# Comments on conformal higher spin theory 

Arkady Tseytlin

Based on:
"On triviality of S-matrix in conformal higher spin theory" with M. Beccaria and S. Nakach arXiv:1607.06379
"On conformal higher spins in curved background" with M. Grigoriev arXiv:1609.09381
"Induced action for conformal higher spins in curved background" with M. Beccaria arXiv:1702.00222

- free complex scalar: $\square \Phi=0$
conserved $J_{\mu}=i\left(\Phi^{*} \partial_{\mu} \Phi-\partial_{\mu} \Phi^{*} \Phi\right)$ and stress $T_{\mu \nu}$
couple to external sources
$L=\partial^{\mu} \Phi^{*} \partial_{\mu} \Phi+A^{\mu}(x) J_{m}+h^{\mu \nu}(x) T_{\mu \nu}+\ldots$
integrate out $\Phi$ : local $(\log \infty)$ part of 1-loop effective action induced Maxwell + Weyl theory
$S=\int d^{4} x\left(-F_{\mu \nu}^{2}+C_{\mu \nu \lambda \rho}^{2}\right)$
- free scalar equation admits also higher conserved currents:
$J_{\mu_{1} \ldots \mu_{s}}=\Phi^{*} \partial_{\mu_{1}} \ldots \partial_{\mu_{s}} \Phi+\ldots, \quad s=1,2,3, \ldots$
charges $\rightarrow$ infinite dim global symmetry corresponding sources $h_{\mu_{1} \ldots \mu_{s}}$ - symmetric traceless tensors: conformal higher spins (CHS)
- induced action for infinite tower of fields generalizes Maxwell and Weyl: $S=\int d^{4} x \sum_{s} h_{s} \partial^{2 s} h_{s}+\ldots$
- local action with symmetry $\delta h_{s}=\partial \epsilon_{s-1}+\eta_{2} \alpha_{s-2}+\ldots$

Motivation to study:

- unusual properties and simplifications due to underlying infinite-dimensional conformal HS symmetry (sums over infinite set of HS contributions, regularization consistent with symmetry)
- close connection to massless HS fields in AdS

CHS as toy model to study implications of HS symmetry:

- trivial partition function on a sphere
- trivial near-flat-space S-matrix (cf. Coleman-Mandula)
- non-trivial cancellation of conformal anomalies
- fundamental role of local conformal invariance? existence of consistent (UV finite, anomaly free) theories with local conformal symmetry? unitary issue?


## Plan:

- flat space background: action for CHS as induced one corresponding S-matrix
- curved space background: curved space CHS operators partition function on $S^{4}$
a and c Weyl anomaly coefficients

Consistent HS theories:

- massless HS theory in $\mathrm{AdS}_{d+1}$ :

2-derivative kin term (unitary) but non-flat vacuum dual to free $\mathrm{CFT}_{d}$ : e.g. scalar in vector rep of $U(N)$
S-matrix is "simple":
reproduces correlators of currents in free CFT

- conformal HS theory:
has flat vacuum but higher derivative kin term (non-unitary) S-matrix is "trivial" after summation over all spin exchanges consistent with HS symmetry

Conformal higher spin theory $(d=4)$

- generalization of Maxwell and Weyl:
$F_{\mu \nu}^{2} \sim h_{1} \partial^{2} h_{1}, \quad C_{\mu \nu \kappa \lambda}^{2} \sim h_{2} \partial^{4} h_{2}+\partial^{4} h_{2} h_{2} h_{2}+\ldots$
- differential + algebraic ("Weyl") gauge symmetry
$\delta h_{s}=\partial \epsilon_{s-1}+\eta_{2} \alpha_{s-2}$
can gauge-fix $h_{s}$ to be transverse and traceless off-shell
- totally symmetric $h_{\mu_{1} \ldots \mu_{s}}$ describes "pure" spin $s$ : maximal gauge symm consistent with locality at expense of higher-derivative kin terms [Fradkin, AT 85]

$$
S_{s}^{(0)}=\int d^{4} x h_{s} P_{s} \partial^{2 s} h_{s}
$$

$P_{s} \sim\left(\delta_{\nu}^{\mu}-\frac{\partial^{\mu} \partial_{\nu}}{\partial^{2}}\right)^{s}$ - transv. traceless projector

- $\Delta\left(h_{s}\right)=2-s: \quad$ dimensionless coupling const
- interacting action consistent with symmetries can be defined as local induced action from scalar loop
- conformally invariant in flat space number of derivatives in vertices fixed by dimensions

$$
\begin{aligned}
S_{s}=\frac{1}{g^{2}} \sum_{s} \int & d^{4} x\left(h_{s} \partial^{2 s} h_{s}+\partial^{s_{1}+s_{2}+s_{3}-2} h_{s_{1}} h_{s_{2}} h_{s_{3}}\right. \\
& \left.+\partial^{s_{1}+s_{2}+s_{3}+s_{4}-4} h_{s_{1}} h_{s_{2}} h_{s_{3}} h_{s_{4}}+\ldots\right)
\end{aligned}
$$

- conformal symmetry: can be consistently defined on any conformally flat background
- admits a background-independent formulation and in general consistently defined near any curved Bach-flat (e.g. Ricci-flat) background

Properties of free CHS theory

- regularized total number of d.o.f. $=0$ : $\nu_{\text {tot }}=\sum_{s=0}^{\infty} \nu_{s}=0, \quad \nu_{s}=s(s+1)=2,6, \ldots$ regularization: $\left.\quad \sum_{s=0}^{\infty} f(s) \rightarrow \sum_{s=0}^{\infty} f(s) e^{-\epsilon\left(s+\frac{1}{2}\right)}\right|_{\text {fin. }}$
- equivalently, flat-space partition function is trivial:
$Z_{s}=\left[\frac{\left(\operatorname{det} \square_{s-1}\right)^{s+1}}{\left(\operatorname{det} \square_{s}\right)^{s}}\right]^{1 / 2}=\left(Z_{0}\right)^{\nu_{s}}, \quad Z_{0}=(\operatorname{det} \square)^{-1 / 2}$
$Z=\prod_{s=0}^{\infty}\left(Z_{0}\right)^{\nu_{s}}=\left(Z_{0}\right)^{\nu_{\text {tot }}}=1$
- with same regularization: $\quad Z_{\mathrm{CHS}}\left(S^{4}\right)=1, \quad \sum_{s=1}^{\infty} \mathrm{a}_{s}=0$ consistent with relation between 1-loop $Z$ of massless HS in $A d S_{5}$ and $Z$ of CHS on $S^{4}$
[Giombi, Klebanov, Pufu, Safdi, Tarnopolsky 13; AT 13; Beccaria, Bekaert, AT 14]
- this definition of $\sum_{s}$ should be consistent with underlying HS symmetry of CHS theory
"Quantized particle" approach: symmetries
start with quantized particle in external fields [Segal 02] general phase space Hamiltonian $H(x, p)$
$H(x, p)=\sum_{s=0}^{\infty} \mathrm{h}^{\mu_{1} \ldots \mu_{s}}(x) p_{\mu_{1} \ldots p_{\mu_{s}}}=\mathrm{h}_{0}(x)+\mathrm{h}^{\mu \nu}(x) p_{\mu} p_{\nu}+\ldots$
*-product of Weyl symbols $\rightarrow$ product of operators

$$
*=\exp \left[\frac{1}{2}\left(\frac{\overleftarrow{\partial}}{\partial x^{\mu}} \frac{\partial}{\partial p_{\mu}}-\frac{\overleftarrow{\partial}}{\partial p_{\mu}} \frac{\partial}{\partial x^{\mu}}\right)\right]
$$

Symmetries: canonical transfs of constraint $H(x, p)=0$

$$
\delta H=[H, \epsilon(x, p)]_{*}+\{H, \alpha(x, p)\}_{*}
$$

gradient $\epsilon$ and algebraic $\alpha$

- Quantum theory in $x$ representation: $\widehat{H} \Phi(x)=0$ action for scalar field in non-trivial background $H=\left\{\mathrm{h}_{s}\right\}$ :

$$
\mathcal{S}[\Phi, H]=\int d^{4} x \Phi^{*}(x) \widehat{H}\left(x, \partial_{x}\right) \Phi(x)
$$

- Invariant under the gauge transformations of $\Phi$ and $h_{s}$

$$
\delta \Phi=-(\widehat{\epsilon}+\widehat{\alpha}) \Phi, \quad \delta H=[H, \epsilon(x, p)]_{*}+\{H, \alpha(x, p)\}_{*}
$$

- Choice of vacuum expansion point:

$$
\begin{gathered}
H=H_{\mathrm{vac}}+h(x, p), \quad h(x, p)=\sum_{s=0}^{\infty} h^{\mu_{1} \ldots \mu_{s}}(x) p_{\mu_{1} \ldots p_{\mu_{s}}} \\
\mathcal{S}=\int d^{4} x\left[\Phi^{*}(x) \widehat{H}_{\mathrm{vac}} \Phi(x)+\sum_{s} h^{\mu_{1} \ldots \mu_{s}}(x) J_{\mu_{1} \ldots \mu_{s}}(\Phi)\right] \\
H_{\mathrm{vac}}=\frac{1}{2} \eta^{\mu \nu} p_{\mu} p_{\nu}
\end{gathered}
$$

$\epsilon$-gauge inv $\quad \rightarrow \quad \partial^{\mu_{1}} J_{\mu_{1} \ldots \mu_{s}}=0 \quad$ if $\quad \square \Phi=0$
$\alpha$-gauge inv $\rightarrow \eta^{\mu_{1} \mu_{2}} J_{\mu_{1} \mu_{2} \ldots \mu_{s}}-\frac{1}{2} \square J_{\mu_{3} \ldots \mu_{s}}=0$

- after redefinition $J_{s} \rightarrow$ conserved traceless Noether currents corresponding to symmetries of $\square \Phi=0$ in $R^{d}$ [Eastwood 02]
- their algebra $=\mathrm{HS}$ algebra of conformal spins in $R^{d}$
= HS algebra of massless spins in $A d S_{d+1}$ [Vasiliev, Fradkin, Linetsky]

Action for $h_{s}: \quad$ [AT 02; Segal 02; Bekaert, Mourad, Joung 10]

- $\log \Lambda_{\mathrm{UV}}$ term of scalar 1-loop action $\log \operatorname{det} \widehat{H}$ $S[h]=$ "Seeley coeff" $=t^{0}$ term in $\left.\operatorname{Tr} e^{-t \widehat{H}}\right|_{t \rightarrow 0}, \quad H=H_{\mathrm{vac}}+h$
- inherits CHS symm: $\delta h=[H, \epsilon(x, p)]_{*}+\{H, \alpha(x, p)\}_{*}$
$\rightarrow \delta h_{\mu_{1} \ldots \mu_{s}}=\partial_{\left(\mu_{1} \epsilon_{\left.\mu_{2} \ldots \mu_{s}\right)}+\eta_{\left(\mu_{1} \mu_{2}\right.} \alpha_{\left.\mu_{3} \ldots \mu_{s}\right)}+O(h)\right.}$
- this construction can be generalized [Grigoriev, AT 16]
to curved vacuum expansion point: $\quad H_{\mathrm{vac}}=\frac{1}{2} g^{\mu \nu}(x) p_{\mu} p_{\nu}$

CHS as induced theory: AdS/CFT start with free $U(N)$ scalar CFT $\quad \int d^{4} x \Phi_{i}^{*} \partial^{2} \Phi_{i}$

- tower of on-shell conserved traceless currents
$J_{s}=\Phi_{i}^{*} \mathcal{J}_{s} \Phi_{i} \sim \Phi_{i}^{*} \partial_{\left(\mu_{1} \ldots \partial_{\left.\mu_{s}\right)}\right.} \Phi_{i}+\ldots$
- implies infinite tower of conserved charges:
symmetries of $\square \Phi=0 \rightarrow$ HS symmetry [Eastwood, Vasiliev]
- generating functional for correlators of currents: add $h_{s} J_{s}$ and integrate out $\Phi_{i}$

$$
\Gamma[h]=N \log \operatorname{det}\left(-\partial^{2}+\sum_{s} h_{s} \mathcal{J}_{s}\right), \quad \mathcal{J}_{s} \sim \partial^{s}
$$

- source fields $=$ CHS fields $h_{s}: \Delta\left(h_{s}\right)=2-s$
- CHS theory: gauge theory for

HS symmetries (conf Killing tensors) of $\square \Phi=0$

$$
\delta h_{\mu_{1} \cdots \mu_{s}}=\partial_{\left(\mu_{1}\right.} \varepsilon_{\left.\mu_{2} \cdots \mu_{s}\right)}+\eta_{\left(\mu_{1} \mu_{2}\right.} \alpha_{\left.\mu_{3} \cdots \mu_{s}\right)}+O(h)
$$

(cf. Weyl gravity as "gauge theory of conformal group")

- vectorial AdS/CFT: [Klebanov, Polyakov 02]
$J_{s}$ dual to massless HS fields in $A d S_{d+1}$
$\Gamma[h]$ should follow from Vasiliev-type theory in $\operatorname{AdS}_{d+1}$ upon integrating over $\operatorname{AdS}_{d+1}$ fields $\phi_{s}$ with Dirichlet b.c.

$$
e^{-\Gamma[h]}=\int_{\left.\phi_{s}\right|_{\partial \mathrm{AdS}}=h_{s}}\left[d \phi_{s}\right] \exp \left(-N S_{\mathrm{HS}}[\phi]\right)
$$

- full $\Gamma[h]$ is non-local and does not have CHS symmetry but its log divergent part is local and invariant:

$$
\begin{aligned}
& \Gamma[h] \\
& \left.N S_{\mathrm{HS}}[\phi]\right|_{\text {on-shell }} \rightarrow \quad N S_{\mathrm{CHS}}[h] \log \Lambda_{\mathrm{UV}}+\ldots \\
&
\end{aligned} \quad \rightarrow \log \Lambda_{\mathrm{IR}}+\ldots .
$$

- CHS action as induced action:
$\left.S_{\mathrm{CHS}} \sim \log \operatorname{det} \Delta(h)\right|_{\log \Lambda_{\mathrm{UV}}}, \quad \Delta(h)=-\partial^{2}+\sum_{s} \mathcal{J}_{s} h_{s}$
- familiar low-spin cases $(s=0,1,2)$ in covariant form

$$
\begin{aligned}
L & =\sqrt{g}\left[g^{\mu \nu} D_{\mu} \Phi^{*} D_{\nu} \Phi+\left(\frac{1}{6} R+h_{0}^{\prime}\right) \Phi^{*} \Phi\right], \quad D_{\mu}=\partial_{\mu}+\frac{i}{2} h_{\mu}^{\prime} \\
L & =\partial_{\mu} \Phi^{*} \partial^{\mu} \Phi+\sum_{s} h_{s} \Phi^{*} \mathcal{J}_{s} \Phi \\
& =\partial_{\mu} \Phi^{*} \partial^{\mu} \Phi+h_{0} \Phi^{*} \Phi+i h^{\mu} \Phi^{*} \partial_{\mu} \Phi+\frac{1}{2} h^{\mu \nu} \partial_{\mu} \Phi^{*} \partial_{\nu} \Phi+\ldots
\end{aligned}
$$

by local field redefinition $\left(h_{\mu \nu}^{\prime} \equiv g_{\mu \nu}-\eta_{\mu \nu}\right)$

$$
\begin{aligned}
& h_{0}^{\prime}=h_{0}+\frac{1}{4} h_{\mu} h^{\mu}+\frac{1}{96}\left(\partial_{\lambda} h_{\mu \nu} \partial^{\lambda} h^{\mu \nu}+\ldots\right)+\ldots \\
& h_{\mu}^{\prime}=h_{\mu}+\frac{1}{2} h_{\mu \nu} h^{\nu}+\frac{1}{4} h_{\mu \nu} h^{\nu \lambda} h_{\lambda}+\ldots, \quad h_{\mu \nu}^{\prime}=\frac{1}{2} h_{\mu \nu}+\frac{1}{4} h_{\mu \lambda} h_{\nu}^{\lambda}+\ldots
\end{aligned}
$$

log divergent part of scalar log det

$$
S\left[h_{0}^{\prime}, h_{1}^{\prime}, h_{2}^{\prime}\right]=\int d^{4} x \sqrt{g}\left(h_{0}^{\prime 2}-\frac{1}{24} F_{\mu \nu}^{\prime 2}+\frac{1}{60} C_{\mu \nu \lambda \rho}^{2}\right)
$$

## Computing CHS action as induced action

[Beccaria, Nakach, AT 16]

- 2-, 3- and 4-point vertices in CHS action
from UV pole part of scalar loop integrals with $J_{s}$ insertions
- same as local limit of correlators of currents
$<J_{s_{1}}\left(x_{1}\right) \ldots J_{s_{n}}\left(x_{n}\right)>\left.\right|_{x_{i} \rightarrow x}$
- coupling of external CHS fields to complex scalar

$$
\begin{aligned}
& L=-\partial_{\mu} \Phi^{*} \partial^{\mu} \Phi+\sum_{s=0}^{\infty} J_{\mu(s)} h^{\mu(s)}, \quad J_{\mu(s)} \equiv J_{\mu_{1} \ldots \mu_{s}} \\
& J_{\mu(s)}(x)=\frac{i^{s} 2^{s}}{(2 s)!} \sum_{k=0}^{s}\binom{s}{k}\left(\frac{s+k-1}{s}\right) G_{\mu(s)}^{(k)}(x) \\
& G_{\mu(s)}^{(k)}(x)=\left.\left(\partial-\partial^{\prime}\right)^{\mu(k)}\left(\partial+\partial^{\prime}\right)^{\mu(s-k)} \Phi(x) \Phi^{*}\left(x^{\prime}\right)\right|_{x=x^{\prime}}
\end{aligned}
$$

$$
\begin{aligned}
S=\int d^{4} x( & \sum_{s} h_{s} \partial^{2 s} h_{s}+\sum_{s_{i}} \partial^{s_{1}+s_{2}+s_{3}-2} h_{s_{1}} h_{s_{2}} h_{s_{3}} \\
& \left.+\sum_{s_{i}} \partial^{s_{1}+s_{2}+s_{3}+s_{4}-4} h_{s_{1}} h_{s_{2}} h_{s_{3}} h_{s_{4}}+\ldots\right)
\end{aligned}
$$

- kinetic term:

$\frac{1}{\varepsilon}=\frac{1}{d-4}$ UV pole part (for TT field $h_{s}$ ):

$$
S_{2}=\frac{1}{2^{s}(2 s+1)!} \int d^{4} x h_{\mu(s)} \square^{s} h^{\mu(s)}
$$

- cubic vertex: pole part of

example: 1-1-s

$$
\begin{aligned}
& V_{\mu \nu \rho(s)}=\left.\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{k_{\mu}\left(k+p_{1}\right)_{\nu}\left(k+p_{1}+p_{2}\right)_{\rho(s)}}{k^{2}\left(k+p_{1}\right)^{2}\left(k+p_{1}+p_{2}\right)^{2}}\right|_{\frac{1}{\varepsilon} \text { part }} \\
& S_{3}(1,1, s)= \frac{1}{(s+2)!} \int d^{4} x\left[\partial^{\rho(s)} h_{\mu} h^{\mu} h_{\rho(s)}-2 h_{\mu} \partial^{\mu} \partial_{\rho(s-1)} h_{\nu} h^{\nu \rho(s-1)}\right. \\
&-\frac{s}{2} \partial^{\rho(s-2)} \square h^{\mu} h^{\nu} h_{\mu \nu \rho(s-2)}-\frac{s}{2} \partial^{\rho(s-2)} h^{\mu} \square h^{\nu} h_{\mu \nu \rho(s-2)} \\
&\left.-\partial_{\lambda} \partial^{\rho(s-2)} h^{\mu} \partial^{\lambda} h^{\nu} h_{\mu \nu \rho(s-2)}\right]
\end{aligned}
$$

e.g. 1-1-2 is like in Maxwell $\int d^{4} x \sqrt{g} g^{\mu \nu} g^{\lambda \rho} F_{\mu \lambda} F_{\mu \rho}$

$$
\begin{aligned}
& S_{3}(1,1,2)=\frac{1}{24} \int d^{4} x\left[\partial_{\rho} h_{\mu} \partial_{\sigma} h^{\mu} h^{\rho \sigma}-2 \partial_{\rho} h_{\mu} \partial^{\mu} h_{\nu} h^{\nu \rho}\right. \\
&\left.+2 h^{\mu} \square h^{\nu} h_{\mu \nu}+\partial_{\lambda} h^{\mu} \partial^{\lambda} h^{\nu} h_{\mu \nu}\right]
\end{aligned}
$$

- quartic vertex:
e.g. 4-vector contact term from pole part of diagram

$\frac{1}{16} \int d^{4} x\left(h_{\mu} h^{\mu}\right)^{2}$ combining into $\int d^{4} x\left(h_{0}+\frac{1}{4} h_{\mu} h^{\mu}\right)^{2}$ : contribution to 1-1-1-1 scattering cancels against $h_{0}$ exchange
- similarly for 2-2-s and 2-2-2-2 vertices, etc.


## S-matrix of CHS theory in flat vacuum

[Beccaria, Nakach, AT 16]

- compute tree-level CHS 4-point amplitudes $A_{4}$ for external states $=$ massless $\left(\square h_{s}=0\right)$ modes in flat space
- $A_{4}$ turns out to be zero after summation over all spin $s$ intermediate states
- this appears to be a consequence of CHS global symmetry
first illustrate this on simplest example:
scattering of external scalars via exchange of infinite tower of CHS fields


## Scalar scattering via conformal HS exchange

[Joung, Nakach, AT 15]


$$
\begin{gathered}
S[\Phi, h]=\int d^{4} x\left[\Phi^{*} \partial^{2} \Phi+\sum_{s=0}^{\infty} h_{s} J_{s}(\Phi)\right]+S[h] \\
S[h]=\frac{1}{g^{2}} \sum_{s=0}^{\infty} \int h_{s} P_{s} \partial^{2 s} h_{s}+\mathcal{O}\left(h^{3}\right)
\end{gathered}
$$

- $h_{0}$ coupled to $\Phi^{*} \Phi ; h_{\mu}$ to $i \Phi^{*} \partial_{\mu} \Phi+c . c . ; h_{\mu \nu}$ to $T_{\mu \nu}$, etc.
- $h_{s}$ exchange with propagator $\sim \frac{1}{p^{2 s}}$ and $p^{s}$ in the vertices: scale invariance, no dimensional parameters

Four-scalar tree-level scattering amplitude
t-channel amplitude
$A^{(\mathrm{t})}(\mathrm{s}, \mathrm{t}, \mathrm{u})=g^{2} F\left(\frac{\mathrm{~s}-\mathrm{u}}{\mathrm{s}+\mathrm{u}}\right), \quad F(z) \equiv \sum_{s=0}^{\infty}\left(s+\frac{1}{2}\right) P_{s}(z)$
$\mathrm{s}, \mathrm{t}, \mathrm{u}$ are Mandelstam variables: $\mathrm{s}+\mathrm{t}+\mathrm{u}=0$
$P_{s}(z)$ - Legendre polynomial

- amplitude is scale-invariant: depends on ratios of $\mathrm{s}, \mathrm{t}, \mathrm{u}$
- summing over spins:
$\left.\sum_{s=0}^{\infty} f(s) \rightarrow \sum_{s=0}^{\infty} f(s) e^{-\varepsilon\left(s+\frac{1}{2}\right)}\right|_{\epsilon \rightarrow 0, \text { fin }}$ one finds that amplitude is $\delta$-function in phase space

$$
F(z)=\delta(z-1)
$$

Total amplitude: sum of channels

$$
A_{\Phi \Phi \rightarrow \Phi \Phi}=g^{2}\left[\delta\left(\frac{\mathrm{~s}}{\mathrm{t}}\right)+\delta\left(\frac{\mathrm{s}}{\mathrm{u}}\right)\right]
$$

in c.o.m. frame $\vec{p}_{1}+\vec{p}_{2}=0=\vec{p}_{3}+\vec{p}_{4}$
scattering angle: $\frac{\mathrm{s}}{\mathrm{t}}=-\left(\sin ^{2} \frac{\theta}{2}\right)^{-1}, \quad \frac{\mathrm{~s}}{\mathrm{u}}=-\left(\cos ^{2} \frac{\theta}{2}\right)^{-1}$
arguments of delta-functions never vanish for real $\theta$

$$
\begin{aligned}
A_{\Phi \Phi \rightarrow \Phi \Phi} & =0 \\
A_{\Phi \Phi^{*} \rightarrow \Phi \Phi^{*}}=\frac{g^{2}}{2}\left[\delta\left(\frac{\mathrm{u}}{\mathrm{t}}\right)+\delta\left(\frac{\mathrm{u}}{\mathrm{~s}}\right)\right] & =\frac{g^{2}}{2}\left[\delta\left(\cot ^{2} \frac{\theta}{2}\right)-\delta\left(\cos ^{2} \frac{\theta}{2}\right)\right]
\end{aligned}
$$

t-channel and s-channel contributions cancel each other

$$
A_{\Phi \Phi^{*} \rightarrow \Phi \Phi^{*}}=0
$$

thus individual spin $s$ exchange contributions are nontrivial but total amplitude $=0$

- underlying HS symmetry constrains the S-matrix $A_{4}=0$ is implied by global part of CHS gauge symmetry: conformal group generators plus higher spin generators
- in particular: "hyper-translations"

$$
\delta \Phi=\epsilon^{m_{1} \ldots m_{r}} \partial_{m_{1}} \ldots \partial_{m_{r}} \Phi
$$

fix $A_{4}(\mathrm{~s}, \mathrm{t}, \mathrm{u})=k_{1}(\mathrm{t}, \mathrm{u}) \delta(\mathrm{s})+k_{2}(\mathrm{~s}, \mathrm{u}) \delta(\mathrm{t})+k_{3}(\mathrm{t}, \mathrm{s}) \delta(\mathrm{u})$

- scale invariance: $A_{4}\left(\lambda^{2} \mathrm{~s}, \lambda^{2} \mathrm{t}, \lambda^{2} \mathbf{u}\right)=A_{4}(\mathrm{~s}, \mathrm{t}, \mathbf{u})$
- solution consistent with crossing and scaling symmetry

$$
A_{4}(\mathrm{~s}, \mathrm{t}, \mathrm{u})=0
$$

$\star$ special prescription for summation over $s$ with which tree-level amplitude vanishes is thus consistent with underlying global CHS symmetry

## Scattering of conformal higher spin fields

[Beccaria, Nakach, AT 16]

- $s=1$ case is standard vector but for $s \geqslant 2$ higher-derivative $\square^{s}$ kinetic term: non-unitary theory
- definition of S-matrix: amputated Green's functions computed with full CHS vertices and internal propagators but with particular - massless spin $s$ - asymptotic states [e.g. for $s=2$ : Weyl graviton with 6 d.o.f. - but choose only standard helicity $\pm 2$ gravitons as asymptotic states ]

CHS 4-particle tree level amplitude helicities $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)$ and $\mathrm{s}, \mathrm{t}, \mathrm{u} \quad\left(p_{i}^{2}=0\right.$ for legs)
exchange diagrams

$s=1$ scattering: $11 \rightarrow 11$
spin $s$ exchange: two 1-1-s vertices and TT spin $s$ propagator $\quad\left(p_{\rho(s)} \equiv p_{\rho_{1}} \ldots p_{\rho_{s}}\right)$

$$
\begin{aligned}
& V_{\alpha \beta \rho(s)}(p, q)=\frac{1}{(s+2)!}\left\{\eta_{\alpha \beta}\left[p_{\rho(s)}+q_{\rho(s)}\right]\right. \\
& -\eta_{\alpha \rho_{1}} p_{\beta} p_{\rho_{2}} \ldots p_{\rho_{s}}+\eta_{\beta \rho_{1}} q_{\alpha} p_{\rho_{2}} \ldots p_{\rho_{s}}-\eta_{\beta \rho_{1}} q_{\alpha} q_{\rho_{2}} \ldots q_{\rho_{s}}+\eta_{\alpha \rho_{1}} p_{\beta} q_{\rho_{2}} \ldots q_{\rho_{s}} \\
& \left.-\eta_{\alpha \rho_{1}} \eta_{\beta \rho_{2}} p_{\rho_{3}} \ldots p_{\rho_{s}} p \cdot q-\eta_{\alpha \rho_{1}} \eta_{\beta \rho_{2}} q_{\rho_{3}} \ldots q_{\rho_{s}} p \cdot q\right\}
\end{aligned}
$$

- $s=2$ exchange $\left(\square^{-2}\right)$ :
same as in conformal supergravity $\left(L=-F^{2}+C^{2}+\ldots\right)$ only MHV are non-zero (,,$+++++++- \ldots=0$ )

| $\lambda$ | $A_{\mathrm{s}}^{(2)}$ | $A_{\mathrm{t}}^{(2)}$ | $A_{\mathrm{u}}^{(2)}$ |
| :---: | :---: | :---: | :---: |
| $\pm \pm \mp \mp$ | 0 | $\frac{5}{48} \frac{\mathrm{~s}^{2}}{\mathrm{t}^{2}}$ | $\frac{5}{48} \frac{\mathrm{~s}^{2}}{\mathrm{u}^{2}}$ |
| $\pm \mp \mp \pm$ | $\frac{5}{48} \frac{\mathrm{u}^{2}}{\mathrm{~s}^{2}}$ | $\frac{5}{48} \frac{\mathrm{u}^{2}}{\mathrm{t}^{2}}$ | 0 |

- $s=4$ exchange $\left(\square^{-4}\right)$ : again only MHV are non-zero:

| $\lambda$ | $A_{\mathrm{s}}^{(4)}$ | $A_{\mathrm{t}}^{(4)}$ | $A_{\mathrm{u}}^{(4)}$ |
| :---: | :---: | :---: | :---: |
| $\pm \pm \mp \mp$ | 0 | $\frac{\mathrm{~s}^{2}\left(28 \mathrm{~s}^{2}+42 \mathrm{st}+15 \mathrm{t}^{2}\right)}{80 \mathrm{t}^{4}}$ | $\frac{\mathrm{~s}^{2}\left(28 \mathrm{~s}^{2}+42 \mathrm{su}+15 \mathrm{u}^{2}\right)}{80 \mathrm{u}^{4}}$ |
| $\pm \mp \mp \pm$ | $\frac{\mathrm{u}^{2}\left(28 \mathrm{u}^{2}+42 \mathrm{su}+15 \mathrm{~s}^{2}\right)}{80 \mathrm{~s}^{4}}$ | $\frac{\mathrm{u}^{2}\left(28 \mathrm{u}^{2}+42 \mathrm{tu}+15 \mathrm{u}^{2}\right)}{80 \mathrm{t}^{4}}$ | 0 |

- General spin $s$ exchange $11 \rightarrow 11$ amplitudes $(\neq 0)$

$$
\begin{aligned}
& A_{\mathrm{t}}^{(s)}( \pm \pm \mp \mp)=\mathrm{c}_{s}\left(\frac{\mathrm{~s}}{\mathrm{t}}\right)^{s} \mathrm{P}_{s}\left(\frac{\mathrm{t}}{\mathrm{~s}}\right), \quad A_{\mathrm{u}}^{(s)}( \pm \pm \mp \mp)=\mathrm{c}_{s}\left(\frac{\mathrm{~s}}{\mathrm{u}}\right)^{s} \mathrm{P}_{s}\left(\frac{\mathrm{u}}{\mathrm{~s}}\right), \\
& A_{\mathrm{s}}^{(s)}( \pm \mp \mp \pm)=\mathrm{c}_{s}\left(\frac{\mathrm{u}}{\mathrm{~s}}\right)^{s} \mathrm{P}_{s}\left(\frac{\mathrm{~s}}{\mathrm{u}}\right), \quad A_{\mathrm{t}}^{(s)}( \pm \mp \mp \pm)=\mathrm{c}_{s}\left(\frac{\mathrm{u}}{\mathrm{t}}\right)^{s} \mathrm{P}_{s}\left(\frac{\mathrm{t}}{\mathrm{u}}\right) \\
& \mathrm{c}_{s}=\frac{2 s+1}{2(s-1) s(s+1)(s+2)} \\
& \mathrm{P}_{s}(x)=x^{s-2} P_{s-2}^{(4,0)}\left(\frac{x+2}{x}\right), \quad \text { order } s-2, \quad s=2,4,6, \ldots \\
& \quad P_{n}^{(a, b)}(x)=\text { Jacobi polynomials } \\
& \mathrm{P}_{s}(x)=\sum_{j=2}^{s} \frac{1}{(j-2)!(j+2)!} \frac{(s+j)!}{(s-j)!} x^{s-j} \sim x^{s-2}{ }_{2} F_{1}\left(2-s, s+3,5 ;-\frac{1}{x}\right)
\end{aligned}
$$

Sum over spins total ++-- amplitude: $\mathrm{t}+\mathrm{u}$-channel

$$
\begin{gathered}
A^{(s)}=\mathrm{c}_{s}\left[\left(\frac{\mathrm{~s}}{\mathrm{t}}\right)^{s} \mathrm{P}_{s}\left(\frac{\mathrm{t}}{\mathrm{~s}}\right)+\left(\frac{\mathrm{s}}{\mathrm{u}}\right)^{s} \mathrm{P}_{s}\left(\frac{\mathrm{u}}{\mathrm{~s}}\right)\right] \\
A^{(s)}=\sigma_{s}(x)+\sigma_{s}(-1-x), \quad \sigma_{s}(x)=\mathrm{c}_{s} x^{-s} \mathrm{P}_{s}(x), \quad x=\frac{\mathrm{t}}{\mathrm{~s}}
\end{gathered}
$$

- use generating function for Jacobi polynomials $P_{s-2}^{(4,0)}$

$$
\begin{aligned}
& \sum_{s=2}^{\infty} x^{-s} \mathrm{P}_{s}(x) z^{s-2}=\frac{1}{x^{2}} \frac{16}{\sqrt{z^{2}-\frac{2 z(x+2)}{x}+1}\left(\sqrt{z^{2}-\frac{2 z(z+2)}{z}+1}-z+1\right)^{4}} \\
& \sigma(x)=\sum_{s=2,4,6, \ldots}^{\infty} \sigma_{s}(x)=\lim _{z \rightarrow 1} \sum_{s=2,4,6, \ldots}^{\infty} \mathrm{c}_{s} x^{-s} \mathrm{P}_{s}(x) z^{s-2} \\
& \\
& \quad=\frac{1}{8}\left[-2 x+2(x+1) x \log \left(\frac{1}{x}+1\right)-1\right] .
\end{aligned}
$$

- total amplitude is then zero as in the scalar scattering case

$$
A(x)=\sum_{s=2,4,6, \ldots}^{\infty} A^{(s)}(x)=\sigma(x)+\sigma(-1-x)=0
$$

## Generalization to $s>1$ external states

Why Jacobi polynomials appear?
compare to partial wave expansion in terms of intermediate angular momentum $J$ states [Jacob, Wick 1959]

$$
\begin{aligned}
& A_{\left\{\lambda_{i}\right\}}=R_{\left\{\lambda_{i}\right\}}(\theta) \sum_{J}\left(J+\frac{1}{2}\right) \mathrm{F}_{\left\{\lambda_{i}\right\}}^{(J)}(\mathrm{s}) P_{J-M}^{(|\lambda+\mu|,|\lambda-\mu|)}(\cos \theta) \\
& \quad \lambda=\lambda_{1}-\lambda_{2}, \quad \mu=\lambda_{3}-\lambda_{4}, \quad M=\max (|\lambda|,|\mu|) \\
& R_{\left\{\lambda_{i}\right\}}(\theta)=\left(\cos \frac{\theta}{2}\right)^{|\lambda+\mu|}\left(\sin \frac{\theta}{2}\right)^{|\lambda-\mu|}=\left(-\frac{\mathrm{u}}{\mathrm{~s}}\right)^{\frac{1}{2}|\lambda+\mu|}\left(-\frac{\mathrm{t}}{\mathrm{~s}}\right)^{\frac{1}{2}|\lambda-\mu|}
\end{aligned}
$$

- $J$-th partial wave as exchange of TT spin $J$ CHS field: for massive field ( $m^{2} \sim s$ )

$$
\left(\square+m^{2}\right) \psi_{m_{1} \ldots m_{J}}=0, \quad \partial^{m_{1}} \psi_{m_{1} \ldots m_{J}}=\psi_{m_{1} \ldots m_{J}}^{m_{1}}=0
$$

- scale invariance controls how F depends on s
e.g., for dim 1 external particles $\mathrm{F}_{\left\{\lambda_{i}\right\}}^{(J)}(\mathrm{s})=$ const
- general prediction for Jacob-Wick coefficient for scattering of CHS fields of $\operatorname{dim} \Delta_{i}=2-\left|\lambda_{i}\right|$ (no $\operatorname{dim} \neq 0$ parameters!)

$$
\mathrm{F}_{\left\{\lambda_{i}\right\}}^{(J)}(\mathrm{s})=k_{\lambda, \mu} \frac{[J-\max (|\lambda|,|\mu|)]!}{[J+\min (|\lambda|,|\mu|)]!} \mathrm{s}^{r}, \quad r=2-\frac{1}{2} \sum_{i=1}^{4} \Delta_{i}
$$

Special cases $(J=s)$ :

- $00 \rightarrow 00$

$$
A_{0,0 ; 0,0}(\mathrm{~s}, \theta)=\sum_{s=0,2, \ldots}\left(s+\frac{1}{2}\right) \mathrm{F}_{0}^{(s)} P_{s}^{(0,0)}(\cos \theta)
$$

- $+1+1 \rightarrow+1+1$
t-channel $\quad\left(\cos \theta=-1-2 \frac{\mathrm{~s}}{\mathrm{t}}\right)$

$$
A_{++;++}(\theta)=\left(\sin \frac{\theta}{2}\right)^{-4} \sum_{s=2,4, \ldots}\left(s+\frac{1}{2}\right) \mathrm{F}_{+}^{(s)} P_{s-2}^{(4,0)}(\cos \theta)
$$

Comments on Weyl gravity
$L=C_{m k n l}^{2} \sim\left(\partial_{k} \partial_{l} h_{m n}+\ldots\right)^{2}$

- can choose TT gauge: $h_{m}^{m}=0, \partial^{m} h_{m n}=0$ free eq: $\quad \square^{2} h_{m n}=0$ solved by [Stelle 78; Riegert 84]
$h_{m n}=h_{m n}^{(1)}+h_{m n}^{(2)}=\left(a_{m n}+b_{m n} u_{k} x^{k}\right) e^{i p \cdot x}+c . c$.
$p^{2}=0, \quad u^{2}=-1, \quad u \cdot p \neq 0, \quad a_{m}^{m}=b_{m}^{m}=0$
- $h_{m n}^{(1)}$ - spin 2 and spin 1 massless modes;
$h_{m n}^{(2)}$ - spin 2 ghost mode - grows in time, negative energy residual gauge freedom: $\quad p^{m}=(p, 0,0, p), \quad u^{m}=(1,0,0,0)$
$a_{11}+a_{22}=b_{11}+b_{22}=0, \quad a_{m 3}=b_{m 3}=b_{m 0}=0$
- modes: $2+2+2=6$ dynamical d.o.f.
$\left(a_{11} \pm i a_{12}\right) e^{i p \cdot x}: \quad$ physical $\lambda= \pm 2$ massless tensor $\left(a_{01} \pm i a_{02}\right) e^{i p \cdot x}: \quad \lambda= \pm 1$ massless vector $\left(b_{11} \pm i b_{12}\right) x^{0} e^{i p \cdot x}$ : ghost $\quad \lambda= \pm 2$ massless tensor
- Higher-derivative actions admit 2-derivative forms
$\phi \square^{2} \phi \rightarrow \psi \square \phi-\psi^{2}$
$R_{m n}^{2}-\frac{1}{3} R^{2} \rightarrow u^{m n} R_{m n}-u^{m n} u_{m n}+\ldots$
Weyl gravity: in terms of $h_{m n}, \widetilde{h}_{m n}, h_{m}$ [Metsaev 07]
- can define standard scattering S-matrix (with usual LSZ rules) if asymptotic states are physical massless spin 2 gravitons
- intermediate states - all modes - effective $\frac{1}{p^{4}}$ propagator: non-unitary theory
- 4-graviton amplitude in Weyl theory: found to be 0
e.g. from 4-graviton amplitude in $L=\epsilon R+C^{2}$ in the limit $\epsilon \rightarrow 0$ (propagator $\frac{1}{\epsilon p^{2}+p^{4}} \rightarrow \frac{1}{p^{4}}$ )
similar result from other approaches:
- start with Weyl gravity in $\mathrm{dS}_{4}$ or $\operatorname{AdS}_{4}$ space $(\Lambda \neq 0)$

Neumann boundary condition: selects the Einstein graviton mode then S-matrix is $\Lambda \times$ (Einstein S-matrix) [Maldacena 11]
$\Lambda \rightarrow 0$ gives trivial S-matrix of Weyl theory in flat 4d space

## [Adamo, Mason 13]

- start with twistor superstring theory [Berkowits, Witten 04] and compute 4 -graviton S-matrix [Dolan, Ihry 08] result is non-zero but only due to presence of extra non-minimal scalar coupling in $\alpha^{\prime} \rightarrow 0$ limit of twistor string: $(1+\phi+\ldots) C_{m n k l}^{2}+\phi \square^{2} \phi \rightarrow C_{m n k l}^{2} \square^{-2} C_{a b c d}^{2}$
$s=2$ scattering via CHS exchange
- $+2+2 \rightarrow+2+2$ : contribution from from $s>2$ exchanges: t-channel $++\rightarrow++$ or ++-- MHV

$$
A_{++;++}(\mathrm{t}, \theta)=\frac{\mathrm{s}^{4}}{\mathrm{t}^{4}} \sum_{s=4,6, \ldots}\left(s+\frac{1}{2}\right) \mathrm{F}^{(s)} \mathrm{t}^{2} P_{s-4}^{(8,0)}(\cos \theta)
$$

explicit computation gives for full $(\mathrm{t}+\mathrm{u}$ - channel) amplitude

$$
\begin{aligned}
A^{(s)} & =\mathrm{c}_{s} \mathrm{~s}^{2}\left[\left(\frac{\mathrm{~s}}{\mathrm{t}}\right)^{s-2} \mathrm{P}_{s}\left(\frac{\mathrm{t}}{\mathrm{~s}}\right)+\left(\frac{\mathrm{s}}{\mathrm{u}}\right)^{s-2} \mathrm{P}_{s}\left(\frac{\mathrm{u}}{\mathrm{~s}}\right)\right] \\
\mathrm{P}_{s}(x) & =x^{s-2} \mathrm{P}_{s-4}^{(8,0)}\left(\frac{x+2}{x}\right), \quad \mathrm{c}_{s}=\frac{9}{32} \frac{2 s+1}{(s-3) \ldots(s+4)}
\end{aligned}
$$

- sum over spins:

$$
\begin{aligned}
& \sigma(x)=\sum_{s=4,6, \ldots}^{\infty} \sigma_{s}(x)=\lim _{z \rightarrow 1} \sum_{s=4,6, \ldots}^{\infty} \mathrm{c}_{s} x^{-(s-2)} \mathrm{P}_{s}(x) z^{s-4} \\
& \quad=\frac{1}{4320}\left[60(x+1)^{3} x^{3} \log \left(\frac{1}{x}+1\right)-60 x^{5}-150 x^{4}-110 x^{3}-15 x^{2}+3 x-1\right]
\end{aligned}
$$

- total $s>2$ exchange vanishes: t - and $\mathbf{u}$ - channels cancel

$$
\sigma(x)+\sigma(-1-x)=0
$$

- contribution of $s=0,2$ exchanges +2222 contact vertex

$$
\begin{aligned}
& A_{++;++}^{0, \mathrm{~s}}=\frac{\mathrm{s}^{2}}{18432}, \quad A_{++;++}^{0, \mathrm{t}}=\frac{\mathrm{t}^{2} \mathrm{u}^{4}}{2048 \mathrm{~s}^{4}}, \quad A_{++;+}^{0, \mathrm{u}}=\frac{\mathrm{t}^{4} \mathrm{u}^{2}}{2048 \mathrm{~s}^{4}}, \\
& A_{++;++}^{2, \mathrm{~s}}=\frac{\mathrm{s}^{2}+6 \mathrm{st}+6 \mathrm{t}^{2}}{92160}, \quad A_{++;++}^{2, \mathrm{t}}=\frac{\mathrm{u}^{2}\left(2 \mathrm{~s}^{4}-10 \mathrm{~s}^{3} \mathrm{t}+33 \mathrm{~s}^{2} \mathrm{t}^{2}-24 \mathrm{st} \mathrm{t}^{+}+3 \mathrm{t}^{4}\right)}{30720 \mathrm{~s}^{4}} \\
& A_{++;+}^{2, \mathrm{u}}=\frac{\mathrm{t}^{2}\left(2 \mathrm{~s}^{4}-10 \mathrm{~s}^{3} \mathrm{u}+33 \mathrm{~s}^{2} \mathrm{u}^{2}-24 \mathrm{su}^{3}+3 \mathrm{u}^{4}\right)}{30720 \mathrm{~s}^{4}} \\
& A_{++;+}^{\text {contact }}=-\frac{\mathrm{s}^{6}-\mathrm{s}^{5} \mathrm{t}+26 \mathrm{~s}^{4} \mathrm{t}^{2}+63 \mathrm{~s}^{3} \mathrm{t}^{3}+54 \mathrm{~s}^{2} \mathrm{t}^{4}+27 \mathrm{st} \mathrm{t}^{5}+9 \mathrm{t}^{6}}{7680 \mathrm{~s}^{4}}
\end{aligned}
$$

non-trivial cancellation: total 2222 amplitude $=0$
$A^{0, \mathrm{~s}}+A^{0, \mathrm{t}}+A^{0, \mathrm{u}}+A^{2, \mathrm{~s}}+A^{2, \mathrm{t}}+A^{2, \mathrm{u}}+A^{\text {contact }}=0$

- similar cancellation checked for 1122 amplitude
- conjecture: full massless-state CHS S-matrix is trivial
- should follow again from underlying global CHS symmetry HS charges $\rightarrow$ triviality of S-matrix (cf. Coleman-Mandula)


## CHS symmetries

$$
\begin{aligned}
& h(x, p) \equiv h_{\mu_{1} \ldots \mu_{s}}(x) p^{\mu_{1}} \ldots p^{\mu_{s}} \\
& f(x, p) \star g(x, p)=f(x, p) e^{\frac{i}{2}\left(\overleftarrow{\partial_{x}} \cdot \vec{\partial}_{p}-\overleftarrow{\partial_{p}} \cdot \overrightarrow{\partial_{x}}\right)} g(x, p)
\end{aligned}
$$

- diff and algebraic symm of scalar-CHS system [Segal 02]

$$
\begin{aligned}
\delta_{\epsilon} h(x, p) & =\left(p \cdot \partial_{x}\right) \epsilon(x, p)-\frac{i}{2}[h(x, p), \epsilon(x, p)]_{\star} \\
\delta_{\alpha} h(x, p) & =\left(p^{2}-\frac{1}{4} \partial_{x}^{2}\right) \alpha(x, p)-\frac{1}{2}\{h(x, p), \alpha(x, p)\}_{\star} \\
\delta_{\epsilon+i \alpha} \Phi(x) & =\left.e^{-\frac{i}{2} \partial_{x^{\prime}} \cdot \partial_{p}}[\epsilon(x, p)+i \alpha(x, p)] \Phi\left(x^{\prime}\right)\right|_{x=x^{\prime}, p=0} \\
\delta h & =\delta_{0} h+\delta_{1} h, \quad \delta_{0} h_{s} \sim \partial \epsilon_{s-1}+\eta \alpha_{s-2}
\end{aligned}
$$

- global symmetry from: $\delta_{1} h \sim \epsilon \partial h+\partial \epsilon h+\ldots$ for special $\epsilon$
- spin $s$ field transforms in terms of $s^{\prime}<s$ fields

$$
\begin{aligned}
\delta_{1} h_{0} & \sim \sum_{k} \epsilon^{\mu(k)} \partial_{\mu(k)} h_{0}, \quad \delta_{1} h^{\rho} \sim \sum_{k}\left[\epsilon^{\rho \mu(k)} \partial_{\mu(k)} h_{0}+\epsilon^{\mu(k)} \partial_{\mu(k)} h^{\rho}\right] \\
\delta_{1} h^{\rho \sigma} & \sim \sum_{k}\left[\epsilon^{\rho \sigma \mu(k)} \partial_{\mu(k)} h_{0}+\epsilon^{\mu(k)(\rho} \partial_{\mu(k)} h^{\sigma)}+\frac{1}{2!k!} \epsilon^{\mu(k)} \partial_{\mu(k)} h^{\rho \sigma}\right]
\end{aligned}
$$

- constraints on amplitudes as in external scalar scattering case


## CHS fields in curved background

Expansion near vacuum with non-trivial $g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}$ :

- Weyl-invariant quadratic action known for $s=1$ and $s=2$
- $s>2$ : kinetic operator $\mathcal{O}_{s}=\nabla^{2 s}+\ldots-$ diff and Weyl inv but to be consistent with CHS gauge symm.:
$g_{\mu \nu}$ should solve Bach eqs $\quad\left(\nabla^{\mu} \nabla^{\nu}+\frac{1}{2} R^{\mu \nu}\right) C_{\lambda \mu \nu \rho}=0$
- $\mathcal{O}_{s}$ simplifies (factorizes) on conf-flat background:
explicitly known on $S^{4}$ or $A d S_{4}$ [AT 13; Metsaev 14; Nutma,Taronna 14] and $S^{1} \times S^{3}$ [Bekaert, Beccaria, AT 14]
- quantum consistency? anomalies?
conformal $\rightarrow$ Weyl symmetry: $g_{m n}^{\prime}=\lambda^{2}(x) g_{m n}$
Weyl anomaly: $\quad T_{m}^{m}=-\mathrm{a} R^{*} R^{*}+\mathrm{c} C^{2}$
Weyl gravity $(s=2)$ is anomalous: $\mathrm{a}_{2}=\frac{87}{20}, \mathrm{c}_{2}=\frac{199}{30}$
- one way to cancel anomaly - add fermions: supersymmetry $N=4$ conformal supergravity $+4 N=4$ Maxwell multiplets is anomaly free: $\mathrm{a}=\mathrm{c}=0 \quad$ [Fradkin, AT 82]
- alternative: sum over infinite number of CHS contributions
- CHS fields with $s>2$ :
to find $\mathrm{a}_{s}$ : enough to know partition function on $S^{4}$
to find $\mathrm{c}_{s}$ : need to know $\mathcal{O}_{s}$ on Ricci-flat background

CHS partition function on $S^{4}$

- Maxwell theory on $S^{4}(R=12, r=1)$

$$
Z_{1}=\left[\frac{\operatorname{det} \Delta_{0}(0)}{\operatorname{det} \Delta_{1 \perp}(3)}\right]^{1 / 2}, \quad \Delta_{s}\left(M^{2}\right) \equiv-\nabla_{s}^{2}+M^{2}
$$

- Weyl graviton: $\quad C^{2} \rightarrow \frac{1}{2} h \Delta_{2 \perp}(2) \Delta_{2 \perp}(4) h$

$$
Z_{2}=\left[\frac{\operatorname{det} \Delta_{1 \perp}(-3)}{\operatorname{det} \Delta_{2 \perp}(2)}\right]^{1 / 2}\left[\frac{\operatorname{det} \Delta_{0}(-4)}{\operatorname{det} \Delta_{2 \perp}(4)}\right]^{1 / 2}
$$

- CHS operator: factorization into "partially-massless"

$$
\mathcal{O}_{s}=\nabla^{2 s}+\ldots=\prod_{k=0}^{s-1} \Delta_{s \perp}\left(M_{s, k}^{2}\right), \quad M_{s, k}^{2}=2+s-k-k^{2}
$$

- get simple generalization of flat-space $Z$

$$
Z\left(S^{4}\right)=\prod_{s=1}^{\infty} Z_{s}, \quad Z_{s}=\prod_{k=0}^{s-1} Z_{s, k}, \quad Z_{s, k}=\left[\frac{\operatorname{det} \Delta_{k \perp}\left(M_{k, s}^{2}\right)}{\operatorname{det} \Delta_{s \perp}\left(M_{s, k}^{2}\right)}\right]^{1 / 2}
$$

$\ln Z=-B_{4} \ln \Lambda_{\mathrm{UV}}+\ldots, \quad B_{4}=\left.\int d^{4} x \sqrt{g} b_{4}\right|_{S^{4}}=-\mathrm{a}_{s}$

- summing contributions of 2 nd order operators [AT 13]

$$
\begin{aligned}
\mathrm{a}_{s} & =\sum_{k=0}^{s-1}\left(\mathrm{a}\left[\Delta_{s \perp}\left(2+s-k-k^{2}\right)\right]-\mathrm{a}\left[\Delta_{k \perp}\left(2+k-s-s^{2}\right)\right]\right) \\
& =\frac{1}{180} \nu^{2}(14 \nu+3), \quad \nu=s(s+1)
\end{aligned}
$$

- same coefficient found via massless HS $A d S_{5}$ relation
[Giombi, Klebanov, Pufu, Safdi, Tarnapolsky 13]

$$
\ln \frac{Z_{s}^{(-)}}{Z_{s}^{(+)}}=\ln Z_{s}=\mathrm{a}_{s} \ln \Lambda_{\mathrm{IR}}+\ldots, \quad \operatorname{vol}\left(\mathrm{AdS}_{5}\right) \sim \ln \Lambda_{\mathrm{IR}}
$$

- with $e^{-\epsilon\left(s+\frac{1}{2}\right)}$ regularization prescription for $\sum_{s}$ consistent with CHS symmetries get

$$
\sum_{s=1}^{\infty} \mathrm{a}_{s}=0
$$

- finite parts cancel too: $Z\left(S^{4}\right)=1$
[Giombi, Klebanov, Safdi 14; Beccaria, AT 15]


## Ricci-flat background

- Maxwell vector: $\left(\Delta_{1}\right)_{m n}=-\left(\nabla^{2}\right)_{m n}+R_{m n}, \quad \Delta_{0}=-\nabla^{2}$

$$
Z_{1}=\left[\frac{\left(\operatorname{det} \Delta_{0}\right)^{2}}{\operatorname{det} \Delta_{1}}\right]^{1 / 2}
$$

- Weyl graviton: 4-th order operator factorizes:
square of Einstein op. $\quad\left(\Delta_{2}\right)_{m n, k l}=-\left(\nabla^{2}\right)_{m n, k l}-2 C_{m k n l}$

$$
Z_{2}=\left[\frac{\left(\operatorname{det} \Delta_{1}\right)^{3}}{\left(\operatorname{det} \Delta_{2}\right)^{2}}\right]^{1 / 2}
$$

- if assume that factorization of $\mathcal{O}_{s}$ true also for $s>2$ : $s$ factors of "massless" spin $s$ 2nd-order operator

$$
Z_{s}=\left[\frac{\left(\operatorname{det} \Delta_{s-1}\right)^{s+1}}{\left(\operatorname{det} \Delta_{s}\right)^{s}}\right]^{1 / 2}, \quad \Delta_{s}=-\nabla^{2}-s(s-1) C \ldots
$$

same structure as in flat space but with covariant operators $\Delta_{s}$

- from Seeley coefficients for $\Delta_{s}$ get [AT 13]

$$
\mathrm{c}_{s}-\mathrm{a}_{s}=\frac{1}{720} \nu_{s}\left(15 \nu_{s}^{2}-45 \nu_{s}+4\right), \quad \nu_{s}=s(s+1)
$$

with same summation over spins prescription

$$
\sum_{s=1}^{\infty}\left(\mathrm{c}_{s}-\mathrm{a}_{s}\right)=0
$$

- then a- and c- anomalies or UV $\infty$ appear to vanish: suggests novel mechanism of UV finiteness due to summation of $\infty$ number of bosonic fields (cf. string theory)
- $\sum_{s} \mathrm{c}_{s}=0$ remains a conjecture:
- $\mathcal{O}_{s>2}$ does not factorize on $R_{m n}=0$ backgr [Nutma, Taronna 14] but obstruction to factorization $\sim \nabla . C_{\ldots}$... should not change $\mathrm{c}_{s}$
- CHS action does not diagonalize on $R_{m n}=0$ backgr: mixing terms [Grigoriev, AT 16] contribute to $\mathrm{C}_{s}$ [Beccaria, AT 17]


## Curved space background: spin $1-3$ mixing

[Beccaria, AT 17]

- flat space:
$S_{0}=\int d^{4} x \Phi^{*} \partial^{2} \Phi, \quad \partial^{a_{1}} J_{a_{1} \cdots a_{s}}=0, \quad J_{a_{1} \cdots a_{s}}^{a_{1}}=0$
$J_{a}=i \Phi^{*} \partial_{a} \Phi+c . c$.
$J_{a b}=\Phi^{*} \partial_{a} \partial_{b} \Phi-2 \partial_{a} \Phi^{*} \partial_{b} \Phi+\frac{1}{2} \eta_{a b} \partial^{c} \Phi^{*} \partial_{c} \Phi+c . c$.
$J_{a b c}=i\left[\Phi^{*} \partial_{a} \partial_{b} \partial_{c} \Phi-9 \partial_{(a} \Phi^{*} \partial_{b} \partial_{c)} \Phi+3 \eta_{(a b} \partial^{p} \Phi^{*} \partial_{p} \partial_{c)} \Phi\right]+c . c$.
adding interaction with background fields:
$S_{\text {int }}=\sum_{s} \int d^{4} x h^{a_{1} \cdots a_{s}}(x) J_{a_{1} \cdots a_{s}}$
inv under $\delta h_{a_{1} \cdots a_{s}}=\partial_{\left(a_{1}\right.} \epsilon_{\left.a_{2} \cdots a_{s}\right)}+\eta_{\left(a_{1} a_{2}\right.} \alpha_{\left.a_{3} \cdots a_{s}\right)} \bmod \partial^{2} \Phi$ terms extended off shell if transform $\Phi$ and add terms linear in $h_{s}$
- curved space:

$$
\begin{aligned}
& S_{0}=\int d^{4} x \sqrt{g} \Phi^{*}\left(-\nabla^{2}+\frac{1}{6} R\right) \Phi \\
& S_{\text {int }}=\sum_{s} \int d^{4} x \sqrt{g} h^{a_{1} \cdots a_{s}}(x) J_{a_{1} \cdots a_{s}}
\end{aligned}
$$

- require $\nabla^{a_{1}} J_{a_{1} \cdots a_{s}}=0, \quad J_{a_{1} \cdots a_{s}}^{a_{1}}=0$ then will have inv under backgr-cov gauge transfs $\delta h_{a_{1} \cdots a_{s}}=\nabla_{\left(a_{1}\right.} \epsilon_{\left.a_{2} \cdots a_{s}\right)}+g_{\left(a_{1} a_{2}\right.} \alpha_{\left.a_{3} \cdots a_{s}\right)}$
- require also Weyl inv w.r.t. backgr metric: $w=w(x)$ $\delta_{w} g_{a b}=2 w g_{a b}, \quad \delta_{w} \Phi=-w \Phi, \quad \delta_{w} h_{a_{1} \cdots a_{s}}=2(s-1) w h_{a_{1} \cdots a_{s}}$
- such covariant currents exist for $s=1$ and $s=2$ :

$$
\begin{aligned}
& J_{a}=i\left(\Phi^{*} \nabla_{a} \Phi-\nabla_{a} \Phi^{*} \Phi\right), \quad \nabla^{a} J_{a}=0 \\
& J_{a b}=\frac{6}{\sqrt{g}} \frac{\delta S_{0}}{\delta g^{a b}}=\left(\Phi^{*} \nabla_{a} \nabla_{b} \Phi-2 \nabla_{a} \Phi^{*} \nabla_{b} \Phi+c . c\right) \\
&+g_{a b} \nabla_{c} \Phi^{*} \nabla^{c} \Phi-\left(R_{a b}-\frac{1}{6} g_{a b} R\right) \Phi^{*} \Phi
\end{aligned}
$$

- but $s \geqslant 3$ cases are different:
$\nabla^{a_{1}} J_{a_{1} \cdots a_{s}} \neq 0$ - given by terms with lower-rank $J_{s}$
- $s=3$ : unique traceless current with Weyl-inv $S_{i n t}=\int h_{3} J_{3}$ :

$$
\begin{aligned}
& J_{a b c}=i\left[\Phi^{*} \nabla_{(a} \nabla_{b} \nabla_{c)} \Phi-9 \nabla_{(a} \Phi^{*} \nabla_{b} \nabla_{c)} \Phi+3 g_{(a b} \nabla^{p} \Phi^{*} \nabla_{p} \nabla_{c)} \Phi\right. \\
& \left.+2 g_{(a b} \Phi^{*} \nabla^{2} \nabla_{c)} \Phi+\frac{1}{2} g_{(a b} R \Phi^{*} \nabla_{c)} \Phi-7 R_{(a b} \Phi^{*} \nabla_{c)} \Phi\right]+c . c .
\end{aligned}
$$

- $J_{3}$ conserved only in conformally-flat background:

$$
\nabla_{a} J^{a b c}=8 C^{p b c q} \nabla_{(p} J_{q)}+32 \nabla_{(p} C^{p b c q} J_{q)}
$$

- $1+3$ action $S_{i n t}=\int d^{4} x \sqrt{g}\left(h^{a} J_{a}+h^{a b c} J_{a b c}\right)$
is invariant under $\delta h_{a}=\partial_{a} \epsilon$ and combined transformations

$$
\delta h_{a b c}=\nabla_{(a} \epsilon_{b c)}, \quad \delta h_{a}=-8 C_{a b c d} \nabla^{d} \epsilon^{b c}+24 \nabla^{d} C_{a b c d} \epsilon^{b c}
$$

- to make invariance manifest (off-shell): need also to transform $\Phi$ and add $h_{1} h_{3}+\ldots$ terms in $S_{\text {int }}$ (manifest spin 1 invariance: $\nabla_{a} \Phi \rightarrow D_{a} \Phi=\nabla_{a} \Phi+i h_{a} \Phi$ )
- induced action inv under $h$-gauge transf
$e^{-\Gamma(h)}=\int d \Phi e^{-S(\Phi, h ; g)}$,
$\Gamma(h)=\mathrm{S}(h) \log \Lambda_{\mathrm{UV}}+\ldots$
- non-linear $h_{s} h_{s^{\prime}}+\ldots$ terms produce contact terms in generating functional for correlators of currents: absent in correlators $\left\langle J\left(x_{1}\right) \ldots J\left(x_{n}\right)\right\rangle$ at separated points but contributing to local UV singular part - to induced action
- need contact terms to get e.g. covariant spin $1+2$ action $\mathrm{S}=\int d^{4} x \sqrt{g}\left(-\frac{1}{12} F_{a b}^{2}+\frac{1}{120} C_{a b c d}^{2}\right)$
- expansion near $g_{a b}$ :
$\int d^{4} x \sqrt{g} C_{a b c d}^{2} \rightarrow \int d^{4} x \sqrt{g}\left[B_{a b}(g) h^{a b}+h^{a b} \mathcal{O}_{a b c d}(g) h^{c d}+\ldots\right]$
$\mathcal{O}_{4}=\nabla^{4}+\ldots$ is gauge-inv $\delta h_{a b}=\nabla_{(a} \epsilon_{b)}$ if
$B_{a b}=\left(\nabla^{p} \nabla^{q}+\frac{1}{2} R^{p q}\right) C_{a p q b}=0$
- expansion of S in $h_{s}$ : manifest reparam and Weyl inv

$$
\begin{aligned}
& \mathrm{S}(g, h)=\mathrm{S}^{(0)}(g)+\mathrm{S}^{(1)}(g, h)+\mathrm{S}^{(2)}(g, h)+\ldots \\
& \mathrm{S}^{(1)}=\int B_{(s)}(g) h^{(s)}, \quad \mathrm{S}^{(2)}=\int h^{(s)} \mathcal{O}_{s, s^{\prime}}(g) h^{\left(s^{\prime}\right)}
\end{aligned}
$$

- gauge invariance if $\left\langle J_{(s)}\right\rangle_{\mathrm{UV}} \sim B_{(s)}(g)=0$

Weyl-inv $+\nabla^{a} B_{a \ldots}=0 \rightarrow$ true for Bach-flat $g$ [Grigoriev, AT]

Quadratic part of spin $1+3$ induced action
$\mathrm{S}^{(2)}=\mathrm{S}_{11}+\mathrm{S}_{13}+\mathrm{S}_{33}$
$L_{11}=h^{a}\left\langle J_{a} J_{b}\right\rangle_{\mathrm{UV}} h^{b}=-\frac{1}{6} F_{a b}^{2}$
$L_{33}=h_{3} \mathcal{O}_{6} h_{3}: \quad \mathcal{O}_{6}$ from $\left\langle J_{a b c} J_{p q r}\right\rangle_{\mathrm{UV}}+$ contact term
$L_{13}=h^{a}\left\langle J_{a} J_{b c d}\right\rangle_{\mathrm{UV}} h^{b c d}+$ contact term
final result for the mixing term:
$L_{13}=8 F^{a b}\left[C_{a}{ }^{c d p} \nabla_{p} h_{b c d}+\left(\nabla_{a} R^{c d}-\nabla^{c} R_{a}^{d}\right) h_{b c d}\right]$
Weyl-inv; vanishes for conformally-flat Einstein space $g_{a b}$

- in Bach-flat case: e.g. Einstein background $R_{a b}=\frac{1}{4} R g_{a b}$

$$
\mathrm{S}^{(2)}=\int d^{4} x \sqrt{g}\left[-\frac{1}{12} F_{a b}^{2}+8 C^{a b c d} F_{a p} \nabla_{d} h_{b c}^{p}+h_{3} \mathcal{O}_{6} h_{3}\right]
$$

- invariant under spin 3 gauge transformations

$$
\delta h_{a b c}=\nabla_{(a} \epsilon_{b c)}, \quad \delta h_{a}=-8 C_{a b c p} \nabla^{p} \epsilon^{b c}
$$

- $\epsilon h_{3}$ term in variation of $\mathrm{S}_{13}$ is order $C C$ :
$h_{3} \mathcal{O}_{6} h_{3}$ inv by itself only to 1 st order in $C$ [Nutma, Taronna 14]

linear in curvature terms in $\mathcal{O}_{6}$ can be found from UV part of $h_{2} h_{3} h_{3}$ 1-loop scalar diagrams: $\left\langle J_{a b c} J_{p q r} J_{m n}\right\rangle_{\mathrm{UV}}+$ contact terms

Spin 1-3 mixing term contribution to UV divergences
$\Gamma=-\log Z=-\log \Lambda_{\mathrm{UV}} \int d^{4} x \sqrt{g} b_{4}(x)+$ finite $b_{4}=-\mathrm{a} R^{*} R^{*}+\mathrm{c} C^{2}$

- conf flat background: no mixing terms, $\mathcal{O}_{s}$ factorize and get

$$
\mathrm{a}_{s}=\frac{1}{720} \nu_{s}\left(3 \nu_{s}+14 \nu_{s}^{2}\right), \quad \nu_{s} \equiv s(s+1)
$$



- ignoring mixings and assuming that factorization holds also in Ricci-flat case [AT 13]
$\mathrm{c}_{s} \equiv \mathrm{c}_{s s}=\frac{1}{720} \nu_{s}\left(29 \nu_{s}^{2}-42 \nu_{s}+4\right)$
- need to add mixing terms contribution to $C^{2}$ div: example of $1-3$ sector: $\mathrm{c}_{1}=\frac{1}{10}, \mathrm{c}_{3}=\frac{919}{15}$
$L=h_{1}\left(\nabla^{2}+\ldots\right) h_{1}+C \nabla h_{1} \nabla h_{3}+h_{3}\left(\nabla^{6}+\ldots\right) h_{3}$
1-loop diagram gives non-trivial contribution:
$L_{\mathrm{UV}}=\mathrm{c}_{13} C_{a b c d} C^{a b c d} \log \Lambda_{\mathrm{UV}}, \quad \mathrm{c}_{13}=\frac{392}{5}$
- need to find all mixing terms to decide if $\sum_{s, s^{\prime}} \mathrm{c}_{s s^{\prime}}=0$


## Conclusions

- theories with infinite number of massless higher spin fields: importance of definition of quantum theory consistent with underlying symmetries
- remarkable simplifications due to large HS symmetry:
- 1-loop $Z=1$ on $R^{4}\left(\sum_{s} \nu_{s}=0\right)$ and $S^{4}\left(\sum_{s} \mathrm{a}_{s}=0\right)$
- vanishing of scattering amplitudes with CHS exchange: triviality of S-matrix implied by conformal HS symmetry
- intricate structure of interacting induced CHS action mixing terms in non-trivial background to be understood $\rightarrow$ cancellation of c -anomalies $\sum_{s} \mathrm{c}_{s}=0$ remains to be proved

