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Background Model and Setting of the Problem:

Signals are represented by N−dimensional source (column) vectors s ∈ RN .
The associated signal strength R is defined via the Euclidean norm as

R =
√

1
N (s, s).

By a (symmetric key) encryption of the source signal we understand a random
mapping s 7→ y ∈ RM known both to the sender and a recipient:

yk = Vk(s), k = 1, . . . ,M ,

where the collection of random functions V1(s), . . . , VM(s) represents an
encryption algorithm shared between the parties participating in the signal exchange.

Due to imperfect communication channels the recipients however get access to the
encrypted signals only in a corrupted form modified by an additive random noise,
i.e. z = y + b with the noise assumed to be normally distributed: b ∼ N (0, σ21M).
A natural parameter is then the ’bare’ noise-to-signal ratio (NSR) γ = σ2/R2.

The recipient’s aim is to reconstruct the source signal s from the knowledge of z.



Background Model and Setting of the Problem:

We consider the reconstruction problem under a few technical assumptions:

• The recipient is aware of the exact source signal strength R =
√

1
N (s, s), and

therefore can restrict the signal search to the feasibility set W given by
(N − 1)−dimensional sphere of the radius R

√
N .

• The random functions Vk(s) belong to the class of (smooth) isotropic mean-zero
Gaussian-distributed random fields on the sphere with the covariance structure
dependent only on the angle between the vectors:

〈Vk(x)Vl(s)〉 = δlkΦ
(

(x,s)
N

)
,

where the angular brackets 〈. . .〉 denote the expected values. As our basic
example we will consider the linear-quadratic family:

Vk(x) = (ak, x) + 1
2(x,J (k)x) ,

where ak ∼ N (0,
J2

1
N 1N), and the entries of N × N real symmetric GOE-

like random matrices J (k), k = 1, . . . ,M are mean-zero i.i.d. normal with the

variance J2
2

N2 . This results in the covariance of the form Φ (u) = J2
1 u+ 1

2J
2
2u

2.



Background Model and Setting of the Problem:

• We consider the input signal s through the reconstruction procedure as a fixed
vector, and then employ the Least-Square reconstruction scheme, which for a
given set of observations zk = Vk(s) + bk returns an estimate of the input signal
as:

x := Argminw

[∑M
k=1

(zk−Vk(w))2

2

]
, w ∈W ⊆ RN ,

where W is the sphere of feasible input signals. This scheme has the meaning of
the Maximum–A-Posteriori (MAP) estimator with a uniform prior distribution over
the sphere W.

• The quality of the reconstruction will be characterized via the ratio

pN := (x,s)
NR2 ∈ [0, 1] ,

where pN = 1 corresponds to a reconstruction without any macroscopic
distortion, whereas pN = 0 manifests impossibility to recover any information
from the originally encrypted signal.
Our goal: Evaluate pN for N � 1 as a function of the Noise-to-Signal ratio for a
given degree of redundancy µ = M/N > 1 and nonlinearity a = R2J2

2/J
2
1 .



Main Results for General Nonlinearity I:

Given the source signal strength R > 0 , and the redundancy µ = M/N > 1, the
mean value of the parameter pN characterising quality of the information recovery in
the Least-Square reconstruction scheme with the noise b ∼ N (0, σ21M) is given
asymptotically for N →∞ by

p∞ := limN→∞ 〈pN〉 = t
R ,

where the specific value of t ∈ [0, R] should be found in the framework of the
Parisi scheme of the Full Replica Symmetry Breaking (FRSB) by minimizing the
functional

E [ws(u);Q, v, t] = −

[
R2−t2−Q

v+
∫R2

R2−Qws(u) du
+
∫ R2

R2−Q
dq

v+
∫R2

q ws(u) du

]

+µ

[
σ2+Φ(R2)−2Φ(Rt)+Φ(R2−Q)

1+vΦ′(R2)+
∫R2

R2−Qws(u)Φ′(u) du
+
∫ R2

R2−Q
Φ′(q) dq

1+vΦ′(R2)+
∫R2

q ws(u)Φ′(u) du

]
,

over t, and maximizing it over all the variables v ≥ 0 and Q ∈ [0, R2] and over a
non-decreasing function ws(u) with the argument u ∈ [R2 −Q,R2].



Main Result for General Nonlinearity II:

• In a certain range of parameters (e.g. the redundancy and nonlinearity) the above
variational problem is solved by the Replica-Symmetric Ansatz Q = 0. In that
case for a given ’bare’ Noise-to-Signal ratio γ = σ2/R2 the quality parameter
p∞ = p ∈ [0, 1] is given by the solution of a single algebraic equation:

p2
(
γ + 2 Φ(R2)−Φ(R2p)

R2

)
= µ(1− p2)

[Φ′(R2p)]
2

Φ′(R2)
.

• For the alternative range of parameters the variational problem can be solved by
the FRSB Ansatz assuming the minimizer function ws(u) to be continuous and
non-decreasing for u ∈ [R2 − Q,R2]. In that case the value p∞ = p is given
by the solution of the system of a pair of algebraic equations in the variables
p ∈ [0, 1] and Q ∈ (0, R2]:

µ
[
Φ′(R2p)

]2 (
R2(1− p2)−Q)

)
= p2Φ′(R2 −Q)

[
R2γ + Φ(R2)− 2Φ(R2p) + Φ(R2 −Q)

]
and[

Φ′(R2 −Q)
]3
p2 = µ

[
Φ′(R2p)

]2 [
Φ′(R2 −Q)− Φ′′(R2 −Q)

(
R2(1− p2)−Q

)]
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Figure 1: Schematic Phase diagram in (a = J2
2/J

2
1 , µ = M/N) plane for Linear-Quadratic

encryptions. In the shaded region of parameters 1 < µ < (a2/3−a1/3+1)3

a replica symmetry must be

fully broken for some amplitude of the noise.



Reconstruction quality for a generic linear-quadratic encryptions:

20 40 60 80 100

0.2

0.4

0.6

0.8

1

γ̃

p

γ
˜
AT
(1)

γ
˜
AT
(2)

Q
˜

Figure 2: The quality parameter p as a function of the scaled noise-to-signal ratio γ̃ = σ2

R2J2
1

for a generic representative of Linear-Quadratic encryptions with the nonlinearity a = J2
2/J

2
1 = 8

and the redundancy µ = 2. In the interval of scaled noise-to-signal ratio γ̃(AT )
2 < γ̃ < γ̃

(AT )
2 the

replica symmetry is broken as signified by a non-zero values of the parameter Q̃ = Q/R2, plotted

as a green broken line. Finally, p∞ ∼ γ̃−1/2 as γ̃ →∞ as long as a <∞.



Reconstruction quality for purely quadratic encryptions a =∞:
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Figure 3: The quality parameter p as a function of the scaled noise-to-signal ratio γ̂ = σ2

J2
2R

4 for

purely quadratic encryptions and two different redundancies: µ = 2 (left) and µ = 4 (right).

There always exists a threshold value γ̂c(µ) such that p∞ = 0 for γ̂ > γ̂c(µ) making the

reconstruction impossible beyond some level of noise. The behaviour close to the threshold is given

by p∞ ∼ (γ̂c − γ̂)3/4 and is controlled by the replica symmetry breaking mechanism.

The blue broken curve is the continuation of the replica-symmetric solution in the region of Full RSB.



Remarks on the Method I:
Given the fixed signal s we interpret the cost/loss function

Hs(x) =
∑M
k=1

(bk+Vk(s)−Vk(x))2

2 ,

as an energy associated with a vector of N ’soft spins’ xT = (x1, . . . , xN), with
the configurations constrained to the sphere W of radius |x| = N

√
R. In this way

we can put the least square minimization problem in the context of spin glass-like
Statistical Mechanics after introducing the inverse temperature parameter β > 0,
and defining the partition function of the model as

Zβ =
∫
W e
−βHs(x)dx, dx =

∏N
i=1 dxi .

We then consider the Boltzmann-Gibbs weights πβ(x) = Z−1
β e−βHs(x) associated

with any configuration x on the sphere W. In the zero-temperature limit β →∞ the
weights πβ(x) concentrate on the set of globally minimal values of the cost function.
In particular, by considering〈

p
(β)
N

〉
:=
〈

1
Zβ

∫
W

(x, s)
NR2 e

−βHs(x)dx
〉
V,b

we aim to evaluating p∞ := limβ→∞ limN→∞

〈
p

(β)
N

〉
providing us with a measure

of the quality of the asymptotic signal reconstruction in our optimization problem.



Remarks on the Method II:

At the next step we employ the replica trick identity
〈
p

(β)
N

〉
= limn→0

〈
p

(β)
N,n

〉
,

where we defined〈
p

(β)
N,n

〉
=
∫
W . . .

∫
W

[
1
n

∑n
c=1

( xc, s)
NR2

] 〈
e−β

∑n
a=1Hs(xa)

〉 ∏n
a=1 dxa .

Using the Gaussian nature of V (x) entering to Hs(x) in a squared form and
exploiting its covariance structure one can show that〈

e−β
∑n
a=1Hs(xa)

〉
= [detG(x1, . . . , xn; s)]

−M/2
,

where we have introduced the (positive definite) n × n matrix G(x1, . . . , xn; s) with
entries

Gab(x1, . . . , xn; s)

= δab + β
[
σ2 + Φ(R2) + Φ

(
(xa,xb)
N

)
− Φ

(
( xa,s)
N

)
− Φ

(
(xb,s)
N

)]
.

Finally, one may notice that the integrand remains invariant under a simultaneous
change xa → Osxa for all a = 1, . . . , n where Os are all possible rotations around
the axis whose direction is given by the vector s. As a result, one can use the new
integration variables: the n× n matrix of scalar products Qab = (xa, xb) ≥ 0 and
the n-component vector t = (t1, . . . , tn) ∈ Rn of projections ta = (xa, s).



Summary:

We defined an encryption of a signal s ∈ RN as a random mapping s 7→ y ∈ RM known both

to the sender and a recipient. Given the encryption redundancy (ERP) µ = M/N ≥ 1 and the

signal strength parameter R =
√∑

i s
2
i/N , we consider the problem of reconstructing s from its

corrupted image z = y + b by the Least Square Scheme for a certain class of random Gaussian

mappings.

• We used the Parisi replica symmetry breaking scheme to evaluate the mean
overlap p∞ ∈ [0, 1] between the original signal and its recovered image for a
given noise-to-signal ratio γ as N → ∞. We explicitly analyzed the case of the
linear-quadratic family of random mappings.

When nonlinearity exceeds a certain threshold but redundancy is not yet too
big, the replica symmetry is necessarily broken in some interval of γ.
We show that encryptions with a nonvanishing linear component permit
reconstructions with for any µ > 1 and any γ < ∞, with p∞ ∼ γ−1/2 as
γ → ∞. In contrast, for the case of purely quadratic nonlinearity, for any µ > 1
there exists a threshold value γc(µ) such that p∞ = 0 for γ > γc(µ) making
the reconstruction impossible. The behaviour close to the threshold is given by
p∞ ∼ (γc−γ)3/4 and is controlled by the replica symmetry breaking mechanism.



• Open questions:

The problem is shown to be equivalent to finding the configuration of minimal
energy in a certain version of spherical spin glass model, with squared Gaussian
random interaction potential. It would be interesting and instructive, in particular,

– to develop rigorous approach to this type of landscapes beyond replicas, in
particular to study complexity associated with the stationary points/minima.
So far we managed to do it only for the special type of purely linear Least
Square schemes (with R. Tublin, in progress.)

– to study fluctuations in the overlap and/or in the depth of global minimum, etc.
– Analyze gradient search dynamics on the sphere.


