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Slow glassy dynamics

T =2000 K
= 1.0 , oxygen
E 08 \ SIOZ q=1 A
0 _ N S A L B S B S S S R S RN B RN S R S R L |
T WA= 121 il A
\ N T—2750K _ @ Silica %A
M Glycerol L
0 6 10 YA -
\ | A DGG1 g 4
8- W Salol e A 3’ -
0.4 \

log [ (poise)]

0.2 T—61OOPX

0.0 \

102 10" 10° 10' 10® 10° 10
i[ps]

00 01 02 03 04 05 06 07 08 09 1.0

T/T
Viscosity grows steeply upon supercooling a liquid

The glass problem: what is the mechanism behind this phenomenon?



Landscape of glasses:
* High-dimensional

* Non-convex

* Rugged

Similar to landscape of most problems treated in this program.
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Onset of glassiness
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Onset of glassiness
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Two dynamical regimes
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(hquid behaviour)

slow dynamics without
barrier crossing

slow dynamics with
barrier Crossing

T ~exp(AE/k,T)
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Mean Field (dense networks)

Barriers are proportional to the number of variables (extensive) t~ exp[N]

The two dynamical regimes are well separated:

e Short times: [im,__lim _~: t<N

 Long times: [im,_lim _ : t>>N

—

Results exist essentially in the short-time regime®

This talk is about the long-time regime
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Finite dimension (sparse networks)

The two dynamical regimes are NOT well separated

see Patrick-Grzegorz talk, last week

s |
/ _— non activated dynamics

Relaxation time

How can we disentangle them?

Can we rely on simple solvable models to describe activated dynamics?



Low T glass dynamics as Random Walk

PHYSICAL REVIEW E 67, 030501(R) (2003)

Hopping in a supercooled Lennard-Jones liquid: Metabasins, waiting time distribution,
and diffusion

B. Doliwa' and A. Heuer?
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We investigate the jump motion among potential energy minima of a Lennard-Jones model glass former by
extensive computer simulation. From the time series of minima energies, it becomes clear that the energy
landscape is organized in superstructures called metabasins. We show that diffusion can be pictured as a
random walk among metabasins, and that the whole temperature dependence resides in the distribution of
waiting times. The waiting time distribution exhibits algebraic decays: 7~ 2 for very short times and 7~ for
longer times, where a~2 near T,.. We demonstrate that solely the waiting times in the very stable basins
account for the temperature dependence of the diffusion constant.
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From large-d to 1d description

Phase space dynamics in Generic Model
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Bouchaud, 1992

I Trap Model (TM)

* Random walk on M-state fully- Renewal process
connected graph each time threshold is reached, memory is lost

- State 7 has random energy E,
from

Static Landscape

p(E)=exp(E )O(-E )

o]
dIR
D

* Transitions allowed between any
two states. Do not depend on
final state:

p,; = exp[-B(E-E,)] /M

&

Energy

Threshold Energy

B=1/k,T >~
Configuration space

b, =0




Bouchaud, 1992

Some features of the Trap Model

Distribution of Trapping Times t

W(T) ~ /T 5 @ =T/ T

x depends on distribution p

Logarithmic Energy

<E> ~-T log(t)

Weak Ergodicity breaking
When T<T , < T» =00

(full phase space can still be
visited)

Aging function 11(¢_,t_+t)

Probability of remaining in trap
between t_and ¢t _4t

(¢, ,t,(1+w))>H, (o)

w=tlt




Bouchaud, 1992

Some features of the Trap Model

Distribution of Trapping Times t

Logarithmic Ener
WT) ~ /T @ =TYT. : =

<E> ~-T log(t)

x depends on distribution p

Aging function 11(¢_,t_+t)

Probability of remaining in trap
between t_and ¢t _4t

I(t,,.t,(1+w))

(¢, ,t,(1+w))>H, (o)
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I Can the TM be useful?

Use Trap as null model for the understanding of
activated processes (in any context)

* Can we use the TM to understand activated dynamics in
generic models?
* Can it help us to understand their landscape?

Inference -> spiked tensor

Even Deep Neural Networks? In the following:

Follow Learning Dynamics Barriers not needed

Dynamics not blocked by barriers Landscape from activated dynamics




From spiked tensor to REM

Reconstructing from 15, ;. =W, i +v .. v
p
equivalent to mmimising H = — ) Z )Jil ..... iy Tiy - Ti) — TN (Z ~ )
1] 5euny p 2

H=— Z JiroipTiy -+ T, p-spin model

(a.k.a. spin MF paradigm for supercooled liquids)

In the large-p limit, p-spin simplifies in the Random Energy Model (REM)

Derrida, 1980



Derrida, 1980

I The simplest glass model

Random Energy Model (REM)

Thermodynamics:

* Nspins s,=0,1, M=2" states REM =lim p—spin
p=>©
* Each state has N neighbors Paradigmatic glass model

* States 7 have independent random
energy E from Gaussian p(E)

* “Metropolis” rate, only between

neighboring 1 (E,_E
states: p"’f_FEXp[_ﬁ —E))]
1 0 11 10
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Derrida, 1980

I The simplest glass model

Random Energy Model (REM)

Thermodynamics:

* Nspins s,=0,1, M=2" states REM =lim p—spin
p=>©
* Each state has N neighbors Paradigmatic glass model

* States 7 have independent random
energy E from Gaussian p(E) N neighbors have E€[—V2Nlog N,v2N log N]

e ! ) . E
Metropolis” rate, only between E,=—2NlogN , lim=—"=0
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Derrida, 1980

I The simplest glass model

Random Energy Model (REM)

Thermodynamics:

* Nspins s,=0,1, M=2" states REM =lim p—spin
p=>©
* Each state has N neighbors Paradigmatic glass model

* States 7 have independent random

energy E from Gaussian p(E) N neighbors have E€[—V2Nlog N,v2N log N]
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Gayrard, 2017
MBJ, Cammarota & Biroli, 2018

Trap behavior in the REM
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* Plots are for exponential p(E)?X< Cammarota &
. Gaussian p(E): more involved analysis of I1(t ¢ +¢). Marnar, 2018

Exact proof by V. Gayrard for II with Gaussian p(E). Gayrard, 2017

Other models were shown to be trap (e.g. number partitioning *Dyre 1987, Bouchaud and Reichman 2003
problem). Kurchan & Junier, 2004



A dynamics ruled by Entropy

Trap Model

Threshold
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Energy
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Configuration space

Energy

Step Model

Configuration space

Every configuration dynamically connected with all the others

But let’s not introduce artificial barriers!
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Step models _
>
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Trap model with Ll
metropolis dynamics
1 —B (E.~E,
pi’j:Mmin[l,e B (E, EJ)]
>
Configuration space
Low'T: Barrat, Mézard, Journal de Physique 15, 941 (1995)

« Aging results do not depend on temperature
«  Slowing down entirely due to entropic reasons

Higher T: Bertin, J. Phys. A: Math. Gen. 36, 10683 (2003)

« Aging results do depend on temperature
«  Slowing down due to entropy-energy competition
«  Though escaping times still non-Arrhenius

C.C. and E. Marinari PRE 92, 010301 (2015)
« and 1t1s impossible to recover the trap aging behaviour



Energy/Entropy-ruled path selection
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Configuration space

«  Low energy typically decreases
« lIhgh'l] energy regularly bounces

back, without apparent need
« Effective Threshold Energy

«  Dynamical Basins can be defined
C.C. and E. Marinari PRE 92, 010301 (2015)



Energy/Entropy-ruled path selection
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Energy/Entropy-ruled path selection
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«  Low energy typically decreases

0.01

« lIhgh'l] energy regularly bounces

back, without apparent need
« Effective Threshold Energy

«  Dynamical Basins can be defined
C.C. and E. Marinari PRE 92, 010301 (2015)
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Energy/Entropy-ruled path selection
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Effective Trap dynamics
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Further results

REM used as a first proxy for p-spin (i.e. first steps to dynamics of spiked tensor)

* but REM neglects correlations of neighbouring conf.-> Correlated REM
MBJ Achard Biroli 2018

* the p-spin challenge:

simulations (well hidden effective threshold and dynamical basins)

Ravasio, Billoire, Biroli, CC

analydc study of barriers -> evidence for a minimal barrier
Ros, Biroli, CC, arXiv:1809.05448 (2018,

Rocchi, Franz

 supercooled liquids, the ultimate challenge:

simulations (barriers, metabasins, localisation)
MBJ, Biroli, Reichman



Conclusion

Goal: understand finite d and sparse networks dynamics
* Study Mean Field models at t ~ exp(N)

« Effective description (Trap-like) of dynamics in rough landscapes

« Effective description (Trap-like) of dynamics even without barriers

- effective barriers can be energetic or entropic

Glassy landscapes: competition of both factors

- Will effective trap descriptions be useful to predict glass dynamics?

- Will effective trap dynamices find application elsewhere?



Thank you!



* p-spin = p-body interactions

* For activated dynamics need finite

N, sO p=N

 Energy correlations in the p-spin:

E,E,=Ngq,,

q,. overlap b/ aand b

 E.qg. correlation between neighbors

REM

p-spin

E,E,=e *“>0 , a=

* Forany N<oo there is always a
positive correlation, so the p-spin
cannot tend to the REM

P

<
N 1

MBJ, Achard & Biroli, 2018

Connecting REM and p-spin

Correlated REM (CREM)
Construct a REM

Impose correlations of the p-
spin without constraint p= N

Smooth interp. between models:

a ~ 1/N: p-spin regime

o ~ 1: weak correlations

a = log(N): REM behavior




BarrlerS N p-S pl n Ros, Biroli, CC, arXiv:1809.05448 (2018)

X = entropy of stationary points

Ll P I
¢ x=0 ()
® x=.0005 ot 1o
-1.158 | , _7001 ™« critical —»
B /+  points
A x=0013 /o
— —]__16]_ B * x=002 , xﬂ 1
= /
N ff '
S -1.164 | /o
H ; i i
N minima barriers !
-1.167 | o) o) o)
Egs ™ 0 1 0 . A 0 . A | . .
0 0.2 0.4 0.6 gy 09 1






