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Chapter One

4

Ensembles



Spin glasses in the 80’s: « ensemble »

SR S; € {::1}

1
Jij ~N(0,1/N)  Py(s) = e 787
Strongly disordered system:
Spin glass sample described by the whole set of J;

Jo 1
O(N?) parameters (if long range) Jij ~ N < ]\(;7 N>

O(N) parameters (if short range) Ji; = +1
on Erdds-Reny1 graph
Ensemble:

drawn from a probability distribution. eg nd =




Thermodynamic limit and self-averaging

S; € {::1} Jij NN(O, 1/N)

E.g. SK model
EJ(S) — — Z JijSiSj
E;(s) = O(N) ij
7, =e BN Ly = Z e BEI(5)

« Self averaging »

Probability of finding a sample with f; = f: N2
Almost all samples have f; = f~ ¢ /\

therefore they have the same -
; . f
thermodynamics, phase diagram, etc.



Phase diagram

= =
eg SK model e JN J? = N
=
= Ero: N ;<S’L> >0 SG: Prob(two random
= configs have overlap q)
T=1/8
Para Y




Ensembles and phase transitions in information
transmission: Shannon
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Principle of error correction : redundancy

Transmission
= Encoder |—— Decoder |—=>
Channel
a X r a’

Original Encoded Received Estimateof the
message message message original message
I, = N—M bits N bits N bits L = N-M bits

Encoding = add redundancy. Rate L/N

e.g.repetition 0 — 000 1— 111 rate=1/3

1011 —> 111000111111 ==p> |11 E}O{]ll()]llll] Majority
Code Channel decoding
I 0 1 1

(BSC)

error probability  p° + 3p*(1 — p)~ 3p°



Principle of error correction : redundancy

Transmission
= Encoder |—— Decoder |—=>
Channel
a X r a’

Original Encoded Received Estimateof the
message message message original message

I, = N-M bits N bits N bits L. = N-M bits

Encoding = add redundancy. Rate L/N

Shannon’s theorem: for a given noise level p, one can
build a coder/decoder which

transmits with zero error, itt r < r.(p

T
/

Two ingredientsz

- « Thermodynamic limit » N, L — o0
- Ensemble of Random Codes ( ~Random Energy
Model of spin glasses)



Shannon code ensemble

Unit hypercube
in /N dimensions
e codewords
® (random)
o
/ ° o sent codeword
o
o e received word
o o

2ftN 11d random points, uniform distribution



Phase transitions in decoding

Decoding = find closest codeword

Probability of perfect
decoding:
1
[2) &
0 =

1 P =noise

Shannon « bound »
geometric phase transition



Ensembles and phase transitions in
computer science: Random Satishability

N Binary variables z; € {0,1}
M Constraints = clauses, e.g.: 1V T2 VI3

[s there a conhguration of the {x;}which

satisfies all the constraints?

The grandfather of NP-complete problems. CNF

k-SAT (clauses of lengthk > 3) 1s also NP-complete

Typically hard instances: random k-SAT: Generate each

clause with three randomly chosen variables in  {z;, 7;}

Ensemble



Phase transition in the random k-SAT

ensemble
Random k-SAT: N variables, M clauses. k variables in

each clause, randomly chosen, randomly negated:

Large N limit: «a =M /N

=density of constraints

Phase transition

SAT fOI‘ a < O
UNSAT fOI‘ G

Proven for k large enough
by Ding-Sly-Sun (2015),
making rigorous the stat

phys approach from MM
Paris1 Zecchina (2002)

Proba(SAT)
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Chapter Two
“

Landscapes



Statistical physics of satishability
® many binary variables = = (z1,---2n), N > 1
® Cost function F/(x)= Number of violated
constraints = sum of three-body terms

® [ind configuration of lowest cost

Uniform measure over all SAT assignments

P(z) = C5E(a:),0

Kirkpatrick, Selman; Monasson, Zecchina; Biroli, Monasson, Weigt; Mézard,
Zecchina; Mézard, Parisi, Zecchina; Krzakala, Montanari, Ricci-Tersenghi,

Semerjian, Zdeborova; Coja-Oghlan Panagiotou, Ding Sly Sun...
Results



Random k-Satishability: clustering

SAT

——IINSAT
< >
: : =
Disconnected
clusters of solutions
:Condensation
©_ o 5 |
O-0  re
O
@s-| [° o
o @)
%! e g
t t t

Dynamical 1RSB glass SAT-UNSAT

transition transition transition



Clustered SAT phase: a glass phase

NY™ ;
€ clusters. Cluster ;4 has ~ ¢/V%» solutions

~ eV2(8) clusters with e
Total number of solutions:

SIS ZeNS’u = /ds oN[E(s)+s]
I

> = max(X(s) + s)

S



4-SAT: Montanari, Ricci-Tersenghi, Semerjian

0.04
2(s)
a = 9.45
a = 9.70
0 O o = 9.90; N )
0.09
aqg = 9.38 Clusters appear e m?X(E(S) + 5)

a. = 9.55 Condensation on small number of clusters



Two families of glasses

Probability (2 random

configurations have overlap @)

Continuous transition

« Full replica symmetry breaking »

Discontinuous transition

« One step replica symmetry breaking » \
Glassip_hzls’e
Trivial P(q)




Continuous transition

« Full replica symmetry breaking »

/"

/ IR

e Two replhicas with small\ (e T replicas with small

\_—Fepulsion- £~ 40— J attraction € >0

PJ(S, 8/) = %65 ZZJ 13 [Si8j+8,/l:8;-]—|—6H S lsitsi]Hed> . sis;

0=~ i) |\

T



Spin glass landscape (misleading drawing, but...)

Energy
| L e s qO
AV VR A R e
| o Fams gReesyols q1
............................................... T TR TR O e e T U1
......................................... / vndlD ... 8- q3
Continuous RSB states

1- Glass « phase » : Many pure states, unrelated by symmetry
organized in a hierarchical « ultrametric » structure

2- Exploit the hierarchical structure for algorithm (Montanari
2019)

Two main techniques, replicas and cavity/TAP



Spin Glasses

Linear response to a ¢ ¢
small magnetic field: 1 ¢ f
X New dynamics
(a.u.)
| T=12K | Memory
: T=10 K |
S
| T=12K
= - - t ; ........ >:.<_ ...... t _________ >: < ———— t_3 .......... = E. V[:ncenteta[} SPEC
2 |

400 800 time (min)



Discontinuous transition

« Discrete (1 step, 2steps...)
replica symmetry breaking »

: - :
/ / \\\\\5__ ,,/'
\

: 7 3 Trvia’ ,
fe Two replicas with small | (@ Two replicas with small
\—repulsion- £t ~0 — attraction € >0

NG




Discontinuous transition p
Golt-course landscape : harder to find ]
ground state p 1 P
I q
FEnergy i ] 1 . |
L. AN ‘ | : q E q
I0 :Fc Td T
Glas\sip_hzls’e’ Dy na.m.ical
Trivial P(q) transition
Conhig. q
Discontinuous RSB

If the measure condenses on a small number of clusters:

non-trivial P(q)
Otherwise: need to study the measure with two coupled
configurations at a fixed distance



Chapter Three
“

Replicas



Replicas, version 1: analytic continuation

E.g. spin glasses si € {£1} Jij ~N(0,1/N)

1 Ej(s) = — Z Jii8i8;
= BN log Z 5 3
i1s self-averaging Zy = Z e PEI()
Compute &(f7) average over J
. E;(s) = O(N)
5(logZJ):TlL1LI%)8([ZJ—1]/n) 7 — N,

e Z =B P bl H

1 n 5 "
S y...4S T uncoupled rephcas, SAaIne dlsorder

E(Z7) : n coupled replicas, no disorder



Replicas, version 1: analytic continuation
E(Z%) : n coupled replicas, no disorder, S,, symmetry

Analytic continuation n — 0

Often not unique (Carlson)
Phase transitions in the N — oo
thermodynamic limit (spontaneous

breaking of S, symmetry)

Interchange the , —+ 0 and N — oo limats

« The Pandora box ts open » (G. Parisi)



Replicas, version 2: large deviations

1
Free energy of sample J: f;= N log Z ;
Probability of finding a sample with f; = f: N2
Almost all samples have f7 = [~ ¢ /\
Reconstruct the large deviation f*

function ®(f) and find f*
E(Z™) = /df R e

studied in the thermodynamic limit with the
Laplace method



Replicas, version 3: metastable states

Glassy phases, even without disorder (eg structural
grasses): proliferation of metastable states

0.04
O O (s)

QOO a=9.45
o 0

eg K-satishiability

ZJ:ZZ‘(; Z;‘:@_BNJC?
o)

Complexity X(f): ~ eV>7(f) metastable states with f7 = f

Introduce m replicas (or « clones ») constrained to be in
the same states

s /df NI, (F)—mBi]

(84

Can then average over J , with n — 0 replicas 1-step RSB



Replicas « philosophy »

Many pure states or metastable states, sample dependent.
Only the sample knows them.

Compare several « replicas » : configurations generated
from the equilibrium measure; measure the distance
between them, also in presence of couplings between
them; count them (entropy, complexity).



Chapter Four
L

Algorithms



Analysis of one given sample:
mean held



Historical development of mean field equations :

-~ In homogeneous ferromagnets:

* Weiss (infinite range, 1907)
* Bethe Peierls (finite connectivity, 1935)

T h glassy systems:

* Thouless Anderson Palmer 1977 (infinite range)
» M. Parisi Virasoro 1986 (infinite range)
* M. Parisi 2001 (finite connectivity)

- As an algorithm: . Gallager 1963
e Pearl 1986
« Kabashima Saad 1998
« M. Parisi Zecchina 2002



Mean-Field 111 years ago

Paul Langevin (1905): | M =M, L (?) ;  L(z)=cothz -1/=

One spin 1n a magnetic field B

Pierre Weiss (1907): B = Beyt +aM

One spin in a magnet: external field+ hield from neighbor:

Spontaneous magnetization in zero external field:

aM

M:MOL(T> M\ -
<\

Two states




Simple Mean-Field : Ising model

1
PES = — =L E(S) = — > Jijs:8;

(8;) ~ tanh(ﬁz Jii(s) \ \

N coupled equations for
the local magnetizations m; = (s;)

If homogeneous: M =~ tanh(8zJM)

Generally useless 1n disordered systems.
Neglects fluctuations. Correct formula:

(si) = (tanh(f Z Jijsj))

Does not close on  ($;)



Mean-Field 83 years ago

il (19 3 5) Exact solution for central
. spin and 1its neighbors,
Rudolf Peierls (1936) themselves independent




Mean-Field 83 years ago

Hans Bethe (1935)
Rudolf Peierls (1936)

(s8¢, 84, 5k, 50) = —
ePh(si+sk+se)
z—1
h = atanh[tanh(5.J) tanh(Gh)]

5,
M = tanh (z atanh[tanh(8J) tanh(8h)])

Exact solution for central

spin and 1its neighbors,

themselves independent




Bethe-Peierls adapted to disordered case

Exact solution for central spin and its

neighbors, themselves independent

R
1 65J87:[8j—|—8k+sz]

P(Si78j73k1736) s =

1
D e e
st 6 -
2z : y,

6th\i S eﬁhk\i Sk 65h£\i Se hj\z-

P(3i7 SjySk S@) =



Bethe-Peierls adapted to disordered case

hi\; = Effective field on 1 due all of

its neighbors in absence of )

R
hivj = %atanh[tanh(ﬁJki)tanh(ﬁhk\i)]
k
+latanh[tanh(ﬂ<]gi) tanh(Bhe ;)]
B hiy



Bethe-Peierls
Belief Propagation algorithm

hi\; = Eftective field on 1 due all of

its neighbors in absence of )

1
hz\] — Eatanh[tanh(@sz) tanh(ﬁhk\z)] Nedge coupled
. equations for the cavity
+Eatanh[tanh(ﬁJgi) tanh(Bhe ;)] fields
« BP» algorithm: iterate these equations hfi}l =f (h};\ia hﬁ\i)

Generalizable to any constraint satistaction problem:

P(8) = - [] ¥a(So0)



A remark: the cavity method

hi\; = Eftective field on 1 due all of

its neighbors in absence of )

BP: N = f(hiis )

Cavity: statistical analysis of the fixed point. All the messages in the
rhs are iid from P(h) . The BP equation then leads to a self

consistent functional equation for P(h). Sometimes solved by

moments (large connectivity), or by population dynamics. Replicas

Cavity seeks a fixed point distribution of P e (h) T [P t (h)]

State evolution does not focus only on fixed-point. It follows the
mapping at each iteration generated by the BP iteration. Analytic

control of algorithm.



Validity of Mean-held

1) When is simple mean-field exact? (8;) ~ tanh(p Z Jij(8;))
J

Ferromagnet with long-range interactions: Ji;j = J/IN (Curie-Weiss)

Fluctuations of Z JijS; can be neglected
J



Validity of Mean-held

2) When is BP exact? hf@l =f (htk\z'a hZ\i)

Fluctuations are handled correctly, but beware of correlations

o : : : : A\
e Exact in one dimension (transfer matrix)

e Exact on a tree (uncorrelated b.c)

e Exact on locally tree-like graphs (Erdos

Renyi etc.) if correlations decay fast

enough (single pure state)

e Exact 1n infinite range problems (SK) if
correlations decay fast enough (single pure

state)



Validity of Mean-held

2) When 1s BP exact?

Typically, 7 and k are far apart

1n absence of ;

If correlations decay fast enough

BP is exact asymptotically

Away from phase transitions

Within one pure state

t+1 _
hii =

fh

t
k\’

hipi)




Three important developments

1) The special case of infinite-range models (TAP 1976, cavity
method 1987)

2) What happens if the elementary variables (spins) are real

instead of discrete ?

3) What happens 1n a glass phase, when there are many pure

states, and therefore many solutions ?



1 )The special case of infinite range models

1
Jri =0 ——
SK model ] (\/—>

Correlations can be neglected (in the glass phase : within one pure state)

1
B 5 Z atanh[tanh(8Jy;) tanh(Bhg\;)] ~ Z Ji tanh(Bhp ;)
k(#1) k(1)

—— % Z atanh|tanh(5Jg;) tanh(ﬁhk\i)] ~ Z Jri tanh(ﬁhk\i)
k k

1
hoy o~ H; — O | —=
= (m)

Corrections can be handled to first order in perturbation theory, and all

the equations close on the N variables H; wmp TAP equations (AMP)
t+1 ¢ t—1 t—1

H; = Ji;tanh(8Hy) — Btanh(BH;) Y  JZ[1 — tanh®(BHy)]
k k

Time iteration (Bolthausen): AMP algorithm in information theory



Three important developments

1) The special case of infinite-range models (cavity method 1987)

2) What happens if the elementary variables (spins) are real

instead of discrete ?

3) What happens 1n a glass phase, when there are many pure

states, and therefore many solutions ?



Real variables

hftgl — f(htk\z'v hé\i)
becomes

Pi\j(%) — F[pk\i(fk)apev(fd]

N

BP messages are cavity probability densities of the local variables.
Simple case : large connectivity p;\;(z;) approximately Gaussian
Generalized Approximate Message Passing (GAMP).

NVEMIT989+ cavity—Rangan 2010: algorithrm. —



Three important developments

1) The special case of infinite-range models (cavity method 1987)

2) What happens if the elementary variables (spins) are real

instead of discrete ?

3) What happens in a glass phase, when there are many pure

states, and therefore many solutions ?



3) What happens in a glass phase, when there are many pure

states, and therefore many solutions ?

BP equations hivi = f(hives hevi)

Correct if, in absence of the 1-

interaction, the correlations
between k and 4 can be
neglected.

Energy

Q Q Q
hivi = f(Pines i)

Configurations LO oD len ch O (lOg N )
Glassy phase: many states,
many solutions of BP



3) What happens in a glass phase, when there are many pure

states, and therefore many solutions ?

BP equations hiyj = f(hk\fz:, hZ\z‘) Statistics of hi\j

over the many states &
Correct if, in absence of the 1- P, ;(h)

interaction, the correlations
related to Py (h)
between k and 4 can be

neglected.

nergy

Survey propagation

MM Parisi Zecchina
8 o '8
hivg = f(hievis Pevi) e

Configurations

Glassy phase: many states,

many solutions of BP



Power of message passing algorithms

Approximate solution of very hard, and very large constraint

satisfaction problems, ...FAST! (typically linear time)

BP: Best decoders for LDPC error correcting codes
SP: Best solver of random satishability problems
BP: Best algorithm for learning patterns in neural networks (e.g.
binary perceptron)

Data clustering, graph coloring, Steiner trees, etc...

Fully connected networks : TAP (=AMP). Compressed sensing,

linear estimation, near ground-state of SK model (with overlap

annealing)

Local, simple update equations:

@

Each message 1s updated using

A
N

information from Incoming

- messages on the Saime node.

/ Distributed, solves hard global pb




Chapter Five
“a

Inference



Inference

Inter a hidden rule, or hidden variables, from data.

Restricted sense : find parameters of a probability distribution
Bayesian inference

Unknown parameters & Prior T
Measurements Yy Likelihood P(y|z)

_ Plyz)P ()
P(y)

Posterior e ($ | Y )




Bayesian inference with many unknown
and many measurements

Unknown parameters L — (33‘1, ‘. ,xN) Large M, N
Measurements =l s a=M/N

Often (but not necessarily):

Independent measurements = (y\x) = H P 7 (yu‘w)

Factorized prior PY (@)= H PV ()

Posterior P($) — Z(ly) (H Pq;O(%)) €XP _ZEu(xayu)

E,u(wa y,u) = —log P,u(y,u|x)
= Algorithms = Prediction on the quality of inference



Bayesian inference with many unknown
and many measurements

P(r) = Z(ly) (1:[ P,L-O(xz-)) CXp _—%:Eu(a:‘,yu)_

E (z,y,) = —log P,(yu|x)

Statistical mechanics. Disordered system

4 Discrete or continuous variables Ti

s> 7 (az,yu)

4 Interactions through e can be

'short-range

°long (or infinite) range



Machine learning

Machine,

Input & Output Y

parameters



Machine learning

Handwritten Machine, Output the

digit, 28° pixels parameters W number



Cell body

\«
Nucleus \

" —Axon hillock )
T N

PR

Golgi apparatus
Endoplasmic /.
reticulum

Mitochondrion \ \ Dendrite

\
I :
/ % Dendritic branches

—

Telodendria

Synaptic terminals

w11

W L9

w3$3)

Formal neural network

-2}

-3

rectifier
T

59




Simple perceptron

Decouples into independent
single output machines

\WY

y = f(W.£)

Limited to linearly separable rules



Example of a machine: two-layers
feedforward neural network




Example of a machine: two-layers feedforward
neural network for digits recognition

hidden layer

(n = 15 neurons)

input layer

(784 neurons)

Neurons: 841510
W = all synaptic weights and thresholds: 11925 parameters

Fixed through the study of many examples



0 X[ =0 [T oINS A
(NN RS M N QN W
=N O N
M [ Q[N [ N[O
= b/ [=5M [2a O N 1 [ ™
NN (S L QN
(=S M N R e[S
RSN O on [ QNSRS N
T [N [ N e {0 [T
Q% 0% > QW NQIN

MNIST database : 70,000 images of digits, segmented,

28 X 28 pixels each, greyscale



Machine learning: training

Database = M examples of input-output (§u, Yu)

Training = find a set of parameters W such that

the machines perform well on the training set

Minimize a training error, e.g. Ly = Z Y — 1O, fu)]Q
[
NB: output could be noisy:  P(y) e~ Bt/ (24%)



Machine learning: training and generalization

NS
i LA
POV {6 = 7= ™ 6 o (I 06 - ymf)
= S H
Unknc O}%{\ef/dt/zi Prior

Generalization: having found the best (a « typical ») set of
parameters W, compute the performance of the machine on

some new data e Z = fy)]z

|74



Machine learning: training and generalization
Learnming: P(W|{{,,y.}) = ; ) exp ( 52 et = )]2)

Generalization: b, = Z [?/u = f(W*v gu)]2

e Algorithmic

Two main 1ssues: ,
e Theoretical

Algorithm: optimization 1n a large dimensional space, with a
disordered « energy function », a priori « glassy ».
Landscape 1ssues!

Theory: Large size OK. But needs a model of data. Ideally a
generative model, or a smart description of the type of data.
Also very usetul for algorithm design and analysis. Ensemble.



Model of data: ensemble

[Learning:

1
POVI{Eu ) = & P exp( IS 076 - >12)
Algorithmic studies typically uses one (or several)

databases for {{,,,y,, } : data = quenched disorder

Theoretical analysis usually relies on a generative model
of data (« model of the world »)
Examples from the 80’s: nd patterns

Challenge: Find good generative models of the world



Generative model of data : teacher-student

An important case for theoretical studies of machine
learning: teacher-student.

Data generated by a teacher. The teacher has his own set
of parameters W =T

Given an input &, , the outputis Yu = f (L&)

It the student knows the architecture of the teacher, and uses
the same, he needs to find his own parameters by minimizing

the training error:
Er=) -[fON&) =f(TE

L

Generative model: generate &, from some input data
distribution, generate T from some distribution ~ P* (T



Generative model of data : teacher-student

Teacher: generates parameters w* from teacher prior P* (w)

generates data gy from teacher prior P " (y|w*)

Smart student : knows the teacher’s architecture and the

generative distribution. P> (o= P

Bayes optimal: student’s prior = teacher’s prior

Student seeks a special « planted » configuration w*

with zero training error: a « crystal »



Chapter Six
L

Correlations



The problem of correlations in the
ensemble (the world)

Mean field equations (BP, TAP, AMP)

with correlated disorder ?

Il = f(Pgis Pin)
H; = Juitanh(BHy) — Btanh(B8H;) Y  J2[1 — tanh®(BH,)]
k k

Correct only if local quenched disordered variables Jg; are independent



Beyond independent variables:

: - : = S
rotationally invariant disorder =0 =L

when () 1s chosen uniformly in O(N) and D has a limiting distribution of
eigenvalues: Parisi Potters 1995, Shinzato Kabashima 2008, Rangan
Schniter Fletcher 2016,...

« Usual » TAP equations
H; =) Ji;tanh(8H;) — Stanh(BH;) Y  Ji;[1 — tanh®(8Hy)]
k k

must be modified to H; = Z Sk taﬂh(ﬁHk) — 5tanh(5Hi)G/(1 — C])
k

¢=(1/N) » tanh®(3H;)
: G [,uz — /d)\D()\) log(pp—A)| —logz—1



A special example: Hophield model

Neurons = N binary spins: 8§ = (81, ——— SN)

—

Patterns to be memorized: £ =1




Hopfield model

Neurons = N binary spins: s; € {£1}

Patterns to be memorized
féu e e {1,...%}, IS {1,...p} :

1 1 et
E = —5 Z]ijSiSj JZ] — N Zgz gj
t,]

L

1
PJ(S) — 56(5/2) Zi,j J’ijSiSj Z _ 26(5/2) Zz’,j inijiSj




Hopfield model

-

! L N perper
b=—7 Zjijsisj Jij = 57 Zfi §;
i]

L

1
PJ(S) — 56(5/2) Zi,j JijSiSj Z _ 26(6/2) Zi,j JijSiSj




Hopfield model

Phase diagram (Amit Guifreund Sompolinsky 1985

Paramagnetic

T
g




Mean field equations for solving the Hopfield

model (find local magnetizations)



First attempt : TAP equations

H; =) Jyitanh(8Hy) — Btanh(BH;) Y  JZ;[1 — tanh®(8Hy)]
k k
Disordered and infinite range

WRONG

O’ TAP is valid only if indirect
\ interaction from § to J
through other sites can be

W | neglected
(/




TAP in the Hopfield model: more subtle!

1
Lt

Indirect interactions matter

« Naive » TAP does not apply




The Hopfield model as a Restricted Boltzmann Machine

y— Z 6(5/2) ZZJ JijSiS;

= o> e
L

Z:;exp (2?\72

L

- - 2
fosz' )

Hubbard Stratonovitch (Gaussian transform) :

4= Z/H\/F _ngfﬂLBZﬁSMM




4= Z/H\/ﬁ —22%3%2&3%

Spin-variable  Pattern-variable Coupling

Hoptield model 1s a

restricted Boltzmann
machine, with a
specific set of
couplings =
N 5

that store P patterns.

iid couplings



4= Z/H\/ﬁ —gzkiWZﬁSW

Spin-variable  Pattern-variable Coupling

_ Z £ (s;) Pattern-variable describes the

projection on the pattern

O(1) if uncorrelated

O(v/N) if spins are polarized towards the pattern



hi—)u — Z \/—ZI/N@V—V&

v(#p)

Gy = — >0 & tanh(Bh; )
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Mii— 1 (5i) X exp(hi—,Si)
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Parameterized 1n terms of 1ts

Aw  mean @,_,; and variance
Ap—q
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5i | « relaxed BP »




Next step : from relaxed BP to AMP equations

— H,

z—>,LL Z \/7aV—>7/ = Z \/—al/—m

v(#p)

Ap—i = Ay,

Work out the correction terms (« cavity »)




AMP equations in the paramagnetic or SG phase

(/ a n .
Him ) N~ T g —g) b PHy

1
g = N ZtanhQ(ﬁHi)

First written in MPV 19387, claimed wrong in
Nakanishi-Takayama 1997, Shamir Sompolinsky
2000, actually correct. Can be used as an iterative
algorithm (with correct time indices)



lTowards multilayered networks: structured patterns

Modified Hopfield model: Combinatorial patterns

g,u = (gllla 7§]L\L[)

§"  built from superposition of elementary features "
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TAP equations in the Hopfield model with

structured patterns

Modified Hopfield model: Combinatorial patterns

d)\,ue_BAi/Q _ 5 i 1 r 1 r _
- Z/H Vol WD (W Z) (W ZA)

Disentangle the last term by another Hubbard
Stratonovitch representation
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Hidden: patterns

Hidden: features
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TAP equations in the Hopfield model with

structured patterns

Write the cavity/BP equations. Stmplify them to TAP-AMP

form, involving: H; ,pPr, A,



TAP equations in the Hopfield model with

structured patterns

Restricted
::> Boltzmann
O/% machine
A\"2
Hopfield \
model with
combinatoral
tterns =
£ hidden

layers g



Hypothesis about the success of deep networks: successive
disentanglement of combinatorial correlations?

Visible input = > Subfeatures = > Features = > Patterns

Combinatorial correlations = new type of correlations.
Present in images, 1n semantics, etc.



Take-home messages

- The spin glass cornucopia !

Spin glasses: Totally useless (few grams) of boring material...

Intellectual interest. Tens of thousands of papers over the last 30
years. Some of the most fascinating developments 1n statistical
physies: Glasses, Neural networks, Optimization, Information
theory, Evolution, Economy and finance,...

Powerful new concepts. Hidden order known only by the

system itself wwi replicas.



Take-home messages

- Inference with many variables = stat phys problem
of disordered system. Search of a special
configuration (« crystal »)

- Theory needs an ensemble; in machine learning 1t
means a model of data, of the world

- Mean-field approaches provide very powerful
algorithms. Used 1n codes, in linear reconstruction,
compressed sensing, tomography, community
detection ete. But often tailored on a specific type

of data. Limited by a dynamical phase transition



The End



