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Feed-forward neural network:

f(x) =W
L
σ(W

L−1
σ(. . .σ(W1

x) . . .))

where σ is applied coordinate-wise. E.g. ReLU σ(a) = max{a, 0}.

Empirical loss

L̂(f) =
1

n

n

∑
i=1

log(1 + exp{−Yif(Xi)})

▸ Generalization

▸ Optimization

▸ Expressive power

4 / 64



(Zhang et al 2017)
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(Neyshabur et al 2015)
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(Poggio et al 2017)

Unclear if worse performance for smaller networks is due to inability to find
a good solution in the empirical landscape, or the model is not rich enough.

7 / 64



Outline

Motivation

Statistical Learning Setup

Example: Linear Classifiers (aka 1-Layer NN)

Bias-Variance Tradeoff

Uniform Deviations Regime

Memorization Regime

What is overfitting?

Discussion

8 / 64



Supervised Learning: data S = {(X1,Y1), . . . , (Xn,Yn)} are i.i.d. from
unknown distribution P on X ×Y.

Learning algorithm: a mapping {(X1,Y1), . . . , (Xn,Yn)} z→ f̂n ∈ Y
X

Important: we are not necessarily modeling the distribution of (X,Y).

Goals:

▸ Prediction: small expected loss

L(f̂n) = E [`(Y, f̂n(X)) ∣ S] .

Prediction on a random example from same population. Approximated
by average on fresh test sample.

▸ Estimation: small ∥f̂n − f
∗
∥, or ∥θ̂ − θ∗∥, where f∗ or θ∗ are

parameters or functionals of P (e.g. regression function
f∗(x) = E[Y∣X = x], or f∗(x) = ⟨θ∗,x⟩, etc).
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Why not estimate the underlying distribution P (or, say, class-conditional
P(X∣Y = y)) first? Easier to directly estimate decision boundary.
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The Gold Standard

Bayes optimal function
f
∗
∈ arg min

f∶X→Y
L(f).

Bayes error:
L(f∗) = inf

f∶X→Y
L(f)

Of course, we cannot calculate any of these quantities since P is unknown.
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Bayes Optimal Function

Bayes optimal function f∗ takes on the following forms:

▸ Binary classification (Y = {0, 1}) with the indicator loss:

f
∗
(x) = I{η(x) ≥ 1/2}, where η(x) = E[Y∣X = x]

▸ Regression (Y = R) with squared loss:

f
∗
(x) = η(x), where η(x) = E[Y∣X = x]
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Consistency and rates

Consistency:
lim
n→∞

L(f̂n) = L(f∗) almost surely

Good news: consistency is possible under minimal assumptions.
Bad news: no nontrivial rate is possible unless we place strong(er)
assumptions on the distribution.

Goal: weak and “reasonable” assumptions on underlying distribution that
still yield “rates” (in terms of n) for

L(f̂n) − L(f∗).

Keep in mind: in neural networks, model grows with n too.

13 / 64



Generalization

“Generalization” in the literature may refer to one of

▸ Small L(f̂n)

▸ Small L(f̂n) − L(f∗)

▸ Small L(f̂n) − L̂(f̂n) (a posteriori interpretation)
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Suppose ∥xt∥ = 1, yt ∈ ±1, and indicator loss `(y,y ′) = I{y ≠ y ′}.

Margin w.r.t. (x1,y1), . . . , (xT ,yT ):

γ = [max
∥w∥=1

min
i∈[T]

yi ⟨w,xi⟩] ∨ 0.

16 / 64



Claim: several procedures f̂n enjoy

EL01(f̂n) − L01(w
∗
)

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
0

≤
1

n
× E [γ

−2
]

Remarks: (a) dim-independent, (b) ∃ extension to “small” nonzero L01(w
∗
).

Assumption is not about parametric or nonparametric form of P, but rather
on what happens at the boundary.
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Perceptron

(x1,y1), . . . , (xT ,yT ) ∈ X × {±1} (T may or may not be same as n)

Maintain a hypothesis wt ∈ Rd (initialize w1 = 0).

On round t,

▸ Consider (xt,yt)

▸ Form prediction ŷt = sign(⟨wt,xt⟩)

▸ If ŷt ≠ yt, update
wt+1 = wt + ytxt

else
wt+1 = wt
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Theorem (Novikoff ’62): Perceptron makes at most γ−2 mistakes
(and corrections) on any sequence of examples with margin γ.
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Consequence for i.i.d. data (I)

One pass on i.i.d. sequence (X1,Y1), . . . , (Xn,Yn) (i.e. T = n).

Claim: For τ ∼ unif(1, . . . ,n),

EL01(wτ) ≤
1

n
× E [γ

−2
] .
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Consequence for i.i.d. data (II)

Cycle through data (X1,Y1), . . . , (Xn,Yn) repeatedly until no more mistakes
(i.e. T ≤ nγ−2).

Then final hyperplane of Perceptron separates the data perfectly, i.e. finds
empirical risk minimizer (ERM), L̂01(wT ) = 0.

Claim:

EL01(wT ) ≤
1

n
× E [γ

−2
]
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Proof: Shortcuts: z = (x,y) and `(w, z) = I{y ⟨w,x⟩ ≤ 0}. Then

ESEZ`(wT ,Z) = ES,Zn+1 [
1

n + 1

n+1
∑
t=1
`(w

(−t),Zt)]

where w(−t) is Perceptron’s final hyperplane after cycling through data
Z1, . . . ,Zt−1,Zt+1, . . . ,Zn+1.

That is, leave-one-out is unbiased estimate of expected loss.

Now consider cycling Perceptron on Z1, . . . ,Zn+1 until no more errors. Let
i1, . . . , im be indices on which Perceptron errs in any of the cycles. We
know m ≤ γ−2. However, if index t ∉ {i1, . . . , im}, then whether or not Zt
was included does not matter, and Zt is correctly classified by w(−t). Claim
follows.
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SGD vs Multi-Pass

Perceptron update can be seen as gradient descent step with respect to loss

max{−Yt ⟨w,Xt⟩ , 0}

and step size 1.

The two consequences presented earlier can be viewed, resp., as SGD on

Emax{−Y ⟨w,X⟩ , 0}

and multi-pass cycling “SGD” on

1

n

n

∑
t=1

max{−Yt ⟨w,Xt⟩ , 0} .

The first optimizes expected loss, the second optimizes empirical loss.
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A few observations

Much hype in ML community is about surprising performance of deep
networks despite (a) overparametrization and (b) fitting data perfectly.

(a) We already see from the Perceptron example that number of
parameters is not necessarily the only complexity notion (dimension d
never appears and we can take d = ∞).

(b) In high enough dimension, any n points in general position are linearly
separable (hence, zero empirical loss for multi-cycle Perceptron).
Perfectly fitting the data does not necessarily contradict good
generalization.
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Bias-Variance Tradeoff

Goal:
L(f̂n) − L(f∗)

In simple problems we might get away with having no bias-variance
decomposition (e.g. as we just saw in linearly separable case).

For more complex problems (weak assumptions on P, nonparametrics), we
need to stratify the space according to some “complexity” and resort to a
bias-variance decomposition.
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Bias-Variance in Stat/ML

Bias-variance decomposition often studied in ML:

L(f̂n) − L(f∗) = L(f̂n) − inf
f∈Fn

L(f)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Estimation Error

+ inf
f∈Fn

L(f) − L(f∗)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Approximation Error

Bias-variance decomposition often studied in Statistics (square loss):

EL(f̂n) − L(f∗) = E ∥f̂n − f
∗
∥
2

L2(PX) = E ∥f̂n − Ef̂n∥
2

L2(PX) + E ∥Ef̂n − f∗∥
2

L2(PX)

Trade-off is parametrized by tunable parameter(s) of the procedure.
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Classical picture: U-shaped curve

Remark: bias-variance curve for neural networks appears to be more
complex.
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Estimation error and inductive bias

If we guessed correctly and f∗ ∈ F , then

L(f̂n) − L(f∗) = L(f̂n) − inf
f∈F

L(f)

F as inductive bias: one hopes that prior knowledge about the problem
ensures that approximation error inff∈F L(f) − L(f∗) is small.

Most emphasis is on
L(f̂n) − inf

f∈Fn

L(f)

Typically:
Fn = {fθ ∶ comp(θ) ≤ Bn}

Remark: not too clear what comp(θ) should be for neural nets.
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For Empirical Risk Minimizer

f̂n = argmin
f∈F

L̂(f),

it holds that
EL(f̂n) − inf

f∈F
L(f) ≤ E sup

f∈F
[L(f) − L̂(f)] .
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Shorthand: z = (x,y), g(z) = `(y, f(x)), G = ` ○ F .

Empirical process:

g↦
1

√
n

n

∑
i=1

[g(Zi) − Eg]

Rademacher/Bernoulli process:

g↦
1

√
n

n

∑
i=1
εig(Zi)

where εi independent symmetric ±1 random variables.

It holds that

E sup
g∈G

n

∑
i=1

[g(Zi) − Eg] ≤ 2E sup
g∈G

n

∑
i=1
εig(Zi)

and the other direction holds (with additive factor if G is not symmetric).

Crucially, we can study the Rademacher process conditionally on Zi’s.
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Vapnik-Chervonenkis

If G ⊆ {±1}Z , empirical Rademacher averages

R̂n(G) ≜ E [sup
g∈G

n

∑
i=1
εig(Zi) ∣ Z1∶n] ≲

√
VCdim(G)

n
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Example: Neural Nets

Fix architecture of a neural network with L layers, K parameters, and ReLU
activation (this defines F). (Bartlett et al ’17): VC dimension of sign(F) is
O(KL logK), tight up to logs.

VC bound is vacuous when number of parameters is large. Not a good
notion of complexity (see Bartlett et al ’98)

Margin analysis comes to the rescue.
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Margin analysis (e.g. Koltchinskii-Panchenko’02)

Fix F ⊆ RX . With probability at least 1 − δ, for all f ∈ F ,

L01(f) ≤
1

n

n

∑
i=1

I{Yif(Xi) ≤ γ}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
γ−margin mistakes

+
c

γ
R̂n(F) +O

⎛

⎝

√
log(1/δ)

n

⎞

⎠

Focus lifted from understanding sign patterns to understanding real-valued
behavior. Example: for Flin = {x↦ ⟨w,x⟩ ∶ ∥w∥ ≤ B} and ∥xi∥ ≤ 1,

R̂n(Flin) ≤
B

√
n

▸ Dimension-independent for Flin.
▸ Union bound over shells of increasing complexity.
▸ A posteriori interpretation.
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Complexity for Neural Nets?

Just as in the case of Flin, we would like to define a “ball” in the space of
neural networks:

{fθ ∶ comp(θ) ≤ B}

for some notion of complexity comp.

Example:

comp(θ) =
L

∑
j=1

∥W
j
∥
F

Not invariant under layer scaling. Next try:

comp(θ) =
L

∏
j=1

∥W
j
∥
F

See (Neyshabur and Srebro ’15), (Neyshabur at al ’17), (Bartlett et al ’17), and

references therein for more variations.
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Complexity for Neural Nets?

(Golowich et al ’18): For a class of neural networks with ∏
L
j=1 ∥W

j
∥F ≤ B,

Rademacher averages bounded by

Õ(min{
B

n1/4 ,
B
√
L

n1/2 }) .

As close to Perceptron analogue as we can get at this point.

But does SGD on neural networks control this measure of complexity?
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(Zhang et al 2017)
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(Neyshabur et al 2015)

40 / 64



(Poggio et al 2017)
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Can a learning method be successful if it memorizes the training data?

Linear separators with margin is one example. However, it is still in the
“uniform convergence” regime. To avoid “uniform convergence” arguments,
we consider the second style of bias-variance trade-off.
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An empirical example

0.0 0.2 0.4 0.6 0.8 1.0 1.2
lambda

10 1

lo
g(

er
ro

r)
Kernel Regression on MNIST

digits pair [i,j]
[2,5]
[2,9]
[3,6]
[3,8]
[4,7]

λ = 0: the interpolated solution, perfect fit on training data.
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Isolated phenomenon? No
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▸ AdaBoost, random forests (Schapire et al. 1998, Wyner et al. 2017)

▸ Deep learning, kernel learning (Zhang et al. 2016, Belkin, Ma &
Mandal 2018)

▸ Datasets: MNIST, CIFAR-10, etc (Belkin, Ma & Mandal 2018)
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History: interpolating rules in Stat/ML

Very few existing results (especially in regression).

Recent progress on local/direct interpolation schemes:

▸ Geometric simplicial interpolation and weighted kNN (Belkin, Hsu &
Mitra 2018)

▸ Nonparametric Nadaraya-Watson estimator with singular kernels
(Shepard 1968, Devroye et al. 1998, Belkin, Rakhlin & Tsybakov 2018)

Recent progress on inverse interpolation schemes:

▸ Kernel ridgeless regression (Liang & Rakhlin 2018)

Lots of interpolation work in approximation theory, but results are “up to
noise level.”
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Min-norm interpolation:

f̂n ∶= argmin
f∈H

∥f∥H, s.t. f(xi) = yi, ∀i ≤ n .

Note: GD/SGD started from 0 converges to minimum-norm solution.
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Implicit regularization

Geometric properties of the data design X, high
dimensionality, and curvature of the kernel ⇒ interpolated

solution generalizes.
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Closed-form solution

By the Representer Theorem, min-norm interpolant is

f̂n(x) = K(x,X)K(X,X)−1Y

when K(X,X) ∈ Rn×n is invertible.

Difficulty in analyzing bias/variance of f̂n: it is not clear how the random
matrix K−1 “aggregates” Y’s between data points.
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Effective dimension

Let λ1, . . . , be eigenvalues of XX∗. Define

dim(XX
∗
) = ∑

j

λj (
XX∗

d
)

[γ + λj (
XX∗

d
)]

2

Compare with regularized least squares as low pass filter:

dim(XX
∗
) = ∑

j

λj (
XX∗

d
)

λ + λj (
XX∗

d
)

50 / 64



Lower-bounds: high-dim phenomenon (work with X. Zhai)

Take Laplace kernel

Kσ(x,x
′
) = σ

−d exp{−∥x − x
′
∥ /σ}

f̂n is minimum norm interpolation, as before.

Theorem: for odd dimension d, with probability 1 −O(n−1/2), for any
choice of σ,

E ∥f̂n − f
∗
∥
2
≥Ωd(1).

Hence, interpolation with Laplace kernel does not work in constant d.
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What is overfitting?

▸ Fitting data too well?

▸ In-sample loss is much smaller than out of sample?

▸ Model too complex?

▸ Bias low, variance high?

Key takeaway: we should not conflate these.

53 / 64



54 / 64



Conventional wisdom in stat/ml
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Conventional wisdom in stat/ml
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Conventional wisdom in stat/ml
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Conventional wisdom in stat/ml

Wyner et al. (2017):
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Observe: 1-Nearest Neighbor is interpolating. However, one cannot
guarantee EL(f̂n) − L(f∗) small.

Cover-Hart ’67:
lim
n→∞

EL(f̂n) ≤ 2L(f∗)
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Simplicial interpolation

(Belkin, Hsu & Mitra 2018) showed under regularity conditions, simplicial
interpolation f̂n

lim sup
n→∞

E ∥f̂n − f∗∥
2
≤

2

d + 2
E(f∗(X) − Y)2

Blessing of high dimensionality!
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Interpolation for Classification – Wyner et al

▸ Spiked-smooth functions

Wyner et al, “Explaining the Success of AdaBoost and Random Forests as Interpolating Classifiers,”

2017
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Interpolation for Classification – Wyner et al

Wyner et al, “Explaining the Success of AdaBoost and Random Forests as Interpolating Classifiers,”

2017
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