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Outline

Motivation
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Feed-forward neural network:
f(x) = Wo(W o(...o(W'X)...))
where o is applied coordinate-wise. E.g. ReLU o(a) = max{a,0}.

Empirical loss

£() = 3. log(1 + exp{-Vf(X0)})

i=1

> Generalization
> Optimization

> Expressive power
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Table 1: The training and test accuracy (in percentage) of various models on the CIFAR10 dataset.
Performance with and without data augmentation and weight decay are compared. The results of
fitting random labels are also included.

model # params  random crop weight decay train accuracy  test accuracy
yes yes 100.0 89.05
. yes no 100.0 89.31
Inception 1,649,402 o yes 100.0 86.03
no no 100.0 85.75
(fitting random labels) no no 100.0 9.78
Inception w/o no yes 100.0 83.00
BatchNorm 1,649,402 no no 100.0 82.00
(fitting random labels) no no 100.0 10.12
yes yes 99.90 81.22
yes no 99.82 79.66
Alexnet 1,387,786 o - 100.0 7736
no no 100.0 76.07
(fitting random labels) no no 99.82 9.86
no yes 100.0 53.35
MLP 3x512 1,735,178 o o 100.0 5239
(fitting random labels) no no 100.0 10.48
no yes 99.80 50.39
MLP 1x512 1,209,866 o o 100.0 5051
(fitting random labels) no no 99.34 10.61
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Error
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Unclear if worse performance for smaller networks is due to inability to find
a good solution in the empirical landscape, or the model is not rich enough.

7/ 64



Outline

Statistical Learning Setup
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Supervised Learning: data S = {(X1,Y1),...,(Xn,Yn)} are i.i.d. from
unknown distribution P on X x ).

Learning algorithm: a mapping {(X1,Y1),...,(Xn,Yn)} —> foey®
Important: we are not necessarily modeling the distribution of (X,Y).
Goals:
> Prediction: small expected loss
L(fn) =E[0(Y,Ta(X)) | S].

Prediction on a random example from same population. Approximated
by average on fresh test sample.

> Estimation: small H?n —f*|, or H@f S*H, where f* or 0" are
parameters or functionals of P (e.g. regression function
*(x) = E[Y[X =x], or f*(x) =(0",x), etc).
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Why not estimate the underlying distribution P (or, say, class-conditional
P(X|Y =y)) first? Easier to directly estimate decision boundary.
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The Gold Standard

Bayes optimal function

f* e arg min L(f).
XY

Bayes error:

L(r) = inf L(7)

Of course, we cannot calculate any of these quantities since P is unknown.
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Bayes Optimal Function

Bayes optimal function f* takes on the following forms:

> Binary classification () = {0,1}) with the indicator loss:

f (x) =I{n(x) 2 1/2}, where n(x)=E[Y|X=x]

> Regression () = R) with squared loss:

f*(x) =n(x), where n(x)=E[Y|X=x]
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Consistency and rates
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Consistency:
lim L(fn) =L(f")  almost surely

Good news: consistency is possible under minimal assumptions.
Bad news: no nontrivial rate is possible unless we place strong(er)
assumptions on the distribution.

Goal: weak and “reasonable” assumptions on underlying distribution that
still yield “rates” (in terms of n) for

L(fn) - L(f").

Keep in mind: in neural networks, model grows with n too.



Generalization

“Generalization” in the literature may refer to one of
» Small L(f,)
» Small L(fn) - L(f*)

» Small L(f,) -L(fn)  (a posteriori interpretation)
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Outline

Example: Linear Classifiers (aka 1-Layer NN)
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Suppose x| = 1, yi € +1, and indicator loss €(y,y") = I{y #y'}.
Margin w.r.t. (x1,Y1),..., (x1,y71):

Y = [max min yi(W,Xi)]VO-

[wi=1 ie[T]
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Claim: several procedures fr, enjoy

I * 1 —
]EL()](fn) - Lm (W ) < — X E[’Y 2:|
~— n

0

Remarks: (a) dim-independent, (b) 3 extension to “small” nonzero Ly (w").

Assumption is not about parametric or nonparametric form of P, but rather
on what happens at the boundary.



Perceptron

(x1,Y1)y- .-, (x1,yT) € X x {1} (T may or may not be same as n)
Maintain a hypothesis wy € R4 (initialize wy = 0).

On round t,
> Consider (xt,Yt)
» Form prediction T = sign({(wi, X))

> If Jt # y¢, update
Wi+l = Wt + YiXt

else
Wil = Wy
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Theorem (Novikoff ’62): Perceptron makes at most y > mistakes
(and corrections) on any sequence of examples with margin y.
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Consequence for i.i.d. data (I)

One pass on i.i.d. sequence (X1,Y1),...,(Xn,Yn) (i.e. T=n).

Claim: For T ~ unif(1,...,n),

1 -
ELy (wr) < — xE[y 1.
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Consequence for i.i.d. data (II)
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Cycle through data (X1,Y1),..., (Xn, Yn) repeatedly until no more mistakes
(ie. T<ny™).

Then final hyperplane of Perceptron separates the data perfectly, i.e. finds

empirical risk minimizer (ERM), Lo, (wr) =0.

Claim: y
ELy (wr) < — xE [v™?]
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Proof: Shortcuts: z = (x,y) and {(w,z) = I{y (w,x) < 0}. Then
1 n+1 (1)
EsEz¢ Z)=E — (w7 Z
sEzt(wr,Z) =Es z,., n+1t:21 (W, Zy)
where w(™ is Perceptron’s final hyperplane after cycling through data

Z1,o 0 Ze1, Zests o It

That is, leave-one-out is unbiased estimate of expected loss.

Now consider cycling Perceptron on Zi,...,Zn+1 until no more errors. Let
i1,...,1im be indices on which Perceptron errs in any of the cycles. We
know m <y 2. However, if index t ¢ {i1,...,im}, then whether or not Z,

was included does not matter, and Z; is correctly classified by w(™Y. Claim
follows.



SGD vs Multi-Pass

Perceptron update can be seen as gradient descent step with respect to loss
max {-Y¢ (w, X¢),0}

and step size 1.

The two consequences presented earlier can be viewed, resp., as SGD on
E max {-Y (w,X),0}

and multi-pass cycling “SGD” on

M=

max{—Yt <W7 Xt) ,0} .

31

t=1

The first optimizes expected loss, the second optimizes empirical loss.
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A few observations

Much hype in ML community is about surprising performance of deep
networks despite (a) overparametrization and (b) fitting data perfectly.

(a) We already see from the Perceptron example that number of
parameters is not necessarily the only complexity notion (dimension d
never appears and we can take d = o0).

(b) In high enough dimension, any n points in general position are linearly
separable (hence, zero empirical loss for multi-cycle Perceptron).
Perfectly fitting the data does not necessarily contradict good
generalization.
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Outline

Bias-Variance Tradeoff
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Bias-Variance Tradeoff
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Goal:
L(fn) - L(f*)

In simple problems we might get away with having no bias-variance
decomposition (e.g. as we just saw in linearly separable case).

For more complex problems (weak assumptions on P, nonparametrics), we
need to stratify the space according to some “complexity” and resort to a
bias-variance decomposition.



Bias-Variance in Stat/ML

Bias-variance decomposition often studied in ML:
L(fh) -L(f*) = L(fn) - inf L(f) +  inf L(f)-L(f")
feFn feFn

— —
Estimation Error Approximation Error

Bias-variance decomposition often studied in Statistics (square loss):

2
L2 (Px)

2
L2(Px)

2

EL(fn) - L(f*) = E|fn - | L2(Px)

=E|fn - Efn| +E|Efn - |

Trade-off is parametrized by tunable parameter(s) of the procedure.
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Classical picture: U-shaped curve
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FIGURE 2.11. Test and training error as a function of model complexity.

Remark: bias-variance curve for neural networks appears to be more
complex.
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Estimation error and inductive bias

If we guessed correctly and f* € F, then

L(f) ~L(f) = L(x) - gljfEL(f)

F as inductive bias: one hopes that prior knowledge about the problem
ensures that approximation error inf; » L(f) - L(f*) is small.

Most emphasis is on
L(fn) — inf L(f)
feFn
Typically:
Fn ={fo :comp(0) <Bn}

Remark: not too clear what comp(0) should be for neural nets.
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Outline

Uniform Deviations Regime
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For Empirical Risk Minimizer

n = argmin L(f),
feF

it holds that
EL(fn) - inf L(f) < Esup [L(f) - L(f)].
feF feF

31 / 64



32 / 64

Shorthand: z = (x,y), g(z) = {(y,f(x)), G =Lo F.

Empirical process:
1
g- —/=
n {

™=

[9(Z1) - Eg]

Il
-

i

Rademacher/Bernoulli process:
1 n
»— > €ig(Z;
Jn L; 19(Z:)
where €; independent symmetric +1 random variables.
It holds that

Esupz 9(Z:) - Eg] <21ESt€1pZ€ 19(Z1)

9¢g i=1

and the other direction holds (with additive factor if G is not symmetric).

Crucially, we can study the Rademacher process conditionally on Z;’s.



Vapnik-Chervonenkis

If G ¢ {+1}%, empirical Rademacher averages

. ] B /VCdim(G)
mn ~ n

7a(0) 2E [sup S eig(2:)

9€g i=1
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Example: Neural Nets
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Fix architecture of a neural network with L layers, K parameters, and ReLLU
activation (this defines F). VC dimension of sign(F) is
O(KLlogK), tight up to logs.

VC bound is vacuous when number of parameters is large. Not a good
notion of complexity (see Bartlett et al 98)

Margin analysis comes to the rescue.



Margin analysis (e.g. Koltchinskii-Panchenko’02)

Fix F ¢ R*. With probability at least 1 -8, for all f € F,

Lu(f) < % gl{vif(xi) <v} +§,@n(f) 10 (, /log(i/é))

Y-margin mistakes

Focus lifted from understanding sign patterns to understanding real-valued
behavior. Example: for Fi, = {x = (w,x) : |[w| < B} and |xi] <1,

T (Fiin) < \/_

» Dimension-independent for Fjiy.
» Union bound over shells of increasing complexity.
» A posteriori interpretation.
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Complexity for Neural Nets?

Just as in the case of Fii,, we would like to define a “ball” in the space of

neural networks:
{fo : comp(0) < B}

for some notion of complexity comp.

Example:
L
comp(® = S|,
j=

Not invariant under layer scaling. Next try:
L :
comp(®) = [T [ W]
j=1

See (Neyshabur and Srebro ’15), (Neyshabur at al ’17), (Bartlett et al ’17), and

references therein for more variations.
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Complexity for Neural Nets?

(Golowich et al "18): For a class of neural networks with HjL:1 W |r < B,
Rademacher averages bounded by

~( . [ B BVL
O [ min W,W o

As close to Perceptron analogue as we can get at this point.

But does SGD on neural networks control this measure of complexity?
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Outline

Memorization Regime
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Table 1: The training and test accuracy (in percentage) of various models on the CIFAR10 dataset.
Performance with and without data augmentation and weight decay are compared. The results of
fitting random labels are also included.

model # params  random crop weight decay train accuracy  test accuracy
yes yes 100.0 89.05
. yes no 100.0 89.31
Inception 1,649,402 o yes 100.0 86.03
no no 100.0 85.75
(fitting random labels) no no 100.0 9.78
Inception w/o no yes 100.0 83.00
BatchNorm 1,649,402 no no 100.0 82.00
(fitting random labels) no no 100.0 10.12
yes yes 99.90 81.22
yes no 99.82 79.66
Alexnet 1,387,786 o - 100.0 7736
no no 100.0 76.07
(fitting random labels) no no 99.82 9.86
no yes 100.0 53.35
MLP 3x512 1,735,178 o o 100.0 5239
(fitting random labels) no no 100.0 10.48
no yes 99.80 50.39
MLP 1x512 1,209,866 o o 100.0 5051
(fitting random labels) no no 99.34 10.61
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CIFAR-10
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Error in Cifar-10
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Can a learning method be successful if it memorizes the training data?
Linear separators with margin is one example. However, it is still in the

“uniform convergence” regime. To avoid “uniform convergence” arguments,
we consider the second style of bias-variance trade-off.
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An empirical example

Kernel Regression on MNIST

10—1 4
digits pair [i,j]
—o— [2,5]
[2,9]
[3.6]
[3.,8]
[4,7]

log(error)

—_
—h—
—
——

0.0 0.2 0.4 0.6 0.8 1.0 1.2
lambda

A = 0: the interpolated solution, perfect fit on training data.
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Isolated phenomenon? No

To Understand Deep Learning We Need to Understand
Kernel Learning

Mikhail Belkin, Siyuan Ma, Soumik Mandal
UNDERSTANDING DEEP LEARNING REQUIRES RE- Department of Computer Science and Engineering
THINKING GENERALIZATION Ohio State University
{mbelkin, masi] @cse.ohio-state.edu, mandal. 32@osu.cdu
Chiyuan Zhang" Samy Bengio Moritz Hardt Yy
Massachusetts Institute of Technology Google Brain Guoogle Brain M \ o fe
chiyuaninit. cdu bengiodgoogLe. com nrtzegosgle. com Covn tpaaion o, narpolton
Benjamin Reeht! Orinl Vinyals -
University of California, Berkeloy Goagle DecpMind
brechtenerkeley. edu viryalsegeogie. con o G e o v
Cov oo o
Table 1: The training and test accuracy (in percentage) of various models on the CIFAR10 dataset. |
Performance with and without data augmentation and weight decay are compared. The results of o
fitting random labels are also included . . e
o g JoE ] e .
‘model #params  random crop  weightdeeay  (rain accuracy  test accuracy - o rapn By e
yes yes 100.0 89.05 IR T S T —
) yes no 100.0 8931 apochs wwocts
Inception 1,649,402 - s o se01 .
no no 100.0 8575 iy bl
(fitting random labels) o no 100.0 978 G e
Inception wia o yes 100.0 83.00 3 .
BaichNorm 1049402 o o 1000 8200
tfitting random labels) no no 100.0 10.12 s
yes yes 99.90 122 g o
. yes no 99.82 79.66
Alexnet 1.387.786 - ver 000 1736 )
no no 100.0 7607
(fitting random labels) o no 99.82 936
o yes 1000 5335 .
MLESKIS LGS AT o o 100.0 5239 K (e et (4 1070
{fitting random labels) o no 100.0 1048 - -
MLPIxSIZ 1209866 & B 248 e R — T — i L]
o no 100.0 5051 . . .
(fitting random labels) o no 99.34 10.61
(&) TIMIT (5 - 10" subsamples)  (¢) HINT-S (2 10* subsamples) ()20 Newsgroups
] = =
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» AdaBoost, random forests (Schapire et al. 1998, Wyner et al. 2017)

> Deep learning, kernel learning (Zhang et al. 2016, Belkin, Ma &
Mandal 2018)

> Datasets: MNIST, CIFAR-10, etc (Belkin, Ma & Mandal 2018)
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History: interpolating rules in Stat/ML
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Very few existing results (especially in regression).
Recent progress on local/direct interpolation schemes:

» Geometric simplicial interpolation and weighted kNN (Belkin, Hsu &
Mitra 2018)

> Nonparametric Nadaraya-Watson estimator with singular kernels
(Shepard 1968, Devroye et al. 1998, Belkin, Rakhlin & Tsybakov 2018)

Recent progress on inverse interpolation schemes:

> Kernel ridgeless regression (Liang & Rakhlin 2018)

Lots of interpolation work in approzimation theory, but results are “up to
noise level.”



Min-norm interpolation:

n = argmin ||y, s.t. f(xi) =yi, Vi<n .
feH

Note: GD/SGD started from 0 converges to minimum-norm solution.
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Implicit regularization

Geometric properties of the data design X, high
dimensionality, and curvature of the kernel = interpolated
solution generalizes.
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Closed-form solution
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By the Representer Theorem, min-norm interpolant is
Tr(x) = K(x, X)K(X,X)'Y

when K(X,X) e R™™ is invertible.

Difficulty in analyzing bias/variance of To: it is not clear how the random
matrix K™ “aggregates” Y’s between data points.



Effective dimension

Let A1, ..., be eigenvalues of XX*. Define

dim(XX*) = ZL*)Q
7 lyen (55)]

Compare with regularized least squares as low pass filter:

Y (Xx*)

A+ )\ (XX*)

dim(XX") = Z
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Lower-bounds: high-dim phenomenon (work with X. Zhai)

Take Laplace kernel

Ko(x,x") = 0 ¢ exp{-|x - x| /o}
.. is minimum norm interpolation, as before.

Theorem: for odd dimension d, with probability 1 — O(nfl/ 2

choice of o,

), for any

B[ - > Qa(1).

Hence, interpolation with Laplace kernel does not work in constant d.
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Outline

What is overfitting?
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What is overfitting?

> Fitting data too well?
> In-sample loss is much smaller than out of sample?
> Model too complex?

> Bias low, variance high?

Key takeaway: we should not conflate these.
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Overfitting

From Wikipedia, the free encyclopedia

This article needs iti itati for verification. Please help improve this article by adding
citations to reliable sources. Unsourced material may be challenged and removed. (August 2017)

(Learn how and when to remove this template message)

In statistics, overfitting is "the production of an analysis that corresponds too closely or
exactly to a particular set of data, and may therefore fail to fit additional data or predict
future observations reliably".[‘] An overfitted model is a statistical model that contains
more parameters than can be justified by the data.?) The essence of overfitting is to have
unknowingly extracted some of the residual variation (i.e. the noise) as if that variation
represented underlying model structure. 3145

Underfitting occurs when a statistical model cannot adequately capture the underlying
structure of the data. An underfitted model is a model where some parameters or terms
that would appear in a correctly specified model are missing.lz] Underfitting would occur,
for example, when fitting a linear model to non-linear data. Such a model will tend to have
poor predictive performance.

Overfitting and underfitting can occur in machine learning, in particular. In machine
learning, the phenomena are sometimes called "overtraining" and "undertraining".

The possibility of overfitting exists because the criterion used for selecting the model is
not the same as the criterion used to judge the suitability of a model. For example, a
model might be selected by maximizing its performance on some set of training data, and
yet its suitability might be determined by its ability to perform well on unseen data; then
overfitting occurs when a model begins to "memorize" training data rather than "learning"
to generalize from a trend.

Figure 1. The green line represents an overfitted ~ &3
model and the black line represents a regularized
model. While the green line best follows the training
data, it is too dependent on that data and it is likely to
have a higher error rate on new unseen data,
compared to the black line.



Conventional wisdom in stat/ml
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22 2. How to Construct Nonparametric Regression Estimates?

Figure 2.3. The estimate on the right seems to be more reasonable than the
estimate on the left, which interpolates the data.

over F,,. Least squares estimates are defined by minimizing the empirical
L, risk over a general set of functions F,, (instead of (2.7)). Observe that
it doesn’t make sense to minimize (2.9) over all (measurable) functions f,
because this may lead to a function which interpolates the data and hence is
not a reasonable estimate. Thus one has to restrict the set of functions over




Conventional wisdom in stat/ml
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FIGURE 2.11. Test and training error as a function of model complexity.

Figure 2.11 shows the typical behavior of the test and training error, as
model complexity is varied. The training error tends to decrease whenever
we increase the model complexity, that is, whenever we fit the data harder.
However with too much fitting, the model adapts itself too closely to the
training data, and will not generalize well (i.e., have large test error). In




Conventional wisdom in stat/ml
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as seen in Figure 7.1. Training error consistently decreases with model
complexity, typically dropping to zero if we increase the model complexity
enough. However, a model with zero training error is overfit to the training
data and will typically generalize poorly.
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Conventional wisdom in stat/ml
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Wyner et al. (2017):

situations. Indeed, common lore in statistical learning suggests that perfectly fitting the training
data must inevitably lead to “overfitting.” This aversion is built into the DNA of a statistician who
has been trained to believe, axiomatically, that data can always be decomposed into signal and
noise. Traditionally, the “signal” is always modeled smoothly. The resulting residuals represent
the “noise” or the random component in the data. The statistician’s art is to walk the balance
between the signal and the noise, extracting as much signal as possible without extending the fit
to the noise. In this light, it is counterintuitive that any classifier can ever be successful if every
training example is “interpolated” by the algorithm and thus fit without error.

The computer scientist, on the other hand, does not automatically decompose problems into
signal and noisc. In many classical problems, like image detection, there is no noise in the classical
sense. Instead there are only complex signals. There are still residuals, but they do not represent
irreducible random errors. If the task is to classify images into those with cats and without, the
problem is hard not because it is noisy. There are no cats wearing dog disguises. Consequently,
the computer scientist has no dogmatic aversion to interpolating training data. This was the

breakthrough.



Outline

Discussion
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Observe: 1-Nearest Neighbor is interpolating. However, one cannot
guarantee EL(fy) — L(f*) small.

Cover-Hart ’67:
lim EL(fn) < 2L(f")
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Simplicial interpolation

(Belkin, Hsu 8’{ Mitra 2018) showed under regularity conditions, simplicial
interpolation fy,

. —_ 2 2 2
limsupE [fn —f«| < E(f (X)-Y
mawpB[F. - ] < 1205000 V)
L1 T1
' A
To T3 T2 3
Nearest neighbor Simplicial interpolation

Blessing of high dimensionality!
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Interpolation for Classification — Wyner et al

> Spiked-smooth functions

Wyner et al, “Explaining the Success of AdaBoost and Random Forests as Interpolating Classifiers,”

2017
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Interpolation for Classification — Wyner et al

o
=]
S
00 02 04 06 08 10 00 02 04 06 08 10
(a) one-NN (b) AdaBoost
=
«
=)
00 02 04 06 08 10
(c) Random Forests
Figure 5: Pe of one-NN, AdaBoost, and random forests on a pure noise response

surface with P (y = 1|x) = .8 and n = 400 training points.

Wyner et al, “Explaining the Success of AdaBoost and Random Forests as Interpolating Classifiers,”

2017 (=] =l = = o>
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