\Sigma_{L red} \times \Sigma_{R red})$
 - Moduli space is a cycle $\Gamma \subset \mathfrak{M}_L imes \mathfrak{M}_R$ of dim 3h-3|4h-4 for $h \geq 2$
- Super-Stokes theorem ensures independence of the choice of cycles

 in amplitudes with BRST invariant vertex operators

Worldsheet action for Heterotic strings

• Worldsheet is $\Sigma \subset \Sigma_L \times \Sigma_R$

- superconformal structure \mathcal{J} for Σ_R with local coordinates z| heta
- conformal structure \tilde{J} for Σ_L , with local coordinates \tilde{z}

$$X^{\mu}(\tilde{z}, z, \theta) = x^{\mu}(\tilde{z}, z) + \theta \psi^{\mu}(\tilde{z}, z)$$
$$\Lambda^{\alpha}(\tilde{z}, z, \theta) = \lambda^{\alpha}_{-}(\tilde{z}, z) + \theta \ell^{\alpha}(\tilde{z}, z)$$

• Superconformal invariant matter action

$$I_M[X^{\mu}, \Lambda^{\alpha}, \mathcal{J}, \tilde{J}] = \int_{\Sigma} [d\tilde{z}dz | d\theta] \Big[\partial_{\tilde{z}} X^{\mu} D_{\theta} X_{\mu} + \sum_{\alpha} \Lambda^{\alpha} D_{\theta} \Lambda^{\alpha} \Big]$$

– Integrating out θ , we recover familiar action

$$I_{M} = \int d\tilde{z} dz \left[\partial_{\tilde{z}} x^{\mu} \partial_{z} x_{\mu} + \psi^{\mu} \partial_{\tilde{z}} \psi_{\mu} + \sum_{\alpha} (\lambda^{\alpha} \partial_{z} \lambda^{\alpha} + \ell^{\alpha} \ell^{\alpha}) \right]$$

- Superconformal algebra on fields generated by

$$T_{zz} = -\frac{1}{2}\partial_z x^{\mu}\partial_z x_{\mu} + \frac{1}{2}\psi^{\mu}\partial_z \psi_{\mu}$$
$$S_{z\theta} = \psi^{\mu}\partial_z x_{\mu}$$

Deformations of superconformal structures

• Under deformation of the conformal structure \tilde{J} on Σ_L

$$\delta I = \int d\tilde{z} dz \, \delta \tilde{J}_z^{\ \tilde{z}} \, T_{\tilde{z}\tilde{z}}$$

• Under deformation of superconformal structure $\mathcal J$ on Σ_R

$$\delta I = \int d\tilde{z} dz \, \left[\delta J_{\tilde{z}}{}^{z} T_{zz} + \delta \chi_{\tilde{z}}{}^{\theta} S_{z\theta} \right]$$

 $-\chi_{\tilde{z}}^{\theta}$ is the "worldsheet gravitino" field - δJ and $\delta \tilde{J}$ are even Beltrami differentials

• Assemble deformations into super-conformal invariant action

$$S_{z\theta} = S_{z\theta} + \theta T_{zz}$$

$$\delta H_{\tilde{z}}^{z} = \delta J_{\tilde{z}}^{z} + \theta \delta \chi_{\tilde{z}}^{\theta}$$

$$\delta H_{\theta}^{\tilde{z}} = \theta \delta \tilde{J}_{z}^{\tilde{z}} + \text{auxiliary}$$

$$\delta I = \int_{\Sigma} [d\tilde{z}dz | d\theta] \left(\delta H_{\tilde{z}}^{z} S_{z\theta} + \delta H_{\theta}^{\tilde{z}} T_{\tilde{z}\tilde{z}} \right)$$

Full Heterotic string amplitude

• Parametrization of the deformations $\delta H_{\tilde{z}}^{z}$ and $\delta H_{\theta}^{\tilde{z}}$ by slice in $\{\mathcal{J}, \tilde{J}\}$

$$\delta H_{\tilde{z}}^{z} = \partial_{\tilde{z}} V^{z} + \sum_{A} H_{A} dm_{A} \qquad H_{A} = \partial \mathcal{J}_{\tilde{z}}^{z} / \partial m_{A}$$
$$\delta H_{\theta}^{\tilde{z}} = D_{\theta} V^{\tilde{z}} + \sum_{a} \tilde{H}_{a} d\tilde{m}_{a} \qquad \tilde{H}_{a} = \partial (\theta J_{z}^{\tilde{z}}) / \partial \tilde{m}_{a}$$

- Introducing ghost fields

$$\begin{split} V^z &\to C^z = c^z + \theta \gamma^{\theta} & \delta H_{\tilde{z}}^z \to B_{z\theta} = \beta_{z\theta} + \theta b_{zz} \\ V^{\tilde{z}} &\to \tilde{C}^{\tilde{z}} = c^{\tilde{z}} + \mathrm{aux} & \delta H_{\theta}^{\tilde{z}} \to \tilde{B}_{\tilde{z}\tilde{z}} = b_{\tilde{z}\tilde{z}} + \mathrm{aux} \end{split}$$

• Super conformal invariant ghost action

$$I_{\rm gh} = \int_{\Sigma} [d\tilde{z}dz|d\theta] \bigg[B_{z\theta} \partial_{\tilde{z}} C^z + \tilde{B}_{\tilde{z}\tilde{z}} D_{\theta} C^{\tilde{z}} + B_{z\theta} \sum_A H_A dm_A + \tilde{B}_{\tilde{z}\tilde{z}} \sum_a \tilde{H}_a d\tilde{m}_a \bigg]$$

• Assembling all factors, we obtain the integrand on $\mathcal{M}_L imes \mathfrak{M}_R$

$$\int D(XB\tilde{B}C\tilde{C})\,\mathcal{V}_1\cdots\mathcal{V}_n\,\prod_{a,A}[d\tilde{m}_a dm_A]\,\delta\left(\langle\tilde{B},\tilde{H}_a\rangle\right)\delta\left(\langle B,H_A\rangle\right)\,e^{-I_M-I_{\rm gh}}$$

 $-\mathcal{V}_1\cdots\mathcal{V}_n$ are BRST-invariant vertex operators.

Chiral amplitudes via Chiral splitting

• In Type II superstrings, both Σ_L and Σ_R are super Riemann surfaces

- Deformation must involve independent $\chi_{ ilde{z}}^{ heta}$ and $\chi_{z}^{ heta}$
- ghosts B, C couple only to $\chi_{\tilde{z}}^{\theta}$ and \tilde{B}, \tilde{C} only to $\chi_{z}^{\tilde{\theta}}$
- 2-d supergravity action for X^{μ} couples left to right chiralities

$$I_m = \int_{\Sigma} d^2 z \Big[\partial_z x^{\mu} \partial_{\bar{z}} x_{\mu} + \psi^{\mu} \partial_{\bar{z}} \psi_{\mu} - \chi_{\bar{z}}{}^{\theta} \psi^{\mu} \partial_z x_{\mu} + \dots + \chi_{\bar{z}}{}^{\theta} \chi_z{}^{\bar{\theta}} \psi^{\mu} \tilde{\psi}^{\nu} \Big]$$

• Chiral splitting is established at fixed internal loop momenta

- Fix canonical homology basis $A_I, B_I, I = 1, \cdots, h$ on Σ of genus h
- h independent internal loop momenta p_I^{μ} are defined across the cycles A_I (Verlinde, Verlinde; ED, Phong 1988)

$$p_I^{\mu} = \oint_{A_I} dz \, \partial_z x^{\mu} + \oint_{A_I} d\tilde{z} \, \partial_{\tilde{z}} x^{\mu}$$

– Amplitude is an integral over p_I^μ of a product of chiral amplitudes

$$\int_{\mathbb{R}^{10}} dp_I^{\mu} \mathcal{F}_L(\mu_z^{\tilde{z}}, \chi_z^{\tilde{\theta}}, \varepsilon_i, k_i, p_I^{\mu}) \mathcal{F}_R(\mu_{\tilde{z}}^{z}, \chi_{\tilde{z}}^{\theta}, \tilde{\varepsilon}_i, k_i, p_I^{\mu})$$

- with k_i external momenta, and polarization tensors $\varepsilon_i^{\mu\nu} = \varepsilon_i^{\mu} \tilde{\varepsilon}_i^{\nu}$

Chiral amplitudes

- Chiral amplitude \mathcal{F}_R has supermoduli deformations of only Σ_R
 - (similarly \mathcal{F}_L has supermoduli deformations of only Σ_L)
 - $-\mathcal{F}_R$ computed with effective rules for chiral fields x_+, ψ^{μ}_+
 - and chiral vertex operators $\mathcal{V}_1^+ \cdots \mathcal{V}_N^+$

$$\mathcal{F}_R = \left\langle \mathcal{V}_1^+ \cdots \mathcal{V}_N^+ e^{p_I^\mu \oint_{B_I} dz \partial_z x_+^\mu} \exp \int_{\Sigma_{\text{red}}} d\tilde{z} dz (\mu_{\tilde{z}}{}^z T_{zz} + \chi_{\tilde{z}}{}^\theta S_{z\theta}) \right\rangle_{x_+,\psi_+}$$

– with stress tensor and supercurrent evaluated on chiral fields x_+, ψ^μ_+

$$T_{zz} = -\frac{1}{2}\partial_z x^{\mu}_{+}\partial_z x^{\nu}_{+}\eta_{\mu\nu} + \frac{1}{2}\psi^{\mu}_{+}\partial_z \psi^{\nu}_{+}\eta_{\mu\nu} + T^{\mathrm{gh}}_{zz}(b,c,\beta,\gamma)$$
$$S_{z\theta} = -\frac{1}{2}\psi^{\mu}_{+}\partial_z x^{\nu}_{+}\eta_{\mu\nu} + S^{\mathrm{gh}}_{z\theta}(b,c,\beta,\gamma)$$

 $-\langle\cdots\rangle_{x_+,\psi_+}$ indicates Wick contractions of x_+^μ,ψ_+^μ with – effective chiral Green functions

$$\langle \psi^{\mu}_{+}(z)\psi^{\nu}_{+}(w)\rangle = -\eta^{\mu\nu}S(z,w)$$
 Szegö kernel

$$\langle x^{\mu}_{+}(z)x^{\nu}_{+}(w)\rangle = -\eta^{\mu\nu}\ln E(z,w)$$
 prime form

III. Parametrization of supermoduli

- Superconformal structure $\mathcal{J} \in \mathfrak{M}_h$ specifies transition functions
 - Practical calculations mostly use parametrization by gravitino field $\chi_{ ilde{z}}^{ heta}$
- Local parametrization of bosonic moduli (in conformal-invariant theory)
 - Complex structure J with metric $g = |dz|^2$ in local coordinates (z, \tilde{z})
 - deformation of complex structure by Beltrami differential to $g' = |dz + \mu d\tilde{z}|^2$
 - realized in CFT by insertion of $\int_{\Sigma} d\tilde{z} dz \, \mu_{\tilde{z}}^{z} T_{zz}$
- Local parametrization of supermoduli (in superconformal-invariant theory)
 - Start with Σ_{red} with complex structure given by $J\in\mathfrak{M}_{\mathrm{red}}$
 - Deformation of super conformal structure realized by insertion of T and ${\boldsymbol S}$

$$\int_{\Sigma_{\rm red}} d\tilde{z} dz \, \left(\mu_{\tilde{z}}{}^{z}T_{zz} + \chi_{\tilde{z}}{}^{\theta}S_{z\theta}\right)$$

- χ and μ parametrized by local odd coordinates on \mathfrak{M}_h
- nilpotency guarantees that these deformations are exact
- Globally, there is no holomorphic projection $\mathfrak{M}_h \to \mathcal{M}_h$ for $h \ge 3$ - proven for $h \ge 5$ (Donagi, Witten 2013)

The super period matrix

- For h = 2 and even spin structure there is a natural projection $\mathfrak{M}_2 \to \mathcal{M}_2$ via the super period matrix (E.D. & Phong 1988)
 - Fix canonical homology basis A_I, B_I for $H^1(\Sigma, \mathbf{Z})$
 - There exist h = 2 superholomorphic forms $\hat{\omega}_{I}$ with super periods $\hat{\Omega}$

$$\oint_{A_I} \hat{\omega}_J = \delta_{IJ} \qquad \qquad \oint_{B_I} \hat{\omega}_J = \hat{\Omega}_{IJ}$$

– Explicit formula in terms of (g,χ) , and Szego kernel S_{δ}

$$\hat{\Omega}_{IJ} = \Omega_{IJ} - \frac{i}{8\pi} \iint \omega_I(z)\chi(z)S_\delta(z,w)\chi(w)\omega_J(w)$$

- $\hat{\Omega}_{IJ}$ is locally supersymmetric with $\hat{\Omega}_{IJ} = \hat{\Omega}_{JI}$ and $\operatorname{Im} \hat{\Omega} > 0$
- Every $\hat{\Omega}$ corresponds to an ordinary Riemann surface
- Szegö kernel $S_{\delta}(z,w|\Omega)$ is non-singular on \mathcal{M}_2

\Rightarrow Projection using $\hat{\Omega}$ is holomorphic and natural for genus 2

Projecting and pairing Chiral Amplitudes

- Chiral Amplitudes on \mathfrak{M}_2
 - Natural supersymmetric parametrization of \mathfrak{M}_2 by $(\hat{\Omega}_{IJ}, \zeta^{lpha})$
 - involve measure $d\mu[\delta](\hat{\Omega},\zeta)$ and correlation functions $\mathcal{C}[\delta](\varepsilon_i,k_i,p_I|\hat{\Omega},\zeta)$
- \bullet Projection to chiral amplitudes on \mathcal{M}_2
 - by integrating over ζ and summing over δ at fixed $\hat{\Omega}$

$$\mathcal{R}(arepsilon_i,k_i,p_I|\hat{\Omega}) \;\;=\;\; \sum_{\delta} \int_{\zeta} d\mu[\delta](\hat{\Omega},\zeta) \, \mathcal{C}[\delta](arepsilon_i,k_i,p_I|\hat{\Omega},\zeta)$$

$$\mathcal{L}(\tilde{\varepsilon}_i, k_i, p_I | \hat{\Omega}) = \sum_{\tilde{\varsigma}} \int_{\tilde{\zeta}} d\mu[\tilde{\delta}](\hat{\Omega}, \tilde{\zeta}) \, \mathcal{C}[\tilde{\delta}](\tilde{\varepsilon}_i, k_i, p_I | \hat{\Omega}, \tilde{\zeta})$$

- for heterotic, ${\cal L}$ is chiral half of bosonic string, has no integral in ${ ilde{\zeta}}$
- phase factors determined by $Sp(4,\mathbb{Z})$ modular invariance
- ullet Pairing left and right chiral amplitudes, integrating over p_I and Ω

$$\mathcal{A}^{(2)}(\varepsilon_i, \tilde{\varepsilon}_i, k_i) = \int_{\mathcal{M}_2} d\Omega \, \int dp_I^{\mu} \, \mathcal{R}(\varepsilon_i, k_i, p_I | \Omega) \, \overline{\mathcal{L}(\tilde{\varepsilon}_i, k_i, p_I | \Omega)}$$

- Integral over p_I can be carried out explicitly.

Singularities in the projection $\mathfrak{M}_2 \to \mathcal{M}_2$

- Projection $\mathfrak{M}_2 \to \mathcal{M}_2$ is holomorphic, but integration extends to boundary
 - are there singularities on the boundary of \mathfrak{M}_2 ?

$$\Omega = \begin{pmatrix} \tau & u \\ u & \sigma \end{pmatrix} \qquad \qquad \begin{array}{cc} u \to 0 & \text{separating node} \\ \sigma \to i\infty & \text{non-separating node} \end{array}$$

– Key ingredient in $\hat{\Omega}$ is the Szegö kernel

$$S_{\delta}(z, w | \Omega) = \frac{\vartheta[\delta](z - w | \Omega)}{\vartheta[\delta](0 | \Omega) E(z, w)}$$

- As $u \to 0$ we have $\vartheta[\delta](0|\Omega) \to \vartheta[\delta_1](0|\tau) \, \vartheta[\delta_2](0|\tau)$

– Even $\delta = [\delta_1, \delta_2]$ with δ_1, δ_2 odd produces a singularity in S_δ and $\hat{\Omega}$

• Physical effects

- singularity killed by ψ -zero modes in \mathbb{R}^{10} (space-time susy)
- contribution when susy is broken by radiative corrections (Witten 2013)
- Two-loop vacuum energy in Heterotic strings on CY orbifold $\mathbb{C}^3/\mathbb{Z}_2 \times \mathbb{Z}_2$
 - \star zero for $E_8 \times E_8 \rightarrow E_6 \times E_8$ with unbroken susy
 - * non-zero for $Spin(32)/\mathbb{Z}_2 \to SO(26) \times U(3)$ with broken susy

(ED, Phong 2013; Berkovits, Witten 2014)

- cfr one-loop susy breaking (Atick, Dixon, Sen; Dine Seiberg, Witten 1987)

Singularities in the projection $\mathfrak{M}_3 \to \mathcal{M}_3$

• Some basic structure theorems

- A hyper-elliptic surface is a branched double cover of the sphere S^2
- All genus 1 and all genus 2 surfaces are hyper-elliptic
- Hyper-elliptic surfaces form a subvariety of \mathcal{M}_3 of complex codimension 1 (referred to as the hyper-elliptic divisor)
- The period matrix (for even spin structure) for genus 3 is given by

$$\hat{\Omega}_{IJ} = \Omega_{IJ} - \frac{i}{8\pi} \iint \omega_I(z)\chi(z)S_{\delta}(z,w)\chi(w)\omega_J(w) + \mathcal{O}(\chi^4)$$

- For genus 3, $\vartheta[\delta](0|\Omega) = 0$ for some δ on the hyper-elliptic divisor of \mathfrak{M}_3 (which crosses the interior of \mathfrak{M}_3)
- the presence of additional Dirac zero modes kills the effect of this singularity
- But it is another δ that produces a singularity in $\hat{\Omega}$ (subtle) (Witten 2015)
- Rules out earlier proposals for the genus 3 superstring measure

IV. Low Energy Effective Interactions

• Four-graviton amplitude in Type II at genus 0

$$\mathcal{A}^{(0)} = \mathcal{K}\tilde{\mathcal{K}} \frac{1}{stu} \frac{\Gamma(1-s)\,\Gamma(1-t)\,\Gamma(1-u)}{\Gamma(1+s)\,\Gamma(1+t)\,\Gamma(1+u)}$$

– Low energy expansion corresponds to $|s|,\,|t|,\,|u|\ll 1$

$$\frac{1}{stu} + 2\zeta(3) + \zeta(5)(s^2 + t^2 + u^2) + 2\zeta(3)^2 stu + \cdots$$

massless \mathcal{R}^4 $D^4 \mathcal{R}^4$ $D^6 \mathcal{R}^4$

- Exchange of massive string states produces local effective interactions.

- Four-graviton amplitudes in Type II at higher genus
 - provide effective interactions of the type $D^{2w}\mathcal{R}^4$ for $w\geq 0$
 - interplay with predictions from supersymmetry and S-duality in Type IIB (cfr talk by Michael Green)

Genus-one effective interactions in Type II

• Recall the Type II genus-one four-graviton amplitude,

$$\mathcal{A}^{(1)}(\varepsilon_i, k_i) = \mathcal{K}\tilde{\mathcal{K}} \int_{\mathcal{M}_1} \frac{d^2\tau}{\tau_2^2} \mathcal{B}^{(1)}(s_{ij}|\tau)$$
$$\mathcal{B}^{(1)}(s_{ij}|\tau) = \prod_{i=1}^4 \int_{\Sigma} \frac{d^2 z_i}{\tau_2} \exp\left\{\sum_{i < j} s_{ij} G(z_i - z_j|\tau)\right\}$$

- For fixed τ , expansion of $\mathcal{B}^{(1)}$ in powers of s_{ij}
 - finite radius of convergence $|s_{ij}| < 1$
 - integrals $\int_{\Sigma^4} G^w$ are convergent modular functions, contribute to $D^{2w} \mathcal{R}^4$
 - G is given by a Fourier sum over torus momenta $(m,n)\in\mathbb{Z}^2$

$$G(\alpha + \beta \tau | \tau) = \sum_{(m,n) \neq (0,0)} \frac{\tau_2}{\pi |m + \tau n|^2} e^{2\pi i (m\beta - n\alpha)}$$

• Integrating $\mathcal{B}^{(1)}$ over τ produces branch cuts in s_{ij} starting at 0

- extract non-analytic part in s_{ij} prior to extracting effective interactions (Green, Vanhove 2000; Green, Russo Vanhove 2008)

Modular graph functions

• Graph in the expansion of $D^{2w}\mathcal{R}^4 \Longrightarrow$ Modular Function

(ED, Green, Gurdogan, Vanhove 2015; ED, Green 2016; ED, Kaidi 2016)

Modular graph functions

One-loop : Eisenstein series

• One-loop worldsheet Feynman diagram with k bivalent vertices

• Non-holomorphic Eisenstein series are defined by,

$$E_s(\tau) = \sum_{\substack{p=m+\tau n \neq 0 \\ m,n \in \mathbb{Z}}} \frac{\tau_2^s}{\pi^s |p|^{2s}}$$

• Properties

- absolutely convergent for $\operatorname{Re}(s) > 1$; analytically continue to $s \in \mathbb{C}$
- reflection relation $\Gamma(s)E_s(\tau) = \Gamma(1-s)E_{1-s}(\tau)$
- modular invariant under $SL(2,\mathbb{Z})$, $E_s(\tau') = E_s(\tau)$ with $\tau' = \frac{a\tau+b}{c\tau+d}$
- Laplace-eigenvalue equation,

$$\left(\Delta - s(s-1)\right)E_s(\tau) = 0$$
 $\Delta = 4\tau_2^2\partial_\tau\partial_{\bar{\tau}}$

Two-loops : modular graph functions

• Feynman diagrams evaluate to the modular functions

$$C_{a_1,a_2,a_3}(\tau) = \sum_{\substack{p_r = m_r + \tau n_r \neq 0\\m_r, n_r \in \mathbb{Z}, r=1,2,3}} \delta\left(\sum_{r=1}^3 p_r\right) \prod_{r=1}^3 \left(\frac{\tau_2}{\pi |p_r|^2}\right)^{a_r}$$

- contribute to $D^{2w}\mathcal{R}^4$ with the *weight* given by $w = a_1 + a_2 + a_3$ - satisfy (inhomogeneous) Laplace eigenvalue equations

- satisfy (inhomogeneous) Laplace-eigenvalue equations

$$w = 3 \qquad C_{1,1,1} = \bullet \qquad (\Delta - 0)C_{1,1,1} = 6E_3$$

$$w = 4 \qquad C_{2,1,1} = \bullet \qquad (\Delta - 2)C_{2,1,1} = 9E_4 - E_2^2$$

$$w = 5 \qquad C_{3,1,1} = \bullet \qquad (\Delta - 6)C_{3,1,1} = 3C_{2,2,1} + 16E_5 - 4E_2E_3$$

$$w = 5 \qquad C_{2,2,1} = \bullet \qquad (\Delta - 0)C_{2,2,1} = 8E_5$$

- Note that eigenvalues are of the form s(s-1) for s = 1, 2, 3

Structure Theorem

• $C_{a,b,c}(\tau)$ are linear combinations of modular functions $\mathfrak{C}_{w;s;\mathfrak{p}}(\tau)$ satisfying

 $(\Delta - s(s-1))\mathfrak{C}_{w;s;\mathfrak{p}} = \mathfrak{F}_{w;s;\mathfrak{p}}(E_{s'})$

 $-\mathfrak{C}_{w;s;\mathfrak{p}}$ and $\mathfrak{F}_{w;s;\mathfrak{p}}$ of weight w = a + b + c (with $E_{s'}$ assigned weight s'); - \mathfrak{F} is a polynomial of total degree 2 in $E_{s'}$ with $2 \leq s' \leq w$

$$s = w - 2\mathfrak{m}$$
 $\mathfrak{m} = 1, \cdots, \left[\frac{w-1}{2}\right]$ $\mathfrak{p} = 0, \cdots, \left[\frac{s-1}{3}\right]$

• Examples at low weight

w = 3	s = 1	$0^{(1)}$
w = 4	s = 2	$2^{(1)}$
w = 5	s = 1, 3	$0^{(1)} \oplus 6^{(1)}$
w = 6	s = 2, 4	$2^{(1)}\oplus 12^{(2)}$
w = 7	s = 1, 3, 5	$0^{(1)}\oplus 6^{(1)}\oplus 20^{(2)}$
w = 8	s = 2, 4, 6	$2^{(1)}\oplus 12^{(2)}\oplus 30^{(2)}$
w = 9	s = 1, 3, 5, 7	$0^{(1)}\oplus 6^{(1)}\oplus 20^{(2)}\oplus 42^{(3)}$

Constructive Proof

• A natural generating function is given by,

$$\mathcal{W}(t_1, t_2, t_2 | \tau) = \sum_{a, b, c=1}^{\infty} t_1^{a-1} t_2^{b-1} t_3^{c-1} C_{a, b, c}(\tau)$$

Summing gives sunset diagram for three scalars with masses $-t_r$,

$$\mathcal{W}(t_1, t_2, t_2 | \tau) = \sum_{\substack{p_r = m_r + \tau n_r \neq 0 \\ m_r, n_r \in \mathbb{Z}}} \delta\left(\sum_r p_r\right) \prod_{r=1}^3 \left(\frac{1}{\pi |p_r|^2 / \tau_2 - t_r}\right)$$

 \bullet Laplacian given by differential operator in the masses acting on $\mathcal W$,

 $\Delta W - \mathfrak{L}^2 W =$ quadratic polynomial in E_s

– Polynomials in t_r homogeneous of degree w on hyperbolic plane

- \mathfrak{L}^2 is the quadratic Casimir of SO(2,1) acting on this hyperbolic plane
- SO(2,1) representation theory gives constructive proof of Structure Theorem.

Type IIB effective interactions at genus-two

• Recall Type II four-graviton amplitude at genus 2,

$$\mathcal{A}^{(2)}(\varepsilon_i, k_i) = \mathcal{K}\tilde{\mathcal{K}} \int_{\mathcal{M}_2} d\mu_2 \,\mathcal{B}^{(2)}(s_{ij}|\Omega)$$
$$\mathcal{B}^{(2)}(s_{ij}|\Omega) = \int_{\Sigma^4} \mathcal{Y} \wedge \bar{\mathcal{Y}} \exp \sum_{i < j} s_{ij} \,G(z_i, z_j)$$

- $\mathcal{Y} = (s - t)\Delta(z_1, z_3) \wedge \Delta(z_4, z_2) + 2$ permutations; - $\Delta(z_i, z_j)$ is a holomorphic form independent of s, t, u.

- Contributions to local effective interactions
 - $-\mathcal{R}^4$: zero, since \mathcal{Y} vanishes for s = t = u = 0
 - $-D^4 \mathcal{R}^4$: non-zero, $\mathcal{B}^{(2)}$ constant on \mathcal{M}_2 ;
 - $D^6 \mathcal{R}^4$: non-zero, one power of G brought down in integral over Σ^4

$$\mathcal{B}^{(2)}(s_{ij}|\Omega) = 32(s^2 + t^2 + u^2) + 192 \, stu \, \varphi(\Omega) + \mathcal{O}(s^4, \cdots)$$

 $-\varphi(\Omega)$ coincides with the Zhang -Kawazumi invariant [ED, Green 2013]

The Zhang-Kawazumi invariant for genus-two

• The ZK-invariant is given as follows

$$8\varphi(\Omega) = \sum_{I,J,K,L} \left(Y_{IJ}^{-1} Y_{KL}^{-1} - 2Y_{IL}^{-1} Y_{JK}^{-1} \right) \int_{\Sigma^2} G(x,y) \omega_I(x) \overline{\omega_J(x)} \omega_K(y) \overline{\omega_L(y)}$$

- equivalent to definition via Arakelov geometry [Zhang 2007, Kawazumi 2008]

• Coefficient of genus-two $D^6 \mathcal{R}^4$ interaction involves $\int_{\mathcal{M}_2} d\mu_2 \varphi(\Omega)$

- Direct evaluation appeared completely out of reach ... until ...

• Theorem [ED, Green, Pioline, R. Russo 2014]

$$(\Delta - 5)\varphi = -2\pi\delta_{SN}$$

- Δ is the Laplace-Beltrami operator on \mathcal{M}_2 with Siegel metric ds_2^2 ; - δ_{SN} has support on separating node (into two genus-one surfaces) - The integral over \mathcal{M}_2 reduces to an integral over $\partial \mathcal{M}_2$

$$\int_{\mathcal{M}_2} d\mu_2 \,\varphi = \frac{1}{5} \int_{\mathcal{M}_2} d\mu_2 \Big(\Delta \varphi + 2\pi \delta_{SN} \Big) = \frac{2\pi^3}{45}$$

Supersymmetry and S-duality

- Laplace-eigenvalue eq from space-time supersymmetry [Green, Sethi, 1998]
 - Eisenstein series = unique modular solution with polynomial growth at cusp
- Predicts vanishing contributions for high enough loop order,

\mathcal{R}^4	1/2 BPS	$h \ge 2$	$E_{\frac{3}{2}}$
$D^4 {\cal R}^4$	1/4 BPS	$h \ge 3$	$E_{rac{5}{2}}$
$D^6 \mathcal{R}^4$	1/8 BPS	$h \ge 4$	$(\Delta - 12)\mathcal{E}_{D^6\mathcal{R}^4} = (E_{\frac{3}{2}})^2$

[Green, Gutperle, Vanhove 1997; Green, Vanhove 2005]

• Predicts relations between non-vanishing contributions (e.g. with tree-level),

\mathcal{R}^4	h = 1	[Green, Gutperle 1997]
$D^4 {\cal R}^4$	h = 2	[ED, Gutperle, Phong 2005]
$D^6 {\cal R}^4$	h = 2 (ZK)	[ED, Green, Pioline, Russo 2014]
	h = 3	[Gomez, Mafra 2013]

V. Speculation on ambi-twistor strings

- Can ambi-twistor prescription be obtained from chiral amplitudes ?
- 1. Moduli space compactified by Deligne-Mumford divisors $\Delta = \overline{\mathfrak{M}_h} \mathfrak{M}_h$
 - Reducible to separating and non-separating divisors with normal crossings
 - Maximal intersection of non-separating divisors Δ_0 define cohomology class
 - \implies Instead of integrating over \mathfrak{M}_h , integrate over Δ_0
- 2. Rescale loop momenta $p_I^{\mu} \operatorname{Im}(\Omega)_{IJ} p_J^{\mu} \to \ell_I^{\mu} \ell_I^{\mu}$
- 3. Superconformal structure deformations $\delta_{ww} \to \text{insert } T_{ww}$ and $\delta_{w\theta} \to \text{insert } S_{w\theta}$

$$\mathcal{F} = \exp\left\{i\pi p\Omega p + 2\pi i p \sum_{i} k_{i} \int^{z_{i}} \omega + \sum_{i < j} (k_{i}k_{j} \ln E(i, j) - i\varepsilon_{i}k_{j}\partial_{i} \ln E(i, j) + \cdots)\right\}$$

Variational equations $\delta_{ww}\mathcal{F} = \Pi(w)^{2}\mathcal{F}$

$$\Pi^{\mu}(w) = \pi i p_I \omega_I(w) + \sum_i (k_i \partial_w \ln E(w, i) + \varepsilon_i \partial_w \partial_i \ln E(w, i) + \cdots)$$

- Setting $\Pi(w)^2 = 0$ condition for all $w \in \Sigma \approx$ produces a closed form on Δ_0