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Background Model and Setting of the Problem:

Signals are represented by N —dimensional source (column) vectors s € RY.
The associated signal strength R is defined via the Euclidean norm as

R=,/%(s,s).

By a (symmetric key) encryption of the source signal we understand a random
mapping s — y € RM known both to the sender and a recipient:

ykZVk(S), k=1,.... M,
where the collection of random functions Vi(s),...,Vy(s) represents an
encryption algorithm shared between the parties participating in the signal exchange.

Due to imperfect communication channels the recipients however get access to the
encrypted signals only in a corrupted form modified by an additive random noise,
i.e. z =y + b with the noise assumed to be normally distributed: b ~ A (0, 0%1,,).
A natural parameter is then the 'bare’ noise-to-signal ratio (NSR) v = 02/ R>.

The recipient’s aim is to reconstruct the source signal s from the knowledge of z.



Background Model and Setting of the Problem:

We consider the reconstruction problem under a few technical assumptions:

e The recipient is aware of the exact source signal strength R = \/% (s,s), and

therefore can restrict the signal search to the feasibility set W given by
(N — 1)—dimensional sphere of the radius Rv/N.

e The random functions Vi (s) belong to the class of (smooth) isotropic mean-zero
Gaussian-distributed random fields on the sphere with the covariance structure
dependent only on the angle between the vectors:

(Vi(x)Vi(s)) = o (%22) .

where the angular brackets (...) denote the expected values. As our basic
example we will consider the linear-quadratic family:

Vi(x) = (ag, x) + 3(x, TPx),

2
where a; ~ N(O,%lN), and the entries of N x N real symmetric GOE-
like random matrices 7).k = 1..... M are mean-zero i.i.d. normal with the
2

variance % This results in the covariance of the form @ (u) = J{ u + J3u?.



Background Model and Setting of the Problem:

We consider the input signal s through the reconstruction procedure as a fixed
vector, and then employ the Least-Square reconstruction scheme, which for a
given set of observations z;, = Vi (s) + b returns an estimate of the input signal
as:

2
X := Argminy leyzl (z"“_‘;’“(w» . weWCRY,

where W is the sphere of feasible input signals. This scheme has the meaning of
the Maximum—A-Posteriori (MAP) estimator with a uniform prior distribution over
the sphere W.

The quality of the reconstruction will be characterized via the ratio

— (%8)

PN ‘= N R2 S [07 1]7

where py = 1 corresponds to a reconstruction without any macroscopic
distortion, whereas py = 0 manifests impossibility to recover any information
from the originally encrypted signal.

Our goal: Evaluate py for N > 1 as a function of the Noise-to-Signal ratio for a
given degree of redundancy p = M /N > 1 and nonlinearity a = R%J2/J?.




Main Results for General Nonlinearity I:

Given the source signal strength R > 0, and the redundancy . = M /N > 1, the
mean value of the parameter p characterising quality of the information recovery in
the Least-Square reconstruction scheme with the noise b ~ N(0, 0%1,,) is given

asymptotically for N — oo by

Doo = lMN_00 (PN) = 5,

where the specific value of ¢ € |0, R] should be found in the framework of the
Parisi scheme of the Full Replica Symmetry Breaking (FRSB) by minimizing the
functional

2 2
gwsu;Qavat:_ =
[ ( ) ] [v+f]§22 wg(u) du f —Q —l—f ws(u) du]
iy o2 4+d(R%)—2®(Rt)+P(R*—Q) f 3’ (q) dgq
1—i—v<I>’(R2)—|—f£22_Q ws(u)P(u) du —< 1+v CID’(R2)+f ws(u)CI)’(u) du

over t, and maximizing it over all the variables v > 0 and Q € [0, R?] and over a
non-decreasing function w () with the argument u € [R? — Q, R?].



Main Result for General Nonlinearity II:

In a certain range of parameters (e.g. the redundancy and nonlinearity) the above
variational problem is solved by the Replica-Symmetric Ansatz () = 0. In that
case for a given 'bare’ Noise-to-Signal ratio v = o2/ R? the quality parameter
Poo = p € [0, 1] is given by the solution of a single algebraic equation:

2)_p(R? @' (R%p)]”
»? (v 1o R -B(R p>) = (1 — )l @/(Rg)]

e For the alternative range of parameters the variational problem can be solved by
the FRSB Ansatz assuming the minimizer function w,(u) to be continuous and
non-decreasing for u € [R? — @, R?]. In that case the value p,, = p is given
by the solution of the system of a pair of algebraic equations in the variables
p € [0,1] and Q € (0, R?]:

p [@(Rp)]” (R?(1 - p°) — Q))
= p’®'(R* — Q) [R*y + ®(R?) — 2®(R%p) + ®(R* — Q)]

and
[@'(R? — Q)] p? = u [®'(R?p)]” [®'(R? — Q) — ®"(R? — Q) (R*(1 — p°) — Q)]
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Figure 1: Schematic Phase diagram in (a = J3/J7,u = M/N) plane for Linear-Quadratic
2/3_,1/31y3
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encryptions. In the shaded region of parameters 1 < p < (a

replica symmetry must be
fully broken for some amplitude of the noise.



Reconstruction quality for a generic linear-quadratic encryptions:
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for a generic representative of Linear-Quadratic encryptions with the nonlinearity a = (]22/(]12 = 8

and the redundancy i = 2. In the interval of scaled noise-to-signal ratio &éAT) << %AT) the

replica symmetry is broken as signified by a non-zero values of the parameter Q = Q/RZ, plotted

as a green broken line. Finally, poo ~ 5~ 1/2

Figure 2: The quality parameter p as a function of the scaled noise-to-signal ratio 4 =

asy — oo aslongasa < oo.



Reconstruction quality for purely quadratic encryptions a = oc:
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Figure 3: The quality parameter p as a function of the scaled noise-to-signal ratio 4 = ﬁ for
2

purely quadratic encryptions and two different redundancies: yu = 2 (left) and u = 4 (right).

There always exists a threshold value 4.(p) such that po, = 0 for 4 > 4.(pn) making the
reconstruction impossible beyond some level of noise. The behaviour close to the threshold is given
bY Poo ~ (Fe — &)3/4 and is controlled by the replica symmetry breaking mechanism,

The blue broken curve is the continuation of the replica-symmetric solution in the region of Full RSB.



Remarks on the Method I:

Given the fixed signal s we interpret the cost/loss function

Ho(x) = oM | (ut Vi) =Vietx))”

Y

as an energy associated with a vector of N ’soft spins’ xI' = (z1,...,zy), with
the configurations constrained to the sphere W of radius |x| = N+v/R. In this way
we can put the least square minimization problem in the context of spin glass-like
Statistical Mechanics after introducing the inverse temperature parameter 5 > 0,
and defining the partition function of the model as

Zg = [ye PsWax,  dx =T, dx;.

We then consider the Boltzmann-Gibbs weights m3(x) = Z5 ‘e~ ?"s) associated
with any configuration x on the sphere W. In the zero-temperature limit 3 — oo the
weights 73(x) concentrate on the set of globally minimal values of the cost function.
In particular, by considering

() = (5 e )

V,b
we aim to evaluating p., = limg oo lImy 5 <p§€)> providing us with a measure

of the quality of the asymptotic signal reconstruction in our optimization problem.



Remarks on the Method lI:

At the next step we employ the replica trick identity < (5)> = lim,,_¢ <p§\é)n> :
where we defined

<p§\€)n> = Jw-- Jw {% D et %} <6_62 1HS(XG)> [To—1 dXa

Using the Gaussian nature of V(x) entering to Hs(x) in a squared form and
exploiting its covariance structure one can show that

<6_B >a=1 HS(Xa)> = [det G(x1, ..., Xn; 8)] M2,

where we have introduced the (positive definite) n x n matrix G(X1, ..., X,; §) with
entries

Gab(X1, ..., Xp; S)

= 0w+ B0 2+<I>(R2)+<I><(x“’xb>) o (22)) — o ()]

Finally, one may notice that the integrand remains invariant under a simultaneous
change x, — OsX, for alla = 1,...,n where Og are all possible rotations around
the axis whose direction is given by the vector s. As a result, one can use the new
integration variables: the n x n matrix of scalar products Q,, = (X4, X;) > 0 and
the n-component vector t = (¢4, ...,t,) € R™ of projections t, = (X,,s).



Summary:

We defined an encryption of a signal s € RY as a random mappings — y € R™ known both
to the sender and a recipient. Given the encryption redundancy (ERP) u = M /N > 1 and the

signal strength parameter R = \/ZZ sf/N, we consider the problem of reconstructing s from its
corrupted image z = y + b by the Least Square Scheme for a certain class of random Gaussian
mappings.

e We used the Parisi replica symmetry breaking scheme to evaluate the mean
overlap p», € [0, 1] between the original signal and its recovered image for a
given noise-to-signal ratio v as N — oco. We explicitly analyzed the case of the
linear-quadratic family of random mappings.

When nonlinearity exceeds a certain threshold but redundancy is not yet too
big, the replica symmetry is necessarily broken in some interval of .

We show that encryptions with a nonvanishing linear component permit
reconstructions with for any ¢ > 1 and any v < oo, with poo ~ 7~ /2 as
v — 00. In contrast, for the case of purely quadratic nonlinearity, for any u > 1
there exists a threshold value ~.(i) such that po, = 0 for v > ~.(u) making
the reconstruction impossible. The behaviour close to the threshold is given by
Poo ~ (7. —)3/* and is controlled by the replica symmetry breaking mechanism.



e Open questions:

The problem is shown to be equivalent to finding the configuration of minimal
energy in a certain version of spherical spin glass model, with squared Gaussian
random interaction potential. It would be interesting and instructive, in particular,

— to develop rigorous approach to this type of landscapes beyond replicas, in
particular to study complexity associated with the stationary points/minima.
So far we managed to do it only for the special type of purely linear Least
Square schemes (with R. Tublin, in progress.)

— to study fluctuations in the overlap and/or in the depth of global minimum, etc.

— Analyze gradient search dynamics on the sphere.



