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• free complex scalar: �Φ = 0

conserved Jµ = i(Φ∗∂µΦ− ∂µΦ∗Φ) and stress Tµν
couple to external sources
L = ∂µΦ∗∂µΦ + Aµ(x)Jm + hµν(x)Tµν + ...

integrate out Φ: local (log∞) part of 1-loop effective action
induced Maxwell + Weyl theory
S =

∫
d4x(−F 2

µν + C2
µνλρ)

• free scalar equation admits also higher conserved currents:
Jµ1...µs = Φ∗∂µ1 ...∂µsΦ + ..., s = 1, 2, 3, ...

charges→ infinite dim global symmetry
corresponding sources hµ1...µs – symmetric traceless tensors:
conformal higher spins (CHS)
• induced action for infinite tower of fields
generalizes Maxwell and Weyl: S =

∫
d4x

∑
s hs∂

2shs + ...

• local action with symmetry δhs = ∂εs−1 + η2αs−2 + ...



Motivation to study:
• unusual properties and simplifications due to
underlying infinite-dimensional conformal HS symmetry
(sums over infinite set of HS contributions,
regularization consistent with symmetry)
• close connection to massless HS fields in AdS

CHS as toy model to study implications of HS symmetry:
• trivial partition function on a sphere
• trivial near-flat-space S-matrix (cf. Coleman-Mandula)
• non-trivial cancellation of conformal anomalies

• fundamental role of local conformal invariance?
existence of consistent (UV finite, anomaly free)
theories with local conformal symmetry? unitary issue?



Plan:

• flat space background:
action for CHS as induced one
corresponding S-matrix

• curved space background:
curved space CHS operators
partition function on S4

a and c Weyl anomaly coefficients



Consistent HS theories:
• massless HS theory in AdSd+1:
2-derivative kin term (unitary) but non-flat vacuum
dual to free CFTd: e.g. scalar in vector rep of U(N)

S-matrix is “simple”:
reproduces correlators of currents in free CFT

• conformal HS theory:
has flat vacuum but higher derivative kin term (non-unitary)
S-matrix is “trivial” after summation over all spin exchanges
consistent with HS symmetry



Conformal higher spin theory (d = 4)
• generalization of Maxwell and Weyl:
F 2
µν ∼ h1∂

2h1, C2
µνκλ ∼ h2∂

4h2 + ∂4h2h2h2 + ...

• differential + algebraic (“Weyl”) gauge symmetry
δhs = ∂εs−1 + η2 αs−2

can gauge-fix hs to be transverse and traceless off-shell
• totally symmetric hµ1...µs describes “pure” spin s:
maximal gauge symm consistent with locality at expense of
higher-derivative kin terms [Fradkin, AT 85]

S
(0)
s =

∫
d4x hs Ps ∂

2s hs
Ps ∼ (δµν − ∂µ∂ν

∂2
)s – transv. traceless projector

• ∆(hs) = 2− s: dimensionless coupling const
• interacting action consistent with symmetries can be defined
as local induced action from scalar loop



• conformally invariant in flat space
number of derivatives in vertices fixed by dimensions

Ss =
1

g2

∑
s

∫
d4x
(
hs∂

2shs + ∂s1+s2+s3−2 hs1hs2hs3

+ ∂s1+s2+s3+s4−4 hs1hs2hs3hs4 + ...
)

• conformal symmetry: can be consistently defined
on any conformally flat background
• admits a background-independent formulation
and in general consistently defined near any
curved Bach-flat (e.g. Ricci-flat) background



Properties of free CHS theory
• regularized total number of d.o.f. =0:
νtot =

∑∞
s=0 νs = 0 , νs = s(s+ 1) = 2, 6, ...

regularization:
∑∞

s=0 f(s) →
∑∞

s=0 f(s) e−ε(s+
1
2

)
∣∣∣
fin.

• equivalently, flat-space partition function is trivial:

Zs =
[

(det�s−1)s+1

(det�s)s

]1/2

= (Z0)νs , Z0 = (det�)−1/2

Z =
∏∞

s=0(Z0)νs = (Z0)νtot = 1

• with same regularization: ZCHS(S4)=1,
∑∞

s=1 as = 0

consistent with relation between
1-loop Z of massless HS in AdS5 and Z of CHS on S4

[Giombi, Klebanov, Pufu, Safdi, Tarnopolsky 13; AT 13; Beccaria, Bekaert, AT 14]

• this definition of
∑

s should be consistent
with underlying HS symmetry of CHS theory



“Quantized particle” approach: symmetries
start with quantized particle in external fields [Segal 02]

general phase space Hamiltonian H(x, p)

H(x, p) =
∞∑
s=0

hµ1...µs(x) pµ1 ...pµs = h0(x) + hµν(x)pµpν + ...

*-product of Weyl symbols→ product of operators

∗ = exp
[

1

2
(
←
∂

∂xµ
∂

∂pµ
−

←
∂

∂pµ

∂

∂xµ
)
]

Symmetries: canonical transfs of constraint H(x, p) = 0

δH = [H, ε(x, p)]∗ + {H,α(x, p)}∗

gradient ε and algebraic α



• Quantum theory in x representation: ĤΦ(x) = 0

action for scalar field in non-trivial background H = {hs}:

S[Φ, H] =

∫
d4x Φ∗(x) Ĥ(x, ∂x) Φ(x)

• Invariant under the gauge transformations of Φ and hs

δΦ = −(ε̂+ α̂)Φ , δH = [H, ε(x, p)]∗ + {H,α(x, p)}∗

• Choice of vacuum expansion point:
H = Hvac + h(x, p), h(x, p) =

∑∞
s=0 h

µ1...µs(x) pµ1 ...pµs

S =

∫
d4x
[
Φ∗(x) Ĥvac Φ(x) +

∑
s

hµ1...µs(x)Jµ1...µs(Φ)
]

• Hvac = 1
2
ηµνpµpν



ε-gauge inv → ∂µ1Jµ1...µs = 0 if �Φ = 0

α-gauge inv → ηµ1µ2Jµ1µ2...µs − 1
2
�Jµ3...µs = 0

• after redefinition Js→ conserved traceless Noether currents
corresponding to symmetries of �Φ = 0 in Rd [Eastwood 02]

• their algebra = HS algebra of conformal spins in Rd

= HS algebra of massless spins inAdSd+1 [Vasiliev, Fradkin, Linetsky]

Action for hs: [AT 02; Segal 02; Bekaert, Mourad, Joung 10]

• log ΛUV term of scalar 1-loop action log det Ĥ

S[h] = “Seeley coeff”= t0 term in Tr e−tĤ
∣∣∣
t→0

, H = Hvac +h

• inherits CHS symm: δh = [H, ε(x, p)]∗ + {H,α(x, p)}∗
→ δhµ1...µs = ∂(µ1εµ2...µs) + η(µ1µ2αµ3...µs) +O(h)

• this construction can be generalized [Grigoriev, AT 16]

to curved vacuum expansion point: Hvac = 1
2
gµν(x)pµpν



CHS as induced theory: AdS/CFT
start with free U(N) scalar CFT

∫
d4xΦ∗i∂

2Φi

• tower of on-shell conserved traceless currents
Js = Φ∗i Js Φi ∼ Φ∗i∂(µ1 ...∂µs)Φi + ...

• implies infinite tower of conserved charges:
symmetries of �Φ = 0→ HS symmetry [Eastwood, Vasiliev]

• generating functional for correlators of currents:
add hsJs and integrate out Φi

Γ[h] = N log det
(
− ∂2 +

∑
s hs Js

)
, Js ∼ ∂s

• source fields = CHS fields hs: ∆(hs) = 2− s
• CHS theory: gauge theory for
HS symmetries (conf Killing tensors) of �Φ = 0

δhµ1···µs = ∂(µ1εµ2···µs) + η(µ1µ2 αµ3···µs) +O(h)

(cf. Weyl gravity as “gauge theory of conformal group”)



• vectorial AdS/CFT: [Klebanov, Polyakov 02]

Js dual to massless HS fields in AdSd+1

Γ[h] should follow from Vasiliev-type theory in AdSd+1

upon integrating over AdSd+1 fields φs with Dirichlet b.c.

e−Γ[h] =

∫
φs

∣∣
∂AdS

=hs

[dφs] exp
(
−NSHS[φ]

)

• full Γ[h] is non-local and does not have CHS symmetry
but its log divergent part is local and invariant:

Γ[h] → NSCHS[h] log ΛUV + ...

NSHS[φ]
∣∣∣
on−shell

→ NSCHS[h] log ΛIR + ...



• CHS action as induced action:

SCHS ∼ log det ∆(h)
∣∣∣
log ΛUV

, ∆(h) = −∂2 +
∑
s

Jshs

• familiar low-spin cases (s = 0, 1, 2) in covariant form

L =
√
g
[
gµνDµΦ∗DνΦ+(1

6
R+h′0)Φ∗Φ

]
, Dµ = ∂µ+ i

2
h′µ

L = ∂µΦ∗∂µΦ +
∑

s hsΦ
∗JsΦ

= ∂µΦ∗∂µΦ + h0Φ∗Φ + ihµΦ∗∂µΦ + 1
2
hµν∂µΦ∗∂νΦ + ...

by local field redefinition (h′µν ≡ gµν − ηµν)

h′0 = h0 + 1
4
hµh

µ + 1
96

(∂λhµν∂
λhµν + ...) + ...

h′µ = hµ + 1
2
hµνh

ν + 1
4
hµνh

νλhλ + ..., h′µν = 1
2
hµν + 1

4
hµλh

λ
ν + ...

log divergent part of scalar log det

S[h′0, h
′
1, h
′
2] =

∫
d4x
√
g
(
h′20 − 1

24
F ′2µν + 1

60
C2
µνλρ

)



Computing CHS action as induced action
[Beccaria, Nakach, AT 16]

• 2-, 3- and 4-point vertices in CHS action
from UV pole part of scalar loop integrals with Js insertions
• same as local limit of correlators of currents
< Js1(x1)....Jsn(xn) >

∣∣
xi→x

• coupling of external CHS fields to complex scalar

L = −∂µΦ∗ ∂µΦ +
∞∑
s=0

Jµ(s) h
µ(s) , Jµ(s) ≡ Jµ1...µs

Jµ(s)(x) = is 2s

(2s)!

s∑
k=0

(
s
k

)( s+k−1
2
s

)
G

(k)
µ(s)(x)

G
(k)
µ(s)(x) = (∂ − ∂′)µ(k)(∂ + ∂′)µ(s−k)Φ(x) Φ∗(x′)

∣∣∣∣
x=x′



S =
∫
d4x
(∑

s hs∂
2shs +

∑
si
∂s1+s2+s3−2hs1hs2hs3

+
∑

si
∂s1+s2+s3+s4−4hs1hs2hs3hs4 + ...

)
• kinetic term:

k

k+p

h(p) h(-p)
=
∫

ddk
(2π)d

N(k,p)
k2 (k+p)2

1
ε

= 1
d−4

UV pole part (for TT field hs):

S2 = 1
2s (2s+1)!

∫
d4xhµ(s)�

s hµ(s)



• cubic vertex: pole part of

h(p1)

k

k+p1

k+p1+p2

h(p2)

h(-p1-p2)

example: 1-1-s

Vµνρ(s) =
∫

ddk
(2π)d

kµ(k+p1)ν(k+p1+p2)ρ(s)
k2(k+p1)2(k+p1+p2)2

∣∣∣
1
ε

part

S3(1, 1, s) = 1
(s+2)!

∫
d4x
[
∂ρ(s)hµh

µhρ(s) − 2hµ ∂
µ ∂ρ(s−1) hν h

νρ(s−1)

− s
2
∂ρ(s−2)�hµhνhµνρ(s−2) − s

2
∂ρ(s−2)hµ�hνhµνρ(s−2)

− ∂λ∂ρ(s−2)hµ∂λhνhµνρ(s−2)

]



e.g. 1-1-2 is like in Maxwell
∫
d4x
√
g gµνgλρFµλFµρ

S3(1, 1, 2) = 1
24

∫
d4x
[
∂ρhµ ∂σh

µhρσ − 2∂ρhµ ∂
µ hν h

νρ

+ 2hµ�hνhµν + ∂λh
µ∂λhνhµν

]
• quartic vertex:
e.g. 4-vector contact term from pole part of diagram

µ ν

ρσ

1
16

∫
d4x(hµh

µ)2 combining into
∫
d4x(h0 + 1

4
hµh

µ)2:
contribution to 1-1-1-1 scattering cancels against h0 exchange
• similarly for 2-2-s and 2-2-2-2 vertices, etc.



S-matrix of CHS theory in flat vacuum
[Beccaria, Nakach, AT 16]

• compute tree-level CHS 4-point amplitudes A4

for external states = massless (�hs = 0) modes in flat space
• A4 turns out to be zero after summation
over all spin s intermediate states
• this appears to be a consequence of CHS global symmetry

first illustrate this on simplest example:
scattering of external scalars via exchange of
infinite tower of CHS fields



Scalar scattering via conformal HS exchange
[Joung, Nakach, AT 15]

1

2 4

3 1

2 4

3 1

2 4

3

S[Φ, h] =

∫
d4x
[
Φ∗∂2Φ +

∞∑
s=0

hs Js(Φ)
]

+ S[h]

S[h] =
1

g2

∞∑
s=0

∫
hs Ps∂

2s hs +O(h3)

• h0 coupled to Φ∗Φ; hµ to iΦ∗∂µΦ + c.c.; hµν to Tµν , etc.
• hs exchange with propagator ∼ 1

p2s
and ps in the vertices:

scale invariance, no dimensional parameters



Four-scalar tree-level scattering amplitude
t-channel amplitude

A(t)(s, t, u) = g2F ( s−u
s+u

) , F (z) ≡
∞∑
s=0

(s+ 1
2
)Ps(z)

s, t, u are Mandelstam variables: s + t + u = 0

Ps(z) – Legendre polynomial
• amplitude is scale-invariant: depends on ratios of s, t, u
• summing over spins:∑∞

s=0 f(s)→
∑∞

s=0 f(s) e−ε(s+
1
2

)
∣∣∣
ε→0, fin

one finds that amplitude is δ-function in phase space

F (z) = δ(z − 1)



Total amplitude: sum of channels

AΦΦ→ΦΦ = g2
[
δ( s

t
) + δ( s

u
)
]

in c.o.m. frame ~p1 + ~p2 = 0 = ~p3 + ~p4

scattering angle: s
t

= −(sin2 θ
2
)−1, s

u
= −(cos2 θ

2
)−1

arguments of delta-functions never vanish for real θ

AΦΦ→ΦΦ = 0

AΦΦ∗→ΦΦ∗ = g2

2

[
δ(u

t
) + δ(u

s
)
]

= g2

2

[
δ(cot2 θ

2
)− δ(cos2 θ

2
)
]

t-channel and s-channel contributions cancel each other

AΦΦ∗→ΦΦ∗ = 0

thus individual spin s exchange contributions are nontrivial
but total amplitude =0



• underlying HS symmetry constrains the S-matrix
A4 = 0 is implied by global part of CHS gauge symmetry:
conformal group generators plus higher spin generators
• in particular: “hyper-translations”

δΦ = εm1....mr∂m1 ...∂mrΦ

fix A4(s, t, u) = k1(t, u) δ(s) + k2(s, u) δ(t) + k3(t, s) δ(u)

• scale invariance: A4(λ2 s, λ2 t, λ2 u) = A4(s, t, u)

• solution consistent with crossing and scaling symmetry
A4(s, t, u) = 0

? special prescription for summation over s
with which tree-level amplitude vanishes
is thus consistent with underlying global CHS symmetry



Scattering of conformal higher spin fields
[Beccaria, Nakach, AT 16]

• s = 1 case is standard vector but for s> 2

higher-derivative �s kinetic term: non-unitary theory

• definition of S-matrix: amputated Green’s functions
computed with full CHS vertices and internal propagators
but with particular – massless spin s – asymptotic states
[e.g. for s = 2: Weyl graviton with 6 d.o.f. – but choose
only standard helicity ±2 gravitons as asymptotic states ]



CHS 4-particle tree level amplitude
helicities (λ1, λ2, λ3, λ4) and s, t, u (p2

i = 0 for legs)
exchange diagrams

1

2 4

3 1

2 4

3 1

2 4

3

s = 1 scattering: 11→ 11

spin s exchange: two 1-1-s vertices
and TT spin s propagator (pρ(s) ≡ pρ1 ...pρs)

Vαβρ(s)(p, q) =
1

(s+ 2)!

{
ηαβ
[
pρ(s) + qρ(s)

]
− ηαρ1pβpρ2 . . . pρs + ηβρ1qαpρ2 . . . pρs − ηβρ1qαqρ2 . . . qρs + ηαρ1pβqρ2 . . . qρs

− ηαρ1ηβρ2 pρ3 . . . pρs p · q − ηαρ1ηβρ2 qρ3 . . . qρs p · q
}



• s = 2 exchange (�−2):
same as in conformal supergravity (L = −F 2 + C2 + ...)
only MHV are non-zero ( ++++, +++-,... =0 )

λ A
(2)
s A

(2)
t A

(2)
u

±±∓∓ 0
5

48

s2

t2
5

48

s2

u2

±∓∓± 5

48

u2

s2
5

48

u2

t2
0

• s = 4 exchange (�−4):
again only MHV are non-zero:

λ A
(4)
s A

(4)
t A

(4)
u

±±∓∓ 0
s2 (28 s2 + 42 s t + 15 t2)

80 t4
s2 (28 s2 + 42 s u + 15 u2)

80 u4

±∓∓± u2 (28 u2 + 42 s u + 15 s2)
80 s4

u2 (28 u2 + 42 t u + 15 u2)

80 t4
0



• General spin s exchange 11→11 amplitudes (6= 0)

A
(s)
t (±±∓∓) = cs

( s
t

)s
Ps
( t

s
)
, A(s)

u (±±∓∓) = cs
( s

u
)s

Ps
(u

s
)
,

A(s)
s (±∓∓±) = cs

(u
s
)s

Ps
( s

u
)
, A

(s)
t (±∓∓±) = cs

(u
t

)s
Ps
( t

u
)

cs = 2 s+1
2 (s−1) s (s+1) (s+2)

Ps(x) = xs−2 P
(4,0)
s−2

(
x+2
x

)
, order s−2 , s = 2, 4, 6, . . .

P
(a,b)
n (x) = Jacobi polynomials

Ps(x) =
∑s

j=2
1

(j−2)! (j+2)!
(s+j)!
(s−j)! x

s−j ∼ xs−2
2F1

(
2− s, s+ 3, 5;− 1

x

)



Sum over spins
total + +−− amplitude: t + u-channel

A(s) = cs
[(

s
t

)s
Ps

(
t
s

)
+
(

s
u

)s
Ps

(
u
s

)]
A(s) = σs(x) + σs(−1− x), σs(x) = cs x

−s Ps(x) , x =
t

s

• use generating function for Jacobi polynomials P (4,0)
s−2∑∞

s=2 x
−s Ps(x) zs−2 = 1

x2
16√

z2− 2z(x+2)
x

+1
(√

z2− 2z(z+2)
z

+1−z+1
)4

σ(x) =
∑∞

s=2,4,6,... σs(x) = limz→1

∑∞
s=2,4,6,...cs x

−s Ps(x) zs−2

= 1
8

[
− 2x+ 2 (x+ 1)x log

(
1
x

+ 1
)
− 1
]
.

• total amplitude is then zero as in the scalar scattering case

A(x) =
∞∑

s=2,4,6,...

A(s)(x) = σ(x) + σ(−1− x) = 0



Generalization to s > 1 external states
Why Jacobi polynomials appear?
compare to partial wave expansion in terms
of intermediate angular momentum J states [Jacob, Wick 1959]

A{λi} = R{λi}(θ)
∑
J

(J + 1
2
)F

(J)
{λi}(s) P

(|λ+µ|,|λ−µ|)
J−M (cos θ)

λ = λ1 − λ2, µ = λ3 − λ4, M = max(|λ|, |µ|)

R{λi}(θ) =
(

cos θ
2

)|λ+µ| (
sin θ

2

)|λ−µ|
=
(
− u

s

) 1
2
|λ+µ| (− t

s

) 1
2
|λ−µ|

• J-th partial wave as exchange of TT spin J CHS field:
for massive field (m2 ∼ s)
(�+m2)ψm1...mJ = 0, ∂m1ψm1...mJ = ψm1

m1...mJ
= 0



• scale invariance controls how F depends on s

e.g., for dim 1 external particles F
(J)
{λi}(s) = const

• general prediction for Jacob-Wick coefficient for scattering
of CHS fields of dim ∆i = 2− |λi| (no dim6= 0 parameters!)

F
(J)
{λi}(s) = kλ,µ

[J−max(|λ|,|µ|)]!
[J+min(|λ|,|µ|)]! sr , r = 2− 1

2

∑4
i=1 ∆i

Special cases (J = s):
• 00→ 00

A0,0;0,0(s, θ) =
∑

s=0,2,...

(s+ 1
2
)F

(s)
0 P (0,0)

s (cos θ)

• +1 + 1→ +1 + 1

t-channel (cos θ = −1− 2 s
t
)

A++;++(θ) = (sin θ
2
)−4

∑
s=2,4,...

(s+ 1
2
)F

(s)
+ P

(4,0)
s−2 (cos θ)



Comments on Weyl gravity
L = C2

mknl ∼ (∂k∂lhmn + ...)2

• can choose TT gauge: hmm = 0, ∂mhmn = 0

free eq: �2hmn = 0 solved by [Stelle 78; Riegert 84]

hmn = h
(1)
mn + h

(2)
mn = (amn + bmnukx

k)eip·x + c.c.

p2 = 0 , u2 = −1 , u · p 6= 0 , amm = bmm = 0

• h(1)
mn – spin 2 and spin 1 massless modes;

h
(2)
mn – spin 2 ghost mode – grows in time, negative energy

residual gauge freedom: pm = (p, 0, 0, p), um = (1, 0, 0, 0)

a11 + a22 = b11 + b22 = 0 , am3 = bm3 = bm0 = 0

• modes: 2+2+2 =6 dynamical d.o.f.
(a11 ± ia12)eip·x: physical λ = ±2 massless tensor
(a01 ± ia02)eip·x: λ = ±1 massless vector
(b11 ± ib12)x0eip·x: ghost λ = ±2 massless tensor



• Higher-derivative actions admit 2-derivative forms
φ�2φ → ψ�φ− ψ2

R2
mn − 1

3
R2 → umnRmn − umnumn + ...

Weyl gravity: in terms of hmn, h̃mn, hm [Metsaev 07]

• can define standard scattering S-matrix (with usual LSZ rules)
if asymptotic states are physical massless spin 2 gravitons
• intermediate states – all modes – effective 1

p4
propagator:

non-unitary theory
• 4-graviton amplitude in Weyl theory: found to be 0
e.g. from 4-graviton amplitude in L = εR + C2

in the limit ε→ 0 (propagator 1
εp2+p4

→ 1
p4

)



similar result from other approaches:
• start with Weyl gravity in dS4 or AdS4 space (Λ 6= 0)
Neumann boundary condition: selects the Einstein graviton mode
then S-matrix is Λ× (Einstein S-matrix) [Maldacena 11]

Λ→ 0 gives trivial S-matrix of Weyl theory in flat 4d space
[Adamo, Mason 13]

• start with twistor superstring theory [Berkowits, Witten 04]

and compute 4-graviton S-matrix [Dolan, Ihry 08]

result is non-zero but only due to presence of extra
non-minimal scalar coupling in α′ → 0 limit of twistor string:
(1 + φ+ ...)C2

mnkl + φ�2φ → C2
mnkl�

−2C2
abcd



s = 2 scattering via CHS exchange
• +2+2→ +2+2: contribution from from s > 2 exchanges:
t-channel ++→ ++ or + +−−MHV

A++;++(t, θ) = s4

t4

∑
s=4,6,...

(s+ 1
2
)F(s)t2 P

(8,0)
s−4 (cos θ)

explicit computation gives for full (t + u- channel) amplitude

A(s) = cs s2
[ (

s
t

)s−2
Ps

(
t
s

)
+
(

s
u

)s−2
Ps

(
u
s

)]
Ps(x) = xs−2 P

(8,0)
s−4

(
x+2
x

)
, cs = 9

32
2s+1

(s−3)...(s+4)

• sum over spins:

σ(x) =
∑∞

s=4,6,... σs(x) = limz→1

∑∞
s=4,6,... cs x

−(s−2) Ps(x) zs−4

= 1
4320

[
60 (x+1)3 x3 log

(
1
x
+ 1
)
−60x5−150x4−110x3−15x2+3x−1

]



• total s > 2 exchange vanishes: t- and u- channels cancel
σ(x) + σ(−1− x) = 0
• contribution of s = 0, 2 exchanges + 2222 contact vertex

A0,s
++;++ = s2

18432
, A0,t

++;++ = t2 u4

2048 s4
, A0,u

++;++ = t4 u2

2048 s4
,

A2,s
++;++ = s2+6 s t+6 t2

92160
, A2,t

++;++ = u2(2 s4−10 s3 t+33 s2 t2−24 s t3+3 t4)

30720 s4

A2,u
++;++ = t2 (2 s4−10 s3 u+33 s2 u2−24 s u3+3 u4)

30720 s4

Acontact
++;++ = − s6−s5 t+26 s4 t2+63 s3 t3+54 s2 t4+27 s t5+9 t6

7680 s4

non-trivial cancellation: total 2222 amplitude =0
A0,s + A0,t + A0,u + A2,s + A2,t + A2,u + Acontact = 0

• similar cancellation checked for 1122 amplitude
• conjecture: full massless-state CHS S-matrix is trivial
• should follow again from underlying global CHS symmetry
HS charges → triviality of S-matrix (cf. Coleman-Mandula)



CHS symmetries
h(x, p) ≡ hµ1...µs(x) pµ1 ...pµs

f(x, p) ? g(x, p) = f(x, p) e
i
2

(
←
∂x·
→
∂p−

←
∂p·
→
∂x) g(x, p)

• diff and algebraic symm of scalar-CHS system [Segal 02]

δεh(x, p) = (p · ∂x)ε(x, p)− i
2

[
h(x, p), ε(x, p)

]
?

δαh(x, p) = (p2 − 1
4
∂2
x)α(x, p)− 1

2

{
h(x, p), α(x, p)

}
?

δε+iαΦ(x) = e−
i
2
∂x′ ·∂p

[
ε(x, p) + iα(x, p)

]
Φ(x′)

∣∣
x=x′, p=0

δh = δ0h+ δ1h , δ0hs ∼ ∂εs−1 + ηαs−2

• global symmetry from: δ1h ∼ ε ∂h+ ∂ε h+ ... for special ε
• spin s field transforms in terms of s′ < s fields

δ1h0 ∼
∑

k ε
µ(k)∂µ(k)h0 , δ1h

ρ ∼
∑

k

[
ερµ(k)∂µ(k)h0 + εµ(k)∂µ(k)h

ρ
]

δ1h
ρσ ∼

∑
k

[
ερσµ(k)∂µ(k)h0 + εµ(k)(ρ∂µ(k)h

σ) + 1
2!k!
εµ(k)∂µ(k)h

ρσ
]

• constraints on amplitudes as in external scalar scattering case



CHS fields in curved background
Expansion near vacuum with non-trivial gµν = ηµν + hµν :
•Weyl-invariant quadratic action known for s = 1 and s = 2

• s > 2: kinetic operator Os = ∇2s + ... – diff and Weyl inv
but to be consistent with CHS gauge symm.:
gµν should solve Bach eqs (∇µ∇ν + 1

2
Rµν)Cλµνρ = 0

• Os simplifies (factorizes) on conf-flat background:
explicitly known on S4 or AdS4 [AT 13; Metsaev 14; Nutma,Taronna 14]

and S1 × S3 [Bekaert, Beccaria, AT 14]

• quantum consistency? anomalies?
conformal→Weyl symmetry: g′mn = λ2(x)gmn

Weyl anomaly: Tmm = −aR∗R∗ + cC2

Weyl gravity (s = 2) is anomalous: a2 = 87
20
, c2 = 199

30



• one way to cancel anomaly – add fermions: supersymmetry
N = 4 conformal supergravity + 4 N = 4 Maxwell multiplets
is anomaly free: a = c = 0 [Fradkin, AT 82]

• alternative: sum over infinite number of CHS contributions

• CHS fields with s > 2:
to find as: enough to know partition function on S4

to find cs: need to know Os on Ricci-flat background

CHS partition function on S4

•Maxwell theory on S4 (R = 12, r = 1)

Z1 =
[

det ∆0(0)
det ∆1⊥(3)

]1/2

, ∆s(M
2) ≡ −∇2

s +M2



•Weyl graviton: C2 → 1
2
h∆2⊥(2) ∆2⊥(4)h

Z2 =
[

det ∆1⊥(−3)
det ∆2⊥(2)

]1/2 [
det ∆0(−4)
det ∆2⊥(4)

]1/2

• CHS operator: factorization into “partially-massless”

Os = ∇2s + ... =
s−1∏
k=0

∆s⊥(M2
s,k) , M2

s,k = 2 + s− k − k2

• get simple generalization of flat-space Z

Z(S4) =
∞∏
s=1

Zs, Zs =
s−1∏
k=0

Zs,k , Zs,k =
[

det ∆k⊥(M2
k,s)

det ∆s⊥(M2
s,k)

]1/2

lnZ = −B4 ln ΛUV + ..., B4 =
∫
d4x
√
g b4

∣∣∣
S4

= −as



• summing contributions of 2nd order operators [AT 13]

as =
∑s−1

k=0

(
a[∆s⊥(2 + s− k − k2)]− a[∆k⊥(2 + k − s− s2)]

)
= 1

180
ν2(14ν + 3) , ν = s(s+ 1)

• same coefficient found via massless HS AdS5 relation
[Giombi, Klebanov, Pufu, Safdi, Tarnapolsky 13]

ln Z
(−)
s

Z
(+)
s

= lnZs = as ln ΛIR + ..., vol(AdS5) ∼ ln ΛIR

• with e−ε(s+
1
2

) regularization prescription for
∑

s

consistent with CHS symmetries get
∞∑
s=1

as = 0

• finite parts cancel too: Z(S4) = 1

[Giombi, Klebanov, Safdi 14; Beccaria, AT 15]



Ricci-flat background
•Maxwell vector: (∆1)mn = −(∇2)mn +Rmn, ∆0 = −∇2

Z1 =
[(det ∆0)2

det ∆1

]1/2

•Weyl graviton: 4-th order operator factorizes:
square of Einstein op. (∆2)mn,kl = −(∇2)mn,kl − 2Cmknl

Z2 =
[(det ∆1)3

(det ∆2)2

]1/2

• if assume that factorization of Os true also for s > 2:
s factors of “massless” spin s 2nd-order operator

Zs =
[(det ∆s−1)s+1

(det ∆s)s

]1/2

, ∆s = −∇2 − s(s− 1)C....

same structure as in flat space but with covariant operators ∆s



• from Seeley coefficients for ∆s get [AT 13]

cs − as = 1
720
νs(15ν2

s − 45νs + 4) , νs = s(s+ 1)

with same summation over spins prescription∑∞
s=1(cs − as) = 0

• then a- and c- anomalies or UV∞ appear to vanish:
suggests novel mechanism of UV finiteness due to
summation of∞ number of bosonic fields (cf. string theory)

•
∑

s cs = 0 remains a conjecture:
• Os>2 does not factorize on Rmn = 0 backgr [Nutma, Taronna 14]

but obstruction to factorization ∼ ∇.C.... should not change cs
• CHS action does not diagonalize on Rmn = 0 backgr:
mixing terms [Grigoriev, AT 16] contribute to cs [Beccaria, AT 17]



Curved space background: spin 1 – 3 mixing
[Beccaria, AT 17]

• flat space:
S0 =

∫
d4xΦ∗ ∂2 Φ, ∂a1Ja1···as = 0, Ja1a1···as = 0

Ja = iΦ∗ ∂a Φ + c.c.

Jab = Φ∗ ∂a∂b Φ− 2 ∂aΦ
∗ ∂bΦ + 1

2
ηab ∂

cΦ∗ ∂cΦ + c.c.

Jabc = i
[
Φ∗∂a∂b∂cΦ−9∂(aΦ

∗∂b∂c)Φ+3η(ab ∂
pΦ∗∂p∂c)Φ

]
+c.c.

adding interaction with background fields:
Sint =

∑
s

∫
d4xha1···as(x) Ja1···as

inv under δha1···as = ∂(a1 εa2···as)+η(a1a2 αa3···as) mod ∂2Φ terms
extended off shell if transform Φ and add terms linear in hs
• curved space:
S0 =

∫
d4x
√
gΦ∗

(
−∇2 + 1

6
R
)

Φ

Sint =
∑

s

∫
d4x
√
g ha1···as(x) Ja1···as



• require ∇a1Ja1···as = 0, Ja1a1···as = 0

then will have inv under backgr-cov gauge transfs
δha1···as = ∇(a1 εa2···as) + g(a1a2 αa3···as)
• require also Weyl inv w.r.t. backgr metric: w = w(x)

δwgab = 2w gab, δwΦ = −wΦ, δwha1···as = 2 (s−1)w ha1···as
• such covariant currents exist for s = 1 and s = 2:
Ja = i

(
Φ∗∇aΦ−∇aΦ

∗Φ
)
, ∇aJa = 0

Jab = 6√
g
δS0

δgab
= (Φ∗∇a∇b Φ− 2∇aΦ

∗∇bΦ + c.c)

+ gab∇cΦ
∗∇c Φ− (Rab − 1

6
gabR)Φ∗Φ

• but s> 3 cases are different:
∇a1Ja1···as 6= 0 – given by terms with lower-rank Js
• s = 3: unique traceless current with Weyl-inv Sint =

∫
h3J3:



Jabc = i
[
Φ∗∇(a∇b∇c) Φ−9∇(a Φ∗∇b∇c) Φ+3 g(ab∇p Φ∗∇p∇c) Φ

+2g(ab Φ∗∇2∇c) Φ+1
2
g(abRΦ∗∇c) Φ−7R(ab Φ∗∇c)Φ

]
+c.c.

• J3 conserved only in conformally-flat background:

∇a J
abc = 8Cpbcq∇(pJq) + 32∇(pC

pbcqJq)

• 1+3 action Sint =
∫
d4x
√
g(haJa + habcJabc)

is invariant under δha = ∂aε and combined transformations

δhabc = ∇(a εbc) , δha = −8Cabcd∇d εbc + 24∇dCabcd ε
bc

• to make invariance manifest (off-shell):
need also to transform Φ and add h1h3 + ... terms in Sint
(manifest spin 1 invariance: ∇aΦ→ DaΦ = ∇aΦ + ihaΦ)

• induced action inv under h-gauge transf
e−Γ(h) =

∫
dΦ e−S(Φ,h;g), Γ(h) = S(h) log Λ

UV
+ . . .



• non-linear hshs′ + ... terms produce contact terms
in generating functional for correlators of currents:
absent in correlators 〈J(x1)...J(xn)〉 at separated points
but contributing to local UV singular part – to induced action
• need contact terms to get e.g. covariant spin 1 + 2 action
S =

∫
d4x
√
g
(
− 1

12
F 2
ab + 1

120
C2
abcd

)
• expansion near gab:∫
d4x
√
g C2

abcd →
∫
d4x
√
g
[
Bab(g)hab + habOabcd(g)hcd + ...

]
O4 = ∇4 + ... is gauge-inv δhab = ∇(aεb) if
Bab = (∇p∇q + 1

2
Rpq)Capqb = 0

• expansion of S in hs: manifest reparam and Weyl inv
S(g, h) = S(0)(g) + S(1)(g, h) + S(2)(g, h) + . . .

S(1) =
∫
B(s)(g) h(s) , S(2) =

∫
h(s) Os,s′(g) h(s′)

• gauge invariance if 〈J(s)〉UV
∼ B(s)(g)=0

Weyl-inv +∇aBa... = 0→ true for Bach-flat g [Grigoriev, AT]



Quadratic part of spin 1 + 3 induced action
S(2) = S11 + S13 + S33

L11 = ha〈Ja Jb〉UV
hb = −1

6
F 2
ab

L33 = h3O6 h3: O6 from 〈Jabc Jpqr〉UV
+ contact term

L13 = ha 〈Ja Jbcd〉UV
hbcd + contact term

final result for the mixing term:
L13 = 8F ab

[
Ca

cdp∇phbcd +
(
∇aR

cd − ∇cRd
a

)
hbcd

]
Weyl-inv; vanishes for conformally-flat Einstein space gab
• in Bach-flat case: e.g. Einstein background Rab = 1

4
Rgab

S(2) =
∫
d4x
√
g
[
− 1

12
F 2
ab + 8CabcdFap∇dh

p
bc + h3O6 h3

]
• invariant under spin 3 gauge transformations

δhabc = ∇(a εbc) , δha = −8Cabcp∇p εbc

• εh3 term in variation of S13 is order CC:
h3O6 h3 inv by itself only to 1st order in C [Nutma, Taronna 14]



linear in curvature terms in O6 can be found from UV part of
h2h3h3 1-loop scalar diagrams: 〈Jabc JpqrJmn〉UV

+ contact terms

Spin 1–3 mixing term contribution to UV divergences
Γ = − logZ = − log Λ

UV

∫
d4x
√
g b4(x) + finite

b4 = −aR∗R∗ + cC2

• conf flat background: no mixing terms, Os factorize and get
as = 1

720
νs (3 νs + 14 ν2

s ) , νs ≡ s(s+ 1)



• ignoring mixings and assuming that factorization holds
also in Ricci-flat case [AT 13]

cs ≡ css = 1
720

νs (29 ν2
s − 42 νs + 4)

• need to add mixing terms contribution to C2 div:
example of 1–3 sector: c1 = 1

10
, c3 = 919

15

L = h1(∇2 + ...)h1 + C∇h1∇h3 + h3(∇6 + ...)h3

1-loop diagram gives non-trivial contribution:
LUV = c13CabcdC

abcd log ΛUV , c13 = 392
5

• need to find all mixing terms to decide if
∑

s,s′ css′ = 0



Conclusions

• theories with infinite number of massless higher spin fields:
importance of definition of quantum theory
consistent with underlying symmetries

• remarkable simplifications due to large HS symmetry:
• 1-loop Z = 1 on R4 (

∑
s νs = 0) and S4 (

∑
s as = 0)

• vanishing of scattering amplitudes with CHS exchange:
triviality of S-matrix implied by conformal HS symmetry

• intricate structure of interacting induced CHS action
mixing terms in non-trivial background to be understood→
cancellation of c-anomalies

∑
s cs = 0 remains to be proved


