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Chapter One

Ensembles

 



Spin glasses in the 80’s: « ensemble »

i

jJ ij

CuMn
si ⇥ {±1}

Strongly disordered system:

EJ(s) = �
X

ij

Jijsisj

Spin glass sample described by the whole set of  Jij

            parameters (if short range)O(N)

            parameters (if long range)O(N2)

Ensemble:
drawn from a probability distribution. eg iid

Jij ⇠ N (0, 1/N)

on Erdös-Renyi graph
Jij = ±1

PJ(s) =
1

ZJ
e��EJ (s)

Jij ⇠ N
✓
J0
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,
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Thermodynamic limit and self-averaging

si ⇥ {±1}
E.g. SK model

EJ(s) = �
X

ij

Jijsisj

Jij ⇠ N (0, 1/N)

ZJ =
X

s1,...,sN

e��EJ (s)

EJ(s) = O(N)

ZJ = e��NfJ

Probability of finding a sample with             :fJ = f eN�(f)

�

ff⇤

Almost all samples have fJ = f⇤

therefore they have the same 
thermodynamics, phase diagram, etc.

« Self averaging »



Phase diagram

eg SK model J =
J0
N
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Ensembles and phase transitions in information 
transmission: Shannon



Encoder DecoderChannel
Transmission
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Received Encoded
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Encoder DecoderChannel
Transmission

x
Original 
message message

Received Encoded
message

Estimate of the
original message

N−M bits

a a’

N−M bitsN bitsN bits

r

L/N

Principle of error correction : redundancy

L =L =

Encoding = add redundancy. Rate

p

r < rc(p)

Shannon’s theorem: for a given noise level     , one can 
build a coder/decoder which 
transmits with zero error, iff 

N,L ! 1
⇠

Two ingredients: 
- « Thermodynamic limit »
- Ensemble of Random Codes (     Random Energy 

Model of spin glasses) 



Shannon code ensemble

codewords

sent codeword

received word

Unit hypercube 
in     dimensionsN

(random)

iid random points, uniform distribution2RN



Phase transitions in decoding

Probability of perfect 
decoding:

1

0

Shannon « bound »

p = noise

Decoding = find closest codeword

geometric phase transition



Ensembles and phase transitions in 
computer science: Random Satisfiability

 Binary variablesN xi � {0, 1}

M  Constraints = clauses, e.g.: x1 � x2 � x3

Is there a configuration of the           which 
satisfies all the constraints?

{xi}

The grandfather of NP-complete problems. CNF

Typically hard instances: random k-SAT: Generate each 
clause with three randomly chosen variables in {xi, xi}

Ensemble

k-SAT (clauses of length         ) is also NP-complete k � 3



Phase transition in the random k-SAT 
ensemble

Large N limit:

SAT for 

UNSAT for 

Proven for k large enough 
by Ding-Sly-Sun (2015), 
making rigorous the stat 
phys approach from MM 
Parisi Zecchina (2002)

N = 50
N = 100
N = 200

Random k-SAT:  N variables, M clauses. k variables in 
each clause, randomly chosen, randomly negated:

� = M/N

=density of constraints

Phase transition
k = 3↵ < ↵s

↵ > ↵s



Chapter Two

Landscapes

 



Statistical physics of satisfiability

• many binary variables 

• Cost function               = Number of violated 

constraints = sum of three-body terms 

• Find configuration of lowest cost 

x = (x1, · · · xN ), N ⇥ 1

E(x)

Kirkpatrick, Selman; Monasson, Zecchina; Biroli, Monasson, Weigt; Mézard, 
Zecchina; Mézard, Parisi, Zecchina; Krzakala, Montanari, Ricci-Tersenghi, 
Semerjian, Zdeborova; Coja-Oghlan Panagiotou, Ding Sly Sun…

Uniform measure over all SAT assignments 

Results

P (x) = C�E(x),0



Random k-Satisfiability: clustering

SAT

↵↵d ↵c ↵s

UNSAT

Disconnected 
clusters of solutions

Condensation

Dynamical 
transition

1RSB glass 
transition

SAT-UNSAT
transition



clusters. Cluster     has                solutions� eNsµµ

Clustered SAT phase: a glass phase

� eN�(s) clusters with sµ = s

=
�

ds eN [�(s)+s]eN��
=

�

µ

eNsµ

�� = max
s

(�(s) + s)

Total number of solutions:

eN��



 4-SAT: Montanari, Ricci-Tersenghi, Semerjian

�(s)

↵ = 9.45

↵ = 9.70

↵ = 9.90
0

0.04

0.09
0

s

↵d = 9.38

↵c = 9.55

↵s = 9.93

�� = max
s

(�(s) + s):Clusters appear

Condensation on small number of clusters

SAT-UNSAT



Two families of glasses

T0 Tc

P
q

q q

P

P

Td

Glass phase
Trivial P(q)

Continuous transition
« Full replica symmetry breaking »

Discontinuous transition
« One step replica symmetry breaking »

T0 Tc

P
q

q q

P

P

Probability (2 random 
configurations have overlap    ) q



Continuous transition
« Full replica symmetry breaking »

T0 Tc

P
q

q q

P

P

Two replicas with small 
attraction

Two replicas with small 
repulsion

PJ(s, s
0) =

1

Z
e�

P
i,j Jij [sisj+s

0
is

0
j ]+�H

P
i[si+s

0
i]+✏

P
i sis

0
i

T

q =
1

N

X

i

hsis0ii

✏ < 0 ✏ > 0



Spin glass landscape (misleading drawing, but…) 

1- Glass « phase » : Many pure states, unrelated by symmetry, 
organized in a hierarchical « ultrametric »  structure

2- Exploit the hierarchical structure for algorithm (Montanari 
2019)

Two main techniques, replicas and cavity/TAP

Continuous RSB

Energy

states

ancestors

q0

q1

q2

q3



Spin Glasses

T=12 K

T=10 K

T=12 K

t t t

t t

1  2  3

1  3

time

χ ’’

400 800 (min)

(a.u.)

E. Vincent et al, SPEC

i

jJ ij
Linear response to a 
small magnetic field:

New dynamics
Memory



Discontinuous transition
« Discrete (1 step, 2steps…) 
replica symmetry breaking »

Two replicas with small 
attraction

Two replicas with small 
repulsion ✏ < 0 ✏ > 0

T

T0 Tc

P
q

q q

P

P

Td

Glass phase
Trivial P(q)

q

Tc Td



Discontinuous transition

T0 Tc

P
q

q q

P

P

Td

Glass phase
Trivial P(q)

qP (q) =

(averaged over disorder)

If the measure condenses on a small number of clusters: 
non-trivial P(q)
Otherwise: need to study the measure with two coupled 
configurations at a fixed distance

Dynamical
 transition

Discontinuous RSB

Energy

Config.

Golf-course landscape : harder to find 
ground state



Chapter Three

Replicas

 



Replicas, version 1: analytic continuation

is self-averaging

si ⇥ {±1}E.g.  spin glasses

EJ(s) = �
X

ij

Jijsisj

Jij ⇠ N (0, 1/N)

EJ(s) = O(N)

ZJ = e��NfJ

fJ = � 1

�N
logZJ

Compute E(fJ)

ZJ =
X

s

e��EJ (s)

uncoupled replicas, same disorder

E(logZJ) = lim
n!0

E([Zn
J � 1]/n)

Zn
J =

X

s1,...,sn

e��[EJ (s
1)+···+EJ (s

n)]

n

E(Zn
J ) n coupled replicas, no disorder:

:

average over J



Replicas, version 1: analytic continuation

E(Zn
J ) n coupled replicas, no disorder,        symmetry :

Analytic continuation n ! 0

•Often not unique (Carlson)
•Phase transitions in the 
thermodynamic limit (spontaneous 
breaking of       symmetry)

N ! 1

Sn

Sn

Interchange the            and                 limitsn ! 0 N ! 1

« The Pandora box is open » (G. Parisi)



Replicas, version 2: large deviations

Free energy of sample     :

Probability of finding a sample with             :fJ = f eN�(f)

�

ff⇤

Almost all samples have fJ = f⇤

J fJ = � 1

�N
logZJ

Reconstruct the large deviation 
function           and find �(f) f⇤

E(Zn
J ) =

Z
df eN [�n�f+�(f)]

studied in the thermodynamic limit with the 
Laplace method



Replicas, version 3: metastable states
Glassy phases, even without disorder (eg structural 
grasses): proliferation of metastable states

eg K-satisfiability

ZJ '
X

↵

Z↵
J

⌃J(f)Complexity

�(s)

↵ = 9.45

↵ = 9.70

↵ = 9.90
0

0.04

0.09
0

s

⇠ eN⌃J (f): metastable states with f↵
J = f

Z↵
J = e��Nf↵

J

Introduce       replicas (or « clones ») constrained to be in 
the same states

m

Z [m]
J =

X

↵

(Z↵
J )

m =

Z
df eN [⌃J (f)�m�f ]

Can then average over     , with n ! 0 replicasJ 1-step RSB



Replicas « philosophy »

Many pure states or metastable states, sample dependent. 
Only the sample knows them. 
Compare several « replicas » : configurations generated 
from the equilibrium measure; measure the distance 
between them, also in presence of couplings between 
them; count them (entropy, complexity). 



Chapter Four

Algorithms

 



Analysis of one given sample: 
mean field



Historical development of mean field equations :

- In homogeneous ferromagnets:
• Weiss (infinite range, 1907)
• Bethe Peierls  (finite connectivity, 1935)                       

- In glassy systems:
• Thouless Anderson Palmer 1977 (infinite range) 
• M. Parisi Virasoro 1986 (infinite range)
• M. Parisi  2001 (finite connectivity)                       

- As an algorithm: • Gallager 1963
• Pearl 1986
• Kabashima Saad 1998
• M. Parisi Zecchina 2002
• …                   



Mean-Field 111 years ago

Paul Langevin (1905):                             ;

Pierre Weiss (1907):

M = M0 L

✓
B

T

◆
L(x) = cothx� 1/x

B = Bext + ↵M

M = M0L

✓
↵M

T

◆

Spontaneous magnetization in zero external field:

M

T

Two states

One spin in a magnetic field B

One spin in a magnet: external field+ field from neighbors



Simple Mean-Field : Ising model

P (S) =
1

Z
e�E(S)/T E(S) = �

X

ij

Jijsisj

hsii ' tanh(�
X

j

Jijhsji)

M ' tanh(�zJM)

hsii = htanh(�
X

j

Jijsj)i

Generally useless in disordered systems. 
Neglects fluctuations. Correct formula:

Does not close on hsii

i

j

N coupled equations for 
the local magnetizations mi = hsii

If homogeneous:



Mean-Field 83 years ago

Hans Bethe (1935)

Rudolf Peierls (1936)

Exact solution for central 
spin and its neighbors, 
themselves independent

i

j



Mean-Field 83 years ago

Hans Bethe (1935)

Rudolf Peierls (1936)

Exact solution for central 
spin and its neighbors, 
themselves independent

i
j

k

`

e�h(sj+sk+s`)

P (si, sj , sk, s`) =
1

z
e�Jsi[sj+sk+sl] h

h

h

J

J

J
h =

z � 1

�
atanh[tanh(�J) tanh(�h)]

M = tanh (z atanh[tanh(�J) tanh(�h)])



Bethe-Peierls adapted to disordered case
Exact solution for central spin and its 
neighbors, themselves independent

i
j hj\i

hk\i

h`\i

k

`

P (si, sj , sk, s`) =
1

z
e�si[Jijsj+Jiksk+Jilsl]

e�hj\i sj e�hk\i sk e�h`\i s`

P (si, sj , sk, s`) =
1

z
e�Jsi[sj+sk+sl]



Bethe-Peierls adapted to disordered case

i
j

hk\i

h`\i

k

`

Effective field on i due all of 
its neighbors in absence of j

hi\j =

hi\j =
1

�
atanh[tanh(�Jki) tanh(�hk\i)]

+
1

�
atanh[tanh(�J`i) tanh(�h`\i)]

hi\j



Bethe-Peierls 
Belief Propagation algorithm

Effective field on i due all of 
its neighbors in absence of j

hi\j =

hi\j =
1

�
atanh[tanh(�Jki) tanh(�hk\i)]

+
1

�
atanh[tanh(�J`i) tanh(�h`\i)]

               coupled 
equations for the cavity 
fields 

Nedge

« BP» algorithm: iterate these equations ht+1
i\j = f(ht

k\i, h
t
`\i)

Generalizable to any constraint satisfaction problem:

P (S) =
1

Z

Y

a

 a(S@a)



A remark: the cavity method

Effective field on i due all of 
its neighbors in absence of j

hi\j = ht+1
i\j = f(ht

k\i, h
t
`\i)BP: 

Cavity: statistical analysis of the fixed point. All the messages in the 
rhs are iid from               . The BP equation then leads to a self 
consistent functional equation for           . Sometimes solved by 
moments (large connectivity), or by population dynamics. Replicas

P (h)

P (h)

Cavity seeks a fixed point distribution of P t+1(h) = F [P t(h)]

State evolution does not focus only on fixed-point. It follows the 

mapping at each iteration generated by the BP iteration. Analytic 

control of algorithm.



Validity of Mean-field

1) When is simple mean-field  exact? hsii ' tanh(�
X

j

Jijhsji)

Ferromagnet with long-range interactions:                    (Curie-Weiss) Jij = J/N

Fluctuations of                      can be neglected
X

j

Jijsj



ht+1
i\j = f(ht

k\i, h
t
`\i)2) When is BP exact?

Fluctuations are handled correctly, but beware of correlations 

Validity of Mean-field

i
j hj\i

hk\i

h`\i

k

`

•Exact in one dimension (transfer matrix)
•Exact on a tree (uncorrelated b.c)
•Exact on locally tree-like graphs (Erdös 

Renyi etc.) if correlations decay fast 
enough (single pure state)

•Exact in infinite range problems (SK) if 
correlations decay fast enough (single pure 
state)



ht+1
i\j = f(ht

k\i, h
t
`\i)2) When is BP exact?

Loop length O(logN)

i
j

k

Typically,    and      are far apart
in absence of 

j k

i

If correlations decay fast enough 
BP is exact asymptotically

Away from phase transitions
Within one pure state

Validity of Mean-field



1) The special case of infinite-range models (TAP 1976, cavity 
method 1987)

Three important developments

2) What happens if the elementary variables (spins) are real 
instead of discrete ?

3) What happens in a glass phase, when there are many pure 
states, and therefore many solutions ?



SK model 

Correlations can be neglected (in the glass phase : within one pure state)

1 )The special case of infinite range models
Jij = O

✓
1p
N

◆

hi\j =
1

�

X

k( 6=i)

atanh[tanh(�Jki) tanh(�hk\i)]

Hi =
1

�

X

k

atanh[tanh(�Jki) tanh(�hk\i)]

hi\j ' Hi �O

✓
1p
N

◆

Corrections can be handled to first order in perturbation theory, and all 
the equations close on the N variables Hi TAP equations (AMP)

'
X

k( 6=i)

Jki tanh(�hk\i)

'
X

k

Jki tanh(�hk\i)

Hi =
X

k

Jki tanh(�Hk)� � tanh(�Hi)
X

k

J
2
ki[1� tanh2(�Hk)]

Time iteration (Bolthausen):   AMP algorithm in information theory

t+ 1 t t� 1 t� 1



1) The special case of infinite-range models (cavity method 1987)

Three important developments

2) What happens if the elementary variables (spins) are real 
instead of discrete ?

3) What happens in a glass phase, when there are many pure 
states, and therefore many solutions ?



Real variables

ht+1
i\j = f(ht

k\i, h
t
`\i)

i
j hj\i

hk\i

h`\i

k

`

becomes

pi\j(xi) = F [pk\i(xk), p`\i(x`)]

BP messages are cavity probability densities of the local variables.
Simple case : large connectivity                  approximately Gaussian
Generalized Approximate Message Passing (GAMP). 
MM1989: cavity. Rangan 2010 : algorithm,…

pi\j(xi)



1) The special case of infinite-range models (cavity method 1987)

Three important developments

2) What happens if the elementary variables (spins) are real 
instead of discrete ?

3) What happens in a glass phase, when there are many pure 
states, and therefore many solutions ?



3) What happens in a glass phase, when there are many pure 
states, and therefore many solutions ?

Loop length O(logN)

i
j

k

hi\j = f(hk\i, h`\i)BP equations

Correct if, in absence of the i-j 
interaction, the correlations 
between       and       can be 
neglected.

`

`k

Energy

Configurations

Glassy phase: many states, 
many solutions of BP

hi\j = f(hk\i, h`\i)
↵ ↵ ↵



3) What happens in a glass phase, when there are many pure 
states, and therefore many solutions ?

hi\j = f(hk\i, h`\i)BP equations

Correct if, in absence of the i-j 
interaction, the correlations 
between       and       can be 
neglected.

`k

Energy

Configurations

Glassy phase: many states, 
many solutions of BP

hi\j = f(hk\i, h`\i)
↵ ↵ ↵

Statistics of h↵
i\j

over the many states ↵

Pi\j(h)

related to Pk\i(h)

P`\i(h)

Survey propagation
MM Parisi Zecchina
2002



Power of message passing algorithms
Approximate solution of very hard, and very large constraint 
satisfaction  problems, ...FAST! (typically linear time)

• BP: Best decoders for LDPC error correcting codes
• SP: Best solver of random satisfiability problems
• BP: Best algorithm for learning patterns in neural networks (e.g. 

binary perceptron)
• Data clustering, graph coloring, Steiner trees,  etc…
• Fully connected networks : TAP (=AMP). Compressed sensing, 

linear estimation, near ground-state of SK model (with overlap 
annealing)

1

2

3

Local, simple update equations: 
Each message is updated using 
information from incoming 
messages on the same node. 
Distributed, solves hard global pb



Chapter Five

Inference

 



Inference
Infer a hidden rule, or hidden variables, from data.

Restricted sense : find parameters of a probability distribution

Bayesian inference

Unknown parameters x

Measurements y
Prior P (x)

Likelihood P (y|x)

Posterior P (x|y) = P (y|x)P (x)

P (y)



Bayesian inference with many unknown 
and many measurements

Unknown parameters 
Measurements

Factorized prior

x = (x1, . . . , xN )

y = (y1, . . . , yM )

Independent measurements 

Often (but not necessarily):

P (y|x) =
Y

µ

Pµ(yµ|x)

P 0(x) =
Y

i

P 0
i (xi)

Posterior P (x) =
1

Z(y)

 
Y

i

P 0
i (xi)

!
exp

"
�
X

µ

Eµ(x, yµ)

#

Eµ(x, yµ) = � logPµ(yµ|x)

↵ = M/N

Large M,N

Prediction on the quality of inferenceAlgorithms



Bayesian inference with many unknown 
and many measurements

P (x) =
1

Z(y)

 
Y

i

P 0
i (xi)

!
exp

"
�
X

µ

Eµ(x, yµ)

#

Eµ(x, yµ) = � logPµ(yµ|x)

Statistical mechanics. Disordered system

✦Discrete or continuous variables xi

✦Interactions through                      can bee�Eµ(x,yµ)

•short-range

•long (or infinite) range



Machine learning

Input

⇠
Machine, 

parameters 

W

W
⇠ Output y

y



Machine learning

Handwritten 

digit,          pixels

Machine, 

parameters 

W

W

Output the 

number282

5



y = f(w0 + w1x1 + w2x2 + w3x3)

x3

x1

x2 y

w1

Formal neural network

�59



Simple perceptron 

W

Input
Output

Decouples into independent 
single output machines

⇠

⇠

W
y

y = f(W.⇠)

Limited to linearly separable rules



Example of a machine: two-layers 
feedforward neural network

Support Vector Machines: y =
N1X

i=1

aifi(Wi.⇠)

N
N1W

ya



Example of a machine: two-layers feedforward 
neural network for digits recognition

W = all synaptic weights and thresholds:             parameters11925

Fixed through the study of many examples

784 15 10Neurons: 



MNIST database : 70,000 images of digits, segmented,  
28     28 pixels each, greyscale⇥

�63



Machine learning: training

Database =       examples of input-output 

Training = find a set of parameters        such that 

the machines perform well on the training set

W

NB: output could be noisy:

⇠ W y

M (⇠µ, yµ)

y = f(W, ⇠)

Minimize a training error, e.g. Et =
X

µ

[yµ � f(W, ⇠µ)]
2

P (y) / e�Et/(2�
2)



Machine learning: training and generalization

Database =       examples of input-output 

⇠ W y

M (⇠µ, yµ)

y = f(W, ⇠)

Bayesian learning:

Unknown Data Prior

W ⇤
Generalization: having found the best (a « typical ») set of 
parameters        , compute the performance of the machine on 
some new data Eg =

X

⌫

[y⌫ � f(W ⇤, ⇠⌫)]
2

P (W |{⇠µ, yµ}) =
1

Z
P 0(W ) exp

 
��
X

µ

[f(W, ⇠µ)� yµ)]
2

!

Other big « prior »: architecture!



Machine learning: training and generalization

Learning:

Generalization: Eg =
X

⌫

[y⌫ � f(W ⇤, ⇠⌫)]
2

Two main issues: •Algorithmic
•Theoretical

Algorithm: optimization in a large dimensional space, with a 
disordered « energy function », a priori « glassy ». 
Landscape issues!

Theory: Large size OK. But needs a model of data. Ideally a 
generative model, or a smart description of the type of data. 
Also very useful for algorithm design and analysis. Ensemble.

P (W |{⇠µ, yµ}) =
1

Z
P 0(W ) exp

 
��
X

µ

[f(W, ⇠µ)� yµ)]
2

!



Model of data: ensemble
Learning:

Algorithmic studies typically uses one (or several) 
databases for                : data = quenched disorder{⇠µ, yµ}

Theoretical analysis usually relies on a generative model 
of data (« model of the world »)
Examples from the 80’s: iid patterns

Challenge: Find good generative models of the world

P (W |{⇠µ, yµ}) =
1

Z
P 0(W ) exp

 
��
X

µ

[f(W, ⇠µ)� yµ)]
2

!



Generative model of data : teacher-student

An important case for theoretical studies of  machine 
learning: teacher-student.
Data generated by a teacher. The teacher has his own set 
of  parameters W = T

Given an input       , the output is

⇠µ

yµ = f(T, ⇠µ)

If the student knows the architecture of the teacher, and uses 
the same, he needs to find his own parameters by minimizing 
the training error:

Et =
X

µ

[f(W, ⇠µ)� f(T, ⇠µ)]
2

Generative model: generate      from some input data 
distribution, generate       from some distribution

⇠µ

T PT (T )



Generative model of data : teacher-student

Smart student : knows the teacher’s architecture and the 
generative distribution. PS(W ) = PT (W )

Bayes optimal:  student’s prior = teacher’s prior

Teacher: generates parameters        from teacher prior PT (w)w⇤

generates data        from teacher prior y PT (y|w⇤)

Student seeks a special « planted » configuration w⇤

: a « crystal »with zero training error



Chapter Six

Correlations

 



The problem of correlations in the 
ensemble (the world)

Mean field equations (BP, TAP, AMP) 
with correlated disorder ?

Hi =
X

k

Jki tanh(�Hk)� � tanh(�Hi)
X

k

J
2
ki[1� tanh2(�Hk)]

ht+1
i\j = f(ht

k\i, h
t
`\i)

Correct only if local quenched disordered variables           are independentJki



Beyond independent variables: 
rotationally invariant disorder J = O

T
D O

when     is  chosen uniformly in O(N) and       has a limiting distribution of 
eigenvalues: Parisi Potters 1995, Shinzato Kabashima 2008, Rangan 
Schniter Fletcher 2016,…

O D

« Usual » TAP equations 

Hi =
X

k

Jki tanh(�Hk)� � tanh(�Hi)
X

k

J
2
ki[1� tanh2(�Hk)]

must be modified to Hi =
X

k

Jki tanh(�Hk)� � tanh(�Hi)G
0(1� q)

q = (1/N)
X

i

tanh2(�Hi)

G(z) = extrµ


µz �

Z
d�D(�) log(µ� �)

�
� log z � 1



Neurons =      binary spins:

si 2 {±1}
Patterns to be memorized:

N

~⇠µ

~s = (s1, . . . , sN )

µ = 1, . . . , P

~⇠µ

A special example: Hopfield model



Hopfield model

Neurons =      binary spins:

⇠µi = ±1, i 2 {1, . . . n}, µ 2 {1, . . . p} ,

si 2 {±1}

Patterns to be memorized

N

E = �1

2

X

i,j

Jijsisj Jij =
1

N

X

µ

⇠µi ⇠
µ
j

PJ(s) =
1

Z
e(�/2)

P
i,j Jijsisj Z =

X

s

e(�/2)
P

i,j Jijsisj



Hopfield model

E = �1

2

X

i,j

Jijsisj Jij =
1

N

X

µ

⇠µi ⇠
µ
j

PJ(s) =
1

Z
e(�/2)

P
i,j Jijsisj Z =

X

s

e(�/2)
P

i,j Jijsisj



Hopfield model

Phase diagram (Amit Gutfreund Sompolinsky 1985)

SG

Paramagnetic

Retrieval



Mean field equations for solving the Hopfield 
model (find local magnetizations)



First attempt : TAP equations

Hi =
X

k

Jki tanh(�Hk)� � tanh(�Hi)
X

k

J
2
ki[1� tanh2(�Hk)]

Disordered and infinite range

i

j TAP is valid only if indirect 
interaction from        to       
through other sites can be 
neglected

i

j

WRONG



TAP in the Hopfield model: more subtle!

j

Indirect interactions matter 
« Naive » TAP does not apply  

i

Jij =
1

N

X

µ

⇠µi ⇠
µ
j JijJjkJki 6= 0



Jij =
1

N

X

µ

⇠µi ⇠
µ
jZ =

X

s

e(�/2)
P

i,j Jijsisj

Z =
X

s

Z Y

µ

d�µp
2⇡�

exp

2

4��

2

X

µ

�2
µ + �

X

µ,i

⇠µip
N

si�µ

3

5

Hubbard Stratonovitch (Gaussian transform) :

The Hopfield model as a Restricted Boltzmann Machine

Z =
X

s

exp

0

@ �

2N

X

µ

"
X

i

⇠µi si

#2
1

A



Z =
X

s

Z Y

µ

d�µp
2⇡�

exp

2

4��

2

X

µ

�2
µ + �

X

µ,i

⇠µip
N

si�µ

3

5

si

�µ

mi!µ

mµ!i

m̂µ!i
m̂i!µ

Spin-variable Pattern-variable Coupling

Hopfield model is a 
restricted Boltzmann 
machine, with a 
specific set of 
couplings  

that store     patterns. 
iid couplings 

⇠µip
N

P



Z =
X

s

Z Y

µ

d�µp
2⇡�

exp

2

4��

2

X

µ

�2
µ + �

X

µ,i

⇠µip
N

si�µ

3

5

Spin-variable Pattern-variable Coupling

h�µi =
1p
N

X

i

⇠µi hsii Pattern-variable describes the 
projection on the pattern

if uncorrelated⇥(1)

⇥(
p
N) if spins are polarized towards the pattern



si

�µ

mi!µ

mµ!i

m̂µ!i
m̂i!µ

« relaxed BP »

mi!µ(si) / exp(hi!µsi)

mµ!i(�µ)

Parameterized in terms of its 
mean            and varianceaµ!i

hi!µ =
X

⌫( 6=µ)

⇠⌫ip
N

a⌫!i

aµ!i =
1p
N

P
j( 6=i) ⇠

µ
j tanh(�hj!µ)

1� (�/N)
P

j( 6=i)[1� tanh2(�hj!µ)]

hi!µ

aµ!i



Next step : from relaxed BP to AMP equations

hi!µ =
X

⌫( 6=µ)

⇠⌫ip
N

a⌫!i '
X

⌫

⇠⌫ip
N

a⌫!i

Work out the correction terms (« cavity »)

= Hi

aµ!i ' Aµ

si

�µ

mi!µ

mµ!i

m̂µ!i
m̂i!µ



AMP equations in the paramagnetic or SG phase

Hi '
X

⌫

⇠
⌫
ip
N

A⌫ � ↵

1� �(1� q)
tanh(�Hi)

Aµ =
1p
N

X

j

⇠
µ
j tanh(�Hj)

q =
1

N

X

i

tanh2(�Hi)

First written in MPV 1987, claimed wrong in 
Nakanishi-Takayama 1997, Shamir Sompolinsky 
2000, actually correct. Can be used as an iterative 
algorithm (with correct time indices)



Towards multilayered networks: structured patterns

Modified Hopfield model: Combinatorial patterns

~⇠µ = (⇠µ1 , · · · , ⇠
µ
N )

~⇠µ built from superposition of elementary features ~ur

vµr 2 {±1}, binary~⇠µ =
1p
�N

X

r

vµr ~ur



TAP equations in the Hopfield model with 
structured patterns

Modified Hopfield model: Combinatorial patterns

Disentangle the last term by another Hubbard 
Stratonovitch representation

Z =
X

s

Z Y

µ

d�µe
���2

µ/2

p
2⇡�

exp

"
�
p
�

�NX

r=1

 
1p
N

X

i

ur
i si

! 
1p
N

X

µ

vrµ�µ

!#
.



si
�µ

~tr

Z =
X

s

Z Y

µ

d�µ

Z Y
d~tr exp

"
��

2

X

µ

�2
µ + �

�NX

r=1

✓
+

1
p
�
UrV r � ÛrUr � V̂ rV r

◆#

exp

"
�p
N

�NX

r=1

NX

i=1

Ûrur
i si +

�p
N

�NX

r=1

↵NX

µ=1

V̂ rvrµ�µ +
�
p
�

�NX

r=1

UrV r

#



si
�µ

~tr

Visible neurons
Hidden: features

Hidden: patterns



TAP equations in the Hopfield model with 
structured patterns

Write the cavity/BP equations. Simplify them to TAP-AMP 
form, involving: Hi pr Aµ,,



TAP equations in the Hopfield model with 
structured patterns

si

�µ

mi!µ

mµ!i

m̂µ!i
m̂i!µ

si
�µ

~tr

Hopfield 
model 

Restricted 
Boltzmann 
machine

with 
combinatorial 

patterns
Two 

hidden 
layers



Hypothesis about the success of deep networks: successive 
disentanglement of combinatorial correlations?

Visible input Subfeatures Features Patterns

Combinatorial correlations = new type of correlations. 
Present in images, in semantics, etc.

si
�µ

~tr



Take-home messages

The spin glass cornucopia ! 
Spin glasses: Totally useless (few grams) of boring material… 

Intellectual interest. Tens of thousands of papers over the last 30 
years. Some of the most fascinating developments in statistical 
physics: Glasses, Neural networks, Optimization, Information 
theory, Evolution, Economy and finance,… 

Powerful new concepts. Hidden order known only by the 
system itself            replicas.



Take-home messages

Inference with many variables = stat phys problem 
of disordered system. Search of a special 
configuration (« crystal ») 
Theory needs an ensemble; in machine learning it 
means a model of data, of the world 
 Mean-field approaches provide very powerful 
algorithms. Used in codes, in linear reconstruction, 
compressed sensing, tomography, community 
detection etc. But often tailored on a specific type 
of data. Limited by a dynamical phase transition 



The End

 


