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Slow glassy dynamics

Viscosity grows steeply upon supercooling a liquid

Examples : 
CaAl2SiO8

Tm=2000 K

Morgan and Spera, GCA 2001

Cage motion (β régime) extends to long times at low T Horbach, Kob PRB 1999

matthieu.micoulaut@upmc.fr Atomic modeling of glass – LECTURE 11 DYNAMICS

The glass problem: what is the mechanism behind this phenomenon?



Landscape of glasses:
● High-dimensional
● Non-convex
● Rugged

Similar to landscape of most problems treated in this program. 
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the promise of a clearer, possibly thermodynamic, understanding
of the glass transition.

Glasses can be formed in numerous ways4. The term ‘glass
transition’, however, is commonly used to designate the disappear-
ance of structural relaxation in a liquid on cooling to low tempera-
tures; the material then becomes rigid, while retaining microscopic
structural disorder. Alhough it is conventional to speak of a glass
transition temperature, Tg, the experimentally determined Tg of a
material depends on how fast the liquid is cooled1. The possible
existence of an underlying thermodynamic transition remains
open, and a topic of great interest5–7. At low temperatures, in
addition to a rapid decrease of relaxation rates, a glass-forming
liquid exhibits ‘complex dynamics’ such as non-exponential
relaxation2, breakdown of the Stokes–Einstein relation8,9 and
translation–rotation decoupling10. The microscopic disorder, com-
plex dynamics and loss of relaxation at finite temperature observed
in glass-forming liquids find analogies in various other ‘complex
systems’, most notably spin glasses11.

An appealing approach for understanding complex dynamics is
to consider the influence of a system’s ‘energy landscape’ on the
relaxation processes it displays12–14. The dynamics of the system is
viewed as the motion of the ‘state point’ (described by the coordi-
nates of all particles) in the 3N-dimensional configuration space,
where N is the number of particles. The potential energy of the
system, a function of particle coordinates, defines a complicated
3N-dimensional surface or ‘landscape’. We may partition the con-
figuration space into ‘basins’, such that a local minimization of the
potential energy maps any point in a basin to the same minimum.
The properties of the system at a given temperature are dictated by
the basins sampled and their mutual accessibility. At high tempera-
tures, kinetic energy permits access to most basins. At lower
temperatures, the sampling shifts to lower energies and mutual
access among basins becomes subject to considerable ‘activation’.

A kinetic description of glassy dynamics that has been much
studied, mode-coupling theory (MCT)15–17, makes no formal con-

tact with the energy landscape picture. In its idealized version, MCT
predicts a critical temperature, Tc, where dynamical quantities
diverge. It has subsequently been shown1 that Tc lies above Tg, its
singular character arising from approximations of the idealized
theory. It has been suggested18 that activated dynamics, unac-
counted for in MCT, begins to be dominant near Tc (we use the
term ‘activated relaxation’ here as commonly used in the super-
cooled liquids literature, for example in ref. 18, to denote relaxation
dominated by episodic particle motions that require overcoming
appreciable energy or activation barriers). Further, it has been
suggested that Tc demarcates temperatures where the system
explores deeper regions of the potential-energy surface from those
at which it has access to all regions19. But despite the importance of
the landscape paradigm, quantitative measures of the manner in
which a liquid samples the potential-energy landscape are scarce.

We study a binary mixture of particles interacting via the
Lennard–Jones potential, originally proposed as a model for
Ni80P20 (ref. 20), and widely used as a model glass-former in
computer simulations21,22. We perform molecular dynamics simula-
tions at constant volume, from very high to deeply supercooled
temperatures, each set of simulations being carried out at a given
cooling rate. We perform a local potential-energy minimization for
selected configurations. The resulting energy-minimum configura-
tions (called inherent structures23) serve as markers of the config-
uration space explored by the system at any given temperature.
Although most experimental studies of glass formation are done at
constant pressure, the phenomenology has been observed to remain
unchanged when volume is held constant instead24,25.

In Fig. 1a we show the temperature-dependent average energies of
the inherent structures, for four different cooling rates. At high
temperature (T . 1:0), the energies do not change significantly
with temperature. Between T < 1:0 and T ¼ 0:3–0:4, the energies
decrease progressively. Below this range of temperatures, the ener-
gies are constant once again. Figure 1b shows that at high tempera-
ture the system explores a broad range of minimum energies and
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Figure 2 Transition from high-temperature behaviour to the ‘landscape-influenced’

regime where non-exponential relaxation sets in. a, Relaxation times from the

space Fourier transform Fs(k,t) of the self part of the van Hove correlation function

(self intermediate scattering function). The wavevector is k ¼ 7:21j 2 1
AA , close to the

first peak of the static structure factor. The infinite temperature relaxation time t0

is obtained by fitting t(T) values for T ¼ 1:5–2:0 (circles) to an Arrhenius form. The

quantity plotted, Tln(t/t0), is constant when t displays Arrhenius behaviour.

Deviation from the constant, high-temperature value is seen around T ¼ 1:0

(squares). b, The self intermediate scattering function displayed with a shift in

the time origin to t0 ¼ 1:2, and normalized to the value at t0. We use this

transformation as a convenient procedure to eliminate the gaussian time depen-

dence at short t (ref. 26). The fits are to the stretched exponential form in equation

(2). The inset shows the exponent values b(T). As a check, we fitted our data to a

simple exponential form, and confirmed that above T ¼ 1:0 fits were satisfactory,

whereas below T ¼ 1:0, the fits showed systematic deviations indicating slower

than exponential decay. Data are from simulations of 1,372 particles.
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Two dynamical regimes
● Long times t ~ exp[N]

x) Activated dynamics: 
with barrier crossing

x) Time to cross a barrier:

 ~ � exp(⇤⌅/kBT )

x) In sparse graphs 
activation appears on 
shorter time scales

non activated dynamics
activated  
dynamics

(liquid behaviour)

slow dynamics without 
barrier crossing

slow dynamics with 
barrier crossing

T

Two dynamical regimes
● Long times t ~ exp[N]

x) Activated dynamics: 
with barrier crossing

x) Time to cross a barrier:

 ~ � exp(⇤⌅/kBT )

x) In sparse graphs 
activation appears on 
shorter time scales



Mean Field (dense networks)
Barriers are proportional to the number of variables (extensive)

The two dynamical regimes are well separated:

Two dynamical regimes

Aim (for generic disordered systems): 
understand dynamics for infinitely large systems (N) and times (t).

Order of the limits is crucial (c.f. talk by G. Ben Arous)

● Short times: lim
t→∞

 lim
N→∞     

:       t ≤ N

● Long times: lim
N→∞

 lim
t→∞      

:       t >> N

Results exist essentially in the short-time regime

This talk is about the long-time regime

Two dynamical regimes
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Two dynamical regimes
● Long times t ~ exp[N]

x) Activated dynamics: 
with barrier crossing

x) Time to cross a barrier:

 ~ � exp(⇤⌅/kBT )

x) In sparse graphs 
activation appears on 
shorter time scales
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Analytical Solution of the Off-Equilibrium Dynamics
of a Long-Range Spin-Glass Model

L. F. Cugliandolo and J. Kurchan
Dipartimento di Fisica, Vniversita di Roma, La Sapienza, I-00185 Roma, Italy
and Istituto Nazionale di Fisica Nucleare, Sezione di Roma I, Roma, Italy

(Received 8 March 1993)

We study the nonequilibrium relaxation of the spherical spin-glass model with p-spin interactions
in the N ~ oo limit. We analytically solve the asymptotics of the magnetization and the correlation
and response functions for long but finite times. Even in the thermodynamic limit the system
exhibits "weak" (as well as "true") ergodicity breaking and aging eA'ects. We determine a functional
Parisi-like order parameter Pq(q) which plays a similar role for the dynamics to that played by the
usual function for the statics,

PACS numbers: 75.10.Nr, 02.50.—r, 05.40.+j, 64.60.Cn

Spin-glass dynamics has been a subject of continuous
interest in the past years. Experimentally, spin-glass dy-
namics below the critical temperature is characterized by
aging effects and very slow relaxations [1]. In long-range
mean-field models one knows that the phase space is bro-
ken into ergodic components [2]. Sompolinsky [3] de-
scribed a dynamics for these models allowing for barrier
penetration in very long times (diverging as N —+ oo).
In realistic systems, on the one hand mean field is not

exact and on the other hand one cannot perform an ex-
periment in infinite times, and one actually sees at most
"weak" ergodicity breaking.
Recently, Bouchaud has proposed a phenomenological

scenario with both "true" and weak ergodicity breaking
[4]. The question then arises as to if and how simple
long-range microscopic systems (for which mean field is
exact) can model these phenomena. To the best of our
knowledge, an analytic description is lacking.
The main purpose of this paper is to show, in a very

simple mean-field model, the asymptotics of which we
solve analytically that this is indeed so; in the thermody-
namic limit "true" and weak ergodicity breaking coexist,
and in a sense are complementary. To this end we solve
the dynamics of the p-spin spherical model (p ) 2) first
introduced in Ref. [5], setting N ~ oo from the outset,
starting from a given configuration, for long (but not di-
verging with N) times. Remarkably, such a simple model
exhibits a very similar behavior to that of realistic mod-
els (e.g. , 3D Edward-Anderson) in the autocorrelation
function for long times [6] and in simulations of aging
experiments [7].
It should be stressed that we are discussing a differ-

ent physical situation from the Sompolinsky dynamics,
which was analyzed in Ref. [8]. We do not have here any
time scale dependent on N or any other "regularization"
parameter. Surprisingly, one can establish formal con-
tact with Sompolinsky's equations by defining a variable
'T = ln(t'/t) which plays the role of the "time" there.
This will be further explained in a separate work in the
context of the Sherrington-Kirkpatrick (SK) model [9].

The spherical p-spin glass model is defined by the
Hamiltonian

Ji1" ip~ig ' ' ' ~ip

i1 ( (i~
The spin variables verify the spherical constraint

i s2(t) = ¹ The interaction strengths are inde-
pendent random variables with a Gaussian distribution
with zero mean and variance (J,, . . .,„)2 = p!/2¹ . The
overbar stands for the average over the couplings. Addi-
tional source terms (h„.. .,. time independent) have been
included; if r = 1 the usual coupling to a magnetic field
h, is recovered.
The relaxational dynamics is given by the Langevin

equation

r O, s, (t) = -P~bH

r, determines the time scale and will be henceforth set
to 1. The second term on the right-hand side enforces
the spherical constraint while (,(t) is a Gaussian white
noise with zero mean and variance 2. The mean over
the thermal noise is hereafter represented by ( ). As
will be shown below, the dynamical equations plus the
spherical constraint impose z(t) = 1 —pPt(t) with F(t)
the energy per spin. We choose as initial configuration
s, (0) = 1 Vi, though any other choice is equivalent.
The mean-field sample-averaged dynamics for N —+

oo is entirely described by the evolution of the two-time
correlation and the linear response functions,

0031-9007/93/71 (1)/173(4)$06.00
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Finite dimension (sparse networks)

The two dynamical regimes are NOT well separated

see Patrick-Grzegorz talk, last week

How can we disentangle them?

Two dynamical regimes
● Short times t ≤ N

x) No barrier crossing in dense 
networks

x) Infinitely large barriers 
(c.f. A. Auffinger’s talk)

x) Relevant over the 
dynamical temperature

● But…

o) Sparse graphs: barriers can 
be crossed

o) Dense graphs: barrier 
crossing for t~exp[N]

non activated dynamics

activated  
dynamics

Can we rely on simple solvable models to describe activated dynamics?



Hopping in a supercooled Lennard-Jones liquid: Metabasins, waiting time distribution,
and diffusion

B. Doliwa1 and A. Heuer2
1Max Planck Institute for Polymer Research, 55128 Mainz, Germany

2Institute of Physical Chemistry, University of Münster, Münster, Germany
!Received 14 May 2002; published 12 March 2003"

We investigate the jump motion among potential energy minima of a Lennard-Jones model glass former by
extensive computer simulation. From the time series of minima energies, it becomes clear that the energy
landscape is organized in superstructures called metabasins. We show that diffusion can be pictured as a
random walk among metabasins, and that the whole temperature dependence resides in the distribution of
waiting times. The waiting time distribution exhibits algebraic decays: #!1/2 for very short times and #!$ for
longer times, where $%2 near Tc . We demonstrate that solely the waiting times in the very stable basins
account for the temperature dependence of the diffusion constant.

DOI: 10.1103/PhysRevE.67.030501 PACS number!s": 64.70.Pf, 61.43.Fs, 61.20.Ja, 66.30.!h

The energy landscape picture that was proposed more
than thirty years ago by Goldstein &1' has turned out to be a
fruitful way of describing the complicated many-particle ef-
fects in disordered systems &2'. Starting from the joint poten-
tial energy landscape !PEL", V(x), of N particles as a func-
tion of their configuration x"(x1 , . . . ,xN), one expects that
the properties of the system at sufficiently low temperatures
will be dominated by long residences near local minima of
V(x) !inherent structures" with rare hopping events between
them &3'. Recently, it became clear for a model glass former
that the strict hopping picture approximately holds for T
#Tc !landscape-dominated regime" &4–6', where Tc is the
mode-coupling temperature &7'. However, even for higher
temperatures T#2Tc , many dynamic properties are still re-
lated to the properties of inherent structures !landscape-
influenced regime" &8–10'. Thus, in both temperature inter-
vals, an observable like the diffusion constant D(T) should
depend on the topography of inherent structures !IS" or, more
generally, of basins !a basin of an inherent structure is de-
fined as the set of configurations that reach this minimum via
the steepest descent &11'". Such an understanding is indis-
pensable to grasp the underlying physics of the Adam-Gibbs
relation &12,13'.
A simplified picture of glassy dynamics has been ex-

pressed in phenomenological models in Refs. &14–16' based
on spatially uncorrelated hopping processes !random walk"
in configuration space. Then the whole temperature depen-
dence is contained in the average waiting time *#(T)+. The
true dynamics of glass forming systems, however, is ex-
pected to be more complicated. For example, it is known that
back and forth correlations cannot be neglected and that the
elementary jump distances depend on temperature &17,18'. In
general, in a hopping approach, the temperature dependence
of the diffusion constant may be related to spatial and tem-
poral aspects as expressed by the relation

D!T ""
a2!T "

6N*#!T "+
. !1"

With this ansatz, we anticipate the important role of the mean
waiting time and collect the spatial details of hopping in an

effective jump width a(T). The latter involves !i" the average
jump distance, !ii" correlations of jump widths with waiting
times, and !iii" directional correlations of successive jumps.
To our knowledge, this decomposition into spatial and tem-
poral contributions has not been systematically implemented
within the PEL framework so far. A priori it is not clear to
which degree the temperature dependence of a(T) is rel-
evant; see, e.g., Refs. &19,20'. Some information about the
waiting time distribution !WTD" has already been gained
from the analysis of hopping processes of single particles in
real space via computer simulations &21,22'. In contrast, we
consider hopping in configuration space, with the advantage
of incorporating the full many-particle effects &23'.
In this paper, we present detailed information about the

spatial and temporal aspects of hopping in a model glass
former, and individually determine a(T) and *#(T)+ . We
demonstrate that !i" only *#(T)+ depends on temperature, !ii"
hopping among single basins is not a random walk, whereas
hopping among superstructures of minima !metabasins" is
close to a random walk, !iii" *#(T)+ is dominated by the long
waiting times due to a slow !approximately algebraic" decay
of WTDs.
In the present work, we investigate a binary mixture of

Lennard-Jones particles !BMLJ", as recently treated by two
groups &6,24'; see also Ref. &25'. It is characterized by the
interaction potentials V$,(r)"4-$,&(.$, /r)12!(.$, /r)6'
with the parameter set N"NA$NB"52$13"65, .AB
"0.8.AA , .BB"0.88.AA , -AB"1.5-AA , -BB"0.5-AA , and
rc"1.8.AA . Linear functions were added to the potentials to
ensure continuous forces and energies at the cutoff rc . Units
of length, mass, energy, and time are .AA , m, -AA , and
!m.AA

2 /-AA, respectively. For convenience, though, we will
omit units here. We use Langevin molecular dynamics simu-
lations !MD" with fixed step size, /2"0.0152
"2kBT0t/m1 , equal particle masses m, friction constant 1 ,
and periodic boundary conditions at a density of 2"1.2. The
friction constant 1"2/0.0152 is chosen so that 0t"1/T . Due
to the different type of dynamics, the absolute values of
times and diffusion constants are different from those found
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Low T glass dynamics as Random Walk

within Newtonian dynamics simulations. The mode-coupling
temperature is Tc!0.45"0.01 in this model system !com-
pare Ref. "25#$.
For the analysis of dynamics in configuration space, it is

essential to use small systems because otherwise many inter-
esting effects will be averaged out "10#. The relevance of
small systems has been also pointed out by other groups; see,
e.g., Refs. "23,26#. On the other hand, the system should not
be too small in order to avoid major finite-size effects. N
%60 turns out to be a very good compromise for binary
Lennard-Jones mixtures, whereas N&40 already displays
major finite-size effects "27#. Here, we choose N!65. To
back those findings,we have carried out an extensive study of
finite-size effects for systems of N!65, 130, and N!1000
particles "28#. It turned out that the N!65 system is nearly
identical to the bulk (N!1000) above Tc . Since well-
equilibrated runs of N'130 are lacking below Tc , finite-size
effects cannot be excluded there at the present stage. How-
ever, this does not affect the main results of this paper. More
important is the question of a good equilibration at each
temperature. Have the runs been long enough to sample the
PEL sufficiently? Above Tc this is uncritical, which can be
seen from the fact that each run comprised at least 850
(-relaxation times. A more detailed check, involving the life-
times and distribution of metabasins, indicates that runs
down to T!0.435 are feasible with the available computer
power.
By regular quenching the MD trajectory x(t) to the bot-

tom of the basins visited at time t, as proposed by Stillinger
and Weber, we obtain a discontinuous trajectory )(t). In this
way, one discards the more or less complicated vibrational
part x(t)#)(t) of motion, only keeping the visited minima
as ‘‘milestones.’’ The one-particle diffusion constant can be
also determined from the squared displacement of inherent
structures via D!limt→*+()(t)#)(0))2,/6Nt .
How to resolve the elementary hopping events? Since

computer time prohibits us to calculate )(t) for every time
step, we normally find ourselves in the situation of having
equidistant quenched configurations )(t i), with, say, t i$1
#t i-105 MD steps. If the same minimum is found for times
t i and t j , we need not care about transitions in the meantime
because no relaxation has occurred there. If, in contrast,
)(t i).)(t i$1), we must not expect )(t i$1) to be the direct
successor of )(t i), since many other minima could have been
visited between t i and t i$1. Therefore, further minimizations
in this time interval are necessary. For reasons of efficiency,
we apply a straightforward interval bisection method, which
locates all relevant transitions with an accuracy of 1 MD
step. Although computationally demanding, this has proven
to be most efficient for resolving the relevant details of hop-
ping on the PEL.
As demonstrated in Ref. "10#, the time series of potential

energies /(t)!V„)(t)… reflects well the character of dynam-
ics in the supercooled state. For T!0.435, /(t) is shown in
Fig. 1, from which we note a remarkable structure in /(t).
The system is trapped in some stable configurations for long
times, during which a small number of minima are visited
over and over again. Obviously, these minima form super-
structures, which, following Ref. "3#, we denote metabasins

!MBs$. One may imagine that minima of the long-lived MBs
are organized in funnel-like structures so that the system is
stuck there for a long time. It has been argued that the oc-
currence of 0 relaxation at low temperatures is due to such
substructure of the PEL "3#. This is supported by the real-
space signature of MBs as reported by Middleton and Wales
"29#. Formally, there is no unique way to define MBs for a
given PEL due to the lack of a strict time scale separation.
Here, we take the pragmatic view and let the system decide
by its MD run. The intuitive notion of MBs from Fig. 1 can
be cast into an algorithm in a straightforward way, see Refs.
"10,36#. One major advantage of analyzing MBs rather than
basins is that the charming simplistic picture of a random
walk in configuration space will be better fulfilled since di-
rect back and forth correlations are already taken into ac-
count. It turns out !see Fig. 1$ that long-lived stable MBs are
separated by bursts of rapid transitions among higher minima
which look like fountains. They cannot be detected without
interval bisection. The waiting times of the MBs range from
a few MD steps to many millions of them. Moreover, com-
paring Figs. 1!a$ and 1!b$, we find a certain self-similarity in
/(t) when inspected on different time scales. The distribu-
tion of MB lifetimes 1 will be denoted 2(1 ,T), its first mo-
ment +1(T), being a key quantity for the following consid-
erations.
Our goal is to find an expression for the effective jump

width a(T) of Eq. !1$. To this end, as a generalization of
)(t), we define the MB inherent structure )MB(t) as the
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quarter of the total run !b$ magnification by a factor of 50.

RAPID COMMUNICATIONS

B. DOLIWA AND A. HEUER PHYSICAL REVIEW E 67, 030501!R$ !2003$

030501-2

within Newtonian dynamics simulations. The mode-coupling
temperature is Tc!0.45"0.01 in this model system !com-
pare Ref. "25#$.
For the analysis of dynamics in configuration space, it is

essential to use small systems because otherwise many inter-
esting effects will be averaged out "10#. The relevance of
small systems has been also pointed out by other groups; see,
e.g., Refs. "23,26#. On the other hand, the system should not
be too small in order to avoid major finite-size effects. N
%60 turns out to be a very good compromise for binary
Lennard-Jones mixtures, whereas N&40 already displays
major finite-size effects "27#. Here, we choose N!65. To
back those findings,we have carried out an extensive study of
finite-size effects for systems of N!65, 130, and N!1000
particles "28#. It turned out that the N!65 system is nearly
identical to the bulk (N!1000) above Tc . Since well-
equilibrated runs of N'130 are lacking below Tc , finite-size
effects cannot be excluded there at the present stage. How-
ever, this does not affect the main results of this paper. More
important is the question of a good equilibration at each
temperature. Have the runs been long enough to sample the
PEL sufficiently? Above Tc this is uncritical, which can be
seen from the fact that each run comprised at least 850
(-relaxation times. A more detailed check, involving the life-
times and distribution of metabasins, indicates that runs
down to T!0.435 are feasible with the available computer
power.
By regular quenching the MD trajectory x(t) to the bot-

tom of the basins visited at time t, as proposed by Stillinger
and Weber, we obtain a discontinuous trajectory )(t). In this
way, one discards the more or less complicated vibrational
part x(t)#)(t) of motion, only keeping the visited minima
as ‘‘milestones.’’ The one-particle diffusion constant can be
also determined from the squared displacement of inherent
structures via D!limt→*+()(t)#)(0))2,/6Nt .
How to resolve the elementary hopping events? Since

computer time prohibits us to calculate )(t) for every time
step, we normally find ourselves in the situation of having
equidistant quenched configurations )(t i), with, say, t i$1
#t i-105 MD steps. If the same minimum is found for times
t i and t j , we need not care about transitions in the meantime
because no relaxation has occurred there. If, in contrast,
)(t i).)(t i$1), we must not expect )(t i$1) to be the direct
successor of )(t i), since many other minima could have been
visited between t i and t i$1. Therefore, further minimizations
in this time interval are necessary. For reasons of efficiency,
we apply a straightforward interval bisection method, which
locates all relevant transitions with an accuracy of 1 MD
step. Although computationally demanding, this has proven
to be most efficient for resolving the relevant details of hop-
ping on the PEL.
As demonstrated in Ref. "10#, the time series of potential

energies /(t)!V„)(t)… reflects well the character of dynam-
ics in the supercooled state. For T!0.435, /(t) is shown in
Fig. 1, from which we note a remarkable structure in /(t).
The system is trapped in some stable configurations for long
times, during which a small number of minima are visited
over and over again. Obviously, these minima form super-
structures, which, following Ref. "3#, we denote metabasins

!MBs$. One may imagine that minima of the long-lived MBs
are organized in funnel-like structures so that the system is
stuck there for a long time. It has been argued that the oc-
currence of 0 relaxation at low temperatures is due to such
substructure of the PEL "3#. This is supported by the real-
space signature of MBs as reported by Middleton and Wales
"29#. Formally, there is no unique way to define MBs for a
given PEL due to the lack of a strict time scale separation.
Here, we take the pragmatic view and let the system decide
by its MD run. The intuitive notion of MBs from Fig. 1 can
be cast into an algorithm in a straightforward way, see Refs.
"10,36#. One major advantage of analyzing MBs rather than
basins is that the charming simplistic picture of a random
walk in configuration space will be better fulfilled since di-
rect back and forth correlations are already taken into ac-
count. It turns out !see Fig. 1$ that long-lived stable MBs are
separated by bursts of rapid transitions among higher minima
which look like fountains. They cannot be detected without
interval bisection. The waiting times of the MBs range from
a few MD steps to many millions of them. Moreover, com-
paring Figs. 1!a$ and 1!b$, we find a certain self-similarity in
/(t) when inspected on different time scales. The distribu-
tion of MB lifetimes 1 will be denoted 2(1 ,T), its first mo-
ment +1(T), being a key quantity for the following consid-
erations.
Our goal is to find an expression for the effective jump

width a(T) of Eq. !1$. To this end, as a generalization of
)(t), we define the MB inherent structure )MB(t) as the

FIG. 1. The time series of minima energies measured for the
BMLJ system of N!65 particles, T!0.435. The distance between
minimizations before interval bisection is 105 MD steps. The length
of the total run is 2%109 MD steps. !a$ Time window covering a
quarter of the total run !b$ magnification by a factor of 50.

RAPID COMMUNICATIONS

B. DOLIWA AND A. HEUER PHYSICAL REVIEW E 67, 030501!R$ !2003$

030501-2

Inherent structures along the dynamics

Dynamics seems

- trapped for a long time
- suddenly moving away 
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Trap Model (TM)
● Random walk on M-state fully-

connected graph

● State i has random energy Ei 
from

ρ(E)=exp(E )�(-E )

E<0
● Transitions allowed between any 

two states. Do not depend on 
final state:

pi,j = exp[-(E� i-Eth)] /M
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Renewal process
each time threshold is reached, memory is lost

Bouchaud, 1992



  

  
  

  

Some features of the Trap Model

 

Logarithmic Energy

<E> ~ -T log(t)

Aging function �(tw,tw+t)

Probability of remaining in trap 

between tw and tw+t

Bouchaud, 1992

Π(tw , tw (1+ω))→H x (ω)

ω=t / tw

Distribution of Trapping Times τ

ψ(�) ~ 1/�1+x   ;   x =T/Tc

x  depends on distribution ρ

Weak Ergodicity breaking

When T<Tc ,   ‹ � › = !

(full phase space can still be 
visited)
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Numerical evidences of universal trap-like aging dynamics

8https://doi.org/10.1088/1742-5468/aab50e

J. S
tat. M

ech. (2018) 043303

The DTD gives compatible results. In this case, the numerical simulation times are 
larger than for CTD, so we only report results about one system size M  =  1024 aver-
aged over 104 samples for the two values of ω in figure 1.

The conclusion of this first exploratory study is that simulations of the trap 
model show very clearly (already for very small systems like the one with M  =  256 
configurations) the emergent plateau of Π[tw, tw + t] which is in good agreement with 
the trap aging predictions. We will see that this is not always the case for other dynam-
ics, even if they are also expected to be governed by a trap like mechanism. In those 
cases, a more careful analysis of the numerical results will be needed to let the trap 
aging behavior to emerge.

3. The a-generalized trap model

The results that we have discussed in the previous section can be extended in many 
different ways to explain the phenomenology of more realistic models of glass dynamics. 
First heuristically [27] and eventually rigorously [7, 28, 29] different authors have ana-
lyzed the emergence of trap-like dynamics in models where the energies of configurations 
are in a Gaussian distribution (we will come back to this topic in the next section) or 
even correlate with each other [7, 25, 30], mimicking the typical energy distribution of 
hard spin configurations in p-spin models with p ! 3.

However, as we have already discussed, other simplifications characterize the trap 
paradigm. For example, the dynamics is such that the depth of the traps is only deter-
mined by the energy level of the initial configuration. As a consequence, the barrier 
to be crossed by the system in order to change configuration does not depend on the 
chosen direction or dynamical path.

Figure 1. The probability of not changing configurations between tw and tw + ωtw, 
ΠM [tw, tw(1 + ω)], for a system with M configurations and with ω = 0.1 in figure (a) 
and ω = 2.5 in figure (b) for a CTD at T  =  0.5. Different data series, plotted with 
red circles, are for CTD, with, from left to right, M  =  64, 256, 1024, 4096, 16 384, 
65 536. Triangles are for DTD, M  =  1024, 10 000 samples, and for large tw they 
overlap the M  =  1024 CTD data. The straight black lines are for the theoretical 
predictions.



Use Trap as null model for the understanding of 

activated processes (in any context)

● Can we use the TM to understand activated dynamics in 

generic models?
● Can it help us to understand their landscape? 

Can the TM be useful?

Even Deep Neural Networks?

Follow Learning Dynamics

Dynamics not blocked by barriers

In the following:

Barriers not needed

Landscape from activated dynamics

Inference ->  spiked tensor



From spiked tensor to REM

When dynamics starts, signal is small: 
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p-spin model

In the large-p limit, p-spin simplifies in the Random Energy Model (REM)  

Derrida, 1980

(a.k.a. spin MF paradigm for supercooled liquids) 

Ti1,...,ip = Wi1,...,ip + vi1 . . . vipReconstructing from

equivalent to minimising H = �
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(i1,...,ip)

Ji1,...,ipxi1 . . . xip � rN
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The simplest glass model
Random Energy Model (REM)

● N spins si=0,1, M=2N states

● Each state has N neighbors

● States i have independent random 

energy Ei from Gaussian ρ(E)

● “Metropolis” rate, only between 

neighboring 

states:
pi , j=

1

N
exp[−β (Ei−E j)]

Derrida, 1980
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Paradigmatic glass model

REM=lim
p→∞

p−spin



The simplest glass model
Random Energy Model (REM)

● N spins si=0,1, M=2N states

● Each state has N neighbors

● States i have independent random 

energy Ei from Gaussian ρ(E)

● “Metropolis” rate, only between 

neighboring 

states:
pi , j=

1

N
exp[−β (Ei−E j)]

N neighbors have 

Derrida, 1980

1 0 11 10

01 00

000

100

110 111

011

001

101

010

01110110

0000 0001

0011

0100

Thermodynamics: 

Paradigmatic glass model

REM=lim
p→∞

p−spin

E∈[−√2N log N ,√2N logN ]

Deep basins made of 1 configuration

Eth=−√2N log N , lim
N→∞

Eth

N
=0



The simplest glass model
Random Energy Model (REM)

● N spins si=0,1, M=2N states

● Each state has N neighbors

● States i have independent random 

energy Ei from Gaussian ρ(E)

● “Metropolis” rate, only between 

neighboring 

states:
pi , j=

1

N
exp[−β (Ei−E j)]

N neighbors have 

Derrida, 1980

1 0 11 10

01 00

000

100

110 111

011

001

101

010

01110110

0000 0001

0011

0100

Thermodynamics: 

Paradigmatic glass model
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p−spin

E∈[−√2N log N ,√2N logN ]

Deep basins made of 1 configuration

Eth=−√2N log N , lim
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N
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Candidate for trap dynamics

We can study activated dynamics at finite N

Does the system loose memory when E>Eth?

Are trap predictions recovered?



Trap behavior in the REM
                                   Logarithmic energy

Trapping times τ          Aging Functions �     

Renewal process

MBJ, Cammarota & Biroli, 2018
Gayrard, 2017

Actual dynamics

Renormalized dynamics

basins

configurations

Cammarota & 
Marinari, 2018

Trap predictions are fullfilled

● E ~ -T log(t)
● ψ(�) ~ 1/�1+x
● ⌧(tw,tw+t) = Hx(ω)
● Renewal

Notes:
● Plots are for exponential ρ(E). 
● Gaussian ρ(E):�more�involved�analysis�of�⌧(tw,tw+t).
● Exact proof by V. Gayrard for ⌧ with Gaussian ρ(E).
● Other models were shown to be trap (e.g. number partitioning 

problem). Kurchan & Junier, 2004

Gayrard, 2017

*Dyre 1987, Bouchaud and Reichman 2003

*



A dynamics ruled by EntropyBouchaud’s Trap Model
● Random walk on M-state fully-

connected graph

● State i has random energy Ei 
from

ρ(E)=exp(E )✓(-E )

E<0
● Transitions allowed between any 
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One well, multiple basins

Trap model with 
metropolis dynamics
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Trap-like Aging function
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Bertin, 2010

Every configuration dynamically connected with all the others

But let’s not introduce artificial barriers!

Trap Model Step Model



Step models

Barrat, Mézard, Journal de Physique I 5, 941 (1995)

Bertin, J. Phys. A: Math. Gen. 36, 10683 (2003)
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Low T:  
• Aging results do not depend on temperature  
• Slowing down entirely due to entropic reasons

Higher T:  
• Aging results do depend on temperature  
• Slowing down due to entropy-energy competition 
• Though escaping times still non-Arrhenius 

• and it is impossible to recover the trap aging behaviour  
C.C. and E. Marinari PRE 92, 010301 (2015)
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ence of non-activated alternatives. In this case, the con-
tribution of the entropy of paths surprisingly gives rise, in
a long-time coarse-grained description, to a genuine out-
of-equilibrium relaxation behaviour typical of standard
activated dynamics (trap models).

The model.–Our system of interest can be in M config-
urations i, with energy E

i

< 0 given by independent iden-
tically distributed random variables extracted from an
exponential distribution ⇢(E) = � exp(�E) ✓(�E). We
introduce a Metropolis dynamics with non-zero transi-
tion rates from any level i to any other level j given by

w
i,j

=

⇢
1 if E

i

� E
j

exp[��(E
j

� E
i

)] if E
i

< E
j

. (1)

This model is equivalent to the one defined by Mezard
and Barrat [24, 25] and called the step model. They used
a Glauber dynamics instead of our Metropolis rule.
Step models were introduced in antithesis to preexisting
trap models. The latter were first used by Bouchaud [5]
as the paradigm of low temperature activated dynamics
in a multi-minima PEL. In the trap case one considers the
same exponential distribution ⇢(E), but each configura-
tion i occupies the bottom of a trap ideally surrounded by
energy barriers�

i

= �E
i

> 0 in any direction. The tran-
sition rates read w

i,j

= 1
M

exp(���
i

) and the time for
escaping from each configuration ⌧

i

/ 1/w
i,j

/ exp(��
i

)
simply follows an Arrhenius law. At variance, step mod-
els were designed without the explicit introduction of
potential energy barriers to study the influence of the
entropy of possible relaxation paths in the context of a
non-activated slow dynamics of glassy systems.
Here, we focus on step models to study the contribu-
tion of the entropy of paths together with activated re-
laxation, as it should be for deeply supercooled liquids.
Each dynamical move is in fact decided by the compe-
tition between a possible energy increase, favoured by
an exponentially large number of high-energy configura-
tions and hampered by a low acceptance rate, and an ex-
ponentially small number of descending paths with high
acceptance rate. The entropic and thermal dynamical
drives are quantified respectively by � and � = 1/T .
The study of step models is also motivated by the recent
interest [8, 10] in a possible generalization of the trap-
like aging phenomenology to models with more realistic
dynamical rules, as for example the Metropolis one.
First studies of the step model [24] (and recently [25])
found that its low temperature slow relaxation only fol-
lows non-activated dynamical paths. A first evidence of
an activated dynamical regime at intermediate temper-
atures was presented in Ref.[26]. However, even in the
regime where thermal activation sets in, typical sojourn
times in single configurations were found to be always de-
termined by entropic mechanisms [26]. An explicit ther-
mal activation was re-introduced in the dynamics as the
best means to recover the low temperature activation fea-
tures of more realistic systems [26].
Here we ignore the fully entropic low temperature range,

and we avoid the explicit introduction of thermal acti-
vation. We focus instead on the intermediate tempera-
ture regime to provide a paradigm and an explanation
for the spontaneous formation of activation barriers dur-
ing the dynamics, as a pure result of the competition
between entropic and energetic dynamical drives. As it
was suggested by previous intriguing results [26], these
barriers do not directly give rise to usual thermal activa-
tion. Yet, in our study we are able to show that in this
entropy-energy ruled dynamical regime an e↵ective trap-
like out-of-equilibrium phenomenology typical of models
with genuine thermal activation unexpectedly emerges.
Two dynamical regimes in step models.– We study the

M = 1 case, where the system can access an infinite
number of energy levels. At each step, we start from a
configuration with energy E

i

and we propose as a trial
energy E

j

, a random variable extracted from the distri-
bution ⇢(E). If the Metropolis move is accepted, with
rate w

i,j

, E
j

becomes the new energy of the system, oth-
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FIG. 1. Two time series (and a zoom of one of them in the
inset) of the energy explored by step models for ⇢(E) with
� = 1. The continuous line is for T = 0.25. Colored broken
lines are for T = 0.75. The orizontal line marks the level
of the threshold energy E

th

for T = 0.75, when it can be
defined. Di↵erent colors are for di↵erent basins, according to
the definition in the text.

erwise the energy E
j

is disregarded, and the old energy
E

i

is kept. Time always increases by one unit.
Numerical simulations show that the model switches,
when T changes, between two completely di↵erent be-
haviors. For low or zero temperatures we observe the
entropy-ruled regime studied by Barrat and Mezard [24,
25]. The level of the explored energies continuously de-
creases as t increases (see the continuous thick line in
Fig.1). For low energies the trapping time in each con-
figuration becomes larger and larger since moves that in-
crease the energy are rarely accepted, and moves that
lower the energy are only seldom proposed.
At intermediate temperatures something completely dif-
ferent occurs. As shown by the broken line in Fig.1 (the
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Trap model with 
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Spontaneous arisal of basins

Trap-like Aging function

Cammarota & Marinari, 2015
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• Low T, energy typically decreases 
• High T, energy regularly bounces 

back, without apparent need 
• Effective Threshold Energy 
• Dynamical Basins can be defined

Energy/Entropy-ruled path selection

C.C. and E. Marinari PRE 92, 010301 (2015)
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i

and we propose as a trial
energy E

j

, a random variable extracted from the distri-
bution ⇢(E). If the Metropolis move is accepted, with
rate w
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, E
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becomes the new energy of the system, oth-
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FIG. 1. Two time series (and a zoom of one of them in the
inset) of the energy explored by step models for ⇢(E) with
� = 1. The continuous line is for T = 0.25. Colored broken
lines are for T = 0.75. The orizontal line marks the level
of the threshold energy E

th

for T = 0.75, when it can be
defined. Di↵erent colors are for di↵erent basins, according to
the definition in the text.

erwise the energy E
j

is disregarded, and the old energy
E

i

is kept. Time always increases by one unit.
Numerical simulations show that the model switches,
when T changes, between two completely di↵erent be-
haviors. For low or zero temperatures we observe the
entropy-ruled regime studied by Barrat and Mezard [24,
25]. The level of the explored energies continuously de-
creases as t increases (see the continuous thick line in
Fig.1). For low energies the trapping time in each con-
figuration becomes larger and larger since moves that in-
crease the energy are rarely accepted, and moves that
lower the energy are only seldom proposed.
At intermediate temperatures something completely dif-
ferent occurs. As shown by the broken line in Fig.1 (the
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ence of non-activated alternatives. In this case, the con-
tribution of the entropy of paths surprisingly gives rise, in
a long-time coarse-grained description, to a genuine out-
of-equilibrium relaxation behaviour typical of standard
activated dynamics (trap models).

The model.–Our system of interest can be in M config-
urations i, with energy E

i

< 0 given by independent iden-
tically distributed random variables extracted from an
exponential distribution ⇢(E) = � exp(�E) ✓(�E). We
introduce a Metropolis dynamics with non-zero transi-
tion rates from any level i to any other level j given by

w
i,j

=

⇢
1 if E

i

� E
j

exp[��(E
j

� E
i

)] if E
i

< E
j

. (1)

This model is equivalent to the one defined by Mezard
and Barrat [24, 25] and called the step model. They used
a Glauber dynamics instead of our Metropolis rule.
Step models were introduced in antithesis to preexisting
trap models. The latter were first used by Bouchaud [5]
as the paradigm of low temperature activated dynamics
in a multi-minima PEL. In the trap case one considers the
same exponential distribution ⇢(E), but each configura-
tion i occupies the bottom of a trap ideally surrounded by
energy barriers�

i

= �E
i

> 0 in any direction. The tran-
sition rates read w

i,j

= 1
M

exp(���
i

) and the time for
escaping from each configuration ⌧

i

/ 1/w
i,j

/ exp(��
i

)
simply follows an Arrhenius law. At variance, step mod-
els were designed without the explicit introduction of
potential energy barriers to study the influence of the
entropy of possible relaxation paths in the context of a
non-activated slow dynamics of glassy systems.
Here, we focus on step models to study the contribu-
tion of the entropy of paths together with activated re-
laxation, as it should be for deeply supercooled liquids.
Each dynamical move is in fact decided by the compe-
tition between a possible energy increase, favoured by
an exponentially large number of high-energy configura-
tions and hampered by a low acceptance rate, and an ex-
ponentially small number of descending paths with high
acceptance rate. The entropic and thermal dynamical
drives are quantified respectively by � and � = 1/T .
The study of step models is also motivated by the recent
interest [8, 10] in a possible generalization of the trap-
like aging phenomenology to models with more realistic
dynamical rules, as for example the Metropolis one.
First studies of the step model [24] (and recently [25])
found that its low temperature slow relaxation only fol-
lows non-activated dynamical paths. A first evidence of
an activated dynamical regime at intermediate temper-
atures was presented in Ref.[26]. However, even in the
regime where thermal activation sets in, typical sojourn
times in single configurations were found to be always de-
termined by entropic mechanisms [26]. An explicit ther-
mal activation was re-introduced in the dynamics as the
best means to recover the low temperature activation fea-
tures of more realistic systems [26].
Here we ignore the fully entropic low temperature range,

and we avoid the explicit introduction of thermal acti-
vation. We focus instead on the intermediate tempera-
ture regime to provide a paradigm and an explanation
for the spontaneous formation of activation barriers dur-
ing the dynamics, as a pure result of the competition
between entropic and energetic dynamical drives. As it
was suggested by previous intriguing results [26], these
barriers do not directly give rise to usual thermal activa-
tion. Yet, in our study we are able to show that in this
entropy-energy ruled dynamical regime an e↵ective trap-
like out-of-equilibrium phenomenology typical of models
with genuine thermal activation unexpectedly emerges.
Two dynamical regimes in step models.– We study the

M = 1 case, where the system can access an infinite
number of energy levels. At each step, we start from a
configuration with energy E

i

and we propose as a trial
energy E

j

, a random variable extracted from the distri-
bution ⇢(E). If the Metropolis move is accepted, with
rate w

i,j

, E
j

becomes the new energy of the system, oth-
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FIG. 1. Two time series (and a zoom of one of them in the
inset) of the energy explored by step models for ⇢(E) with
� = 1. The continuous line is for T = 0.25. Colored broken
lines are for T = 0.75. The orizontal line marks the level
of the threshold energy E

th

for T = 0.75, when it can be
defined. Di↵erent colors are for di↵erent basins, according to
the definition in the text.

erwise the energy E
j

is disregarded, and the old energy
E

i

is kept. Time always increases by one unit.
Numerical simulations show that the model switches,
when T changes, between two completely di↵erent be-
haviors. For low or zero temperatures we observe the
entropy-ruled regime studied by Barrat and Mezard [24,
25]. The level of the explored energies continuously de-
creases as t increases (see the continuous thick line in
Fig.1). For low energies the trapping time in each con-
figuration becomes larger and larger since moves that in-
crease the energy are rarely accepted, and moves that
lower the energy are only seldom proposed.
At intermediate temperatures something completely dif-
ferent occurs. As shown by the broken line in Fig.1 (the

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

-12 -10 -8 -6 -4 -2  0
E

PUPPDO

One well, multiple basins

Trap model with 
metropolis dynamics

Spontaneous arisal of basins

Trap-like Aging function

Cammarota & Marinari, 2015

pi , j=
1

M
min[1,e

−β (E i−E j )]

Configuration space

E
n
e
rg

y 1 2

3

4

Static Landscape

Trap prediction

Configurations

Basins

Π
(t

w
,t

w
(1

+
ω

) )

Cammarota & Marinari, 2015

Bertin, 2010

• Low T, energy typically decreases 
• High T, energy regularly bounces 

back, without apparent need 
• Effective Threshold Energy 
• Dynamical Basins can be defined

Eth

Energy/Entropy-ruled path selection

C.C. and E. Marinari PRE 92, 010301 (2015)



2

ence of non-activated alternatives. In this case, the con-
tribution of the entropy of paths surprisingly gives rise, in
a long-time coarse-grained description, to a genuine out-
of-equilibrium relaxation behaviour typical of standard
activated dynamics (trap models).

The model.–Our system of interest can be in M config-
urations i, with energy E

i

< 0 given by independent iden-
tically distributed random variables extracted from an
exponential distribution ⇢(E) = � exp(�E) ✓(�E). We
introduce a Metropolis dynamics with non-zero transi-
tion rates from any level i to any other level j given by

w
i,j

=

⇢
1 if E

i

� E
j

exp[��(E
j

� E
i

)] if E
i

< E
j

. (1)

This model is equivalent to the one defined by Mezard
and Barrat [24, 25] and called the step model. They used
a Glauber dynamics instead of our Metropolis rule.
Step models were introduced in antithesis to preexisting
trap models. The latter were first used by Bouchaud [5]
as the paradigm of low temperature activated dynamics
in a multi-minima PEL. In the trap case one considers the
same exponential distribution ⇢(E), but each configura-
tion i occupies the bottom of a trap ideally surrounded by
energy barriers�

i

= �E
i

> 0 in any direction. The tran-
sition rates read w

i,j

= 1
M

exp(���
i

) and the time for
escaping from each configuration ⌧

i

/ 1/w
i,j

/ exp(��
i

)
simply follows an Arrhenius law. At variance, step mod-
els were designed without the explicit introduction of
potential energy barriers to study the influence of the
entropy of possible relaxation paths in the context of a
non-activated slow dynamics of glassy systems.
Here, we focus on step models to study the contribu-
tion of the entropy of paths together with activated re-
laxation, as it should be for deeply supercooled liquids.
Each dynamical move is in fact decided by the compe-
tition between a possible energy increase, favoured by
an exponentially large number of high-energy configura-
tions and hampered by a low acceptance rate, and an ex-
ponentially small number of descending paths with high
acceptance rate. The entropic and thermal dynamical
drives are quantified respectively by � and � = 1/T .
The study of step models is also motivated by the recent
interest [8, 10] in a possible generalization of the trap-
like aging phenomenology to models with more realistic
dynamical rules, as for example the Metropolis one.
First studies of the step model [24] (and recently [25])
found that its low temperature slow relaxation only fol-
lows non-activated dynamical paths. A first evidence of
an activated dynamical regime at intermediate temper-
atures was presented in Ref.[26]. However, even in the
regime where thermal activation sets in, typical sojourn
times in single configurations were found to be always de-
termined by entropic mechanisms [26]. An explicit ther-
mal activation was re-introduced in the dynamics as the
best means to recover the low temperature activation fea-
tures of more realistic systems [26].
Here we ignore the fully entropic low temperature range,

and we avoid the explicit introduction of thermal acti-
vation. We focus instead on the intermediate tempera-
ture regime to provide a paradigm and an explanation
for the spontaneous formation of activation barriers dur-
ing the dynamics, as a pure result of the competition
between entropic and energetic dynamical drives. As it
was suggested by previous intriguing results [26], these
barriers do not directly give rise to usual thermal activa-
tion. Yet, in our study we are able to show that in this
entropy-energy ruled dynamical regime an e↵ective trap-
like out-of-equilibrium phenomenology typical of models
with genuine thermal activation unexpectedly emerges.
Two dynamical regimes in step models.– We study the

M = 1 case, where the system can access an infinite
number of energy levels. At each step, we start from a
configuration with energy E

i

and we propose as a trial
energy E

j

, a random variable extracted from the distri-
bution ⇢(E). If the Metropolis move is accepted, with
rate w

i,j

, E
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becomes the new energy of the system, oth-
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FIG. 1. Two time series (and a zoom of one of them in the
inset) of the energy explored by step models for ⇢(E) with
� = 1. The continuous line is for T = 0.25. Colored broken
lines are for T = 0.75. The orizontal line marks the level
of the threshold energy E

th

for T = 0.75, when it can be
defined. Di↵erent colors are for di↵erent basins, according to
the definition in the text.

erwise the energy E
j

is disregarded, and the old energy
E

i

is kept. Time always increases by one unit.
Numerical simulations show that the model switches,
when T changes, between two completely di↵erent be-
haviors. For low or zero temperatures we observe the
entropy-ruled regime studied by Barrat and Mezard [24,
25]. The level of the explored energies continuously de-
creases as t increases (see the continuous thick line in
Fig.1). For low energies the trapping time in each con-
figuration becomes larger and larger since moves that in-
crease the energy are rarely accepted, and moves that
lower the energy are only seldom proposed.
At intermediate temperatures something completely dif-
ferent occurs. As shown by the broken line in Fig.1 (the
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dash-color code of its segments will be discussed later),
the energy episodically returns to high values. This phe-
nomenon signals the spontaneous emergence of e↵ective
barriers that the system has to overcome during the dy-
namics. Dynamics is fast at high energies but, at large
t, deeper and deeper configurations are progressively ex-
plored arresting the dynamics for increasingly long times.
Bertin found first indirect evidences [26] of a thermally
activated behavior in this second regime by observing
the large t/t

w

power law decay of correlation functions
between t

w

and t
w

+ t. However, a clear discrepancy
emerges comparing the numerical results of the prob-
ability to do not change configuration between t

w

and
t+ t

w

, ⇧
�,�

(t
w

, t
w

+ t), and its large t
w

limit C
�,�

(w) =
lim

tw!1;t/tw=w

⇧
�,�

(t
w

, t
w

+ t) in the step model to the
theoretical expectations for trap models [5–8]. In trap
models for any choice of parameters �, � [6, 7] one has

C
�,�

(w) = H
�/�

(w) , (2)

where

H
x

(w) ⌘ sin(⇡x)

⇡

Z 1

w

du
1

(1 + u)ux

. (3)

As we show in Fig.2, C
�,�

(w) for step models has a finite
and well defined value but it is di↵erent from H

�/�

(w).
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FIG. 2. ⇧
�=1,�=1/0.6(tw, tw + 0.5t

w

) does not converge, for
large t

w

, to H0.6(w = 0.5) Instead, the probability of not to
changing basin ⇧BSN

�=1,�=1/0.6(tw, tw + 0.5t
w

) converge in the
large t

w

limit to H2�1/0.6(w = 0.5).

The main feature that determines the aging behavior of
the trap models [5] is the fat tail power law distribution
of trapping times p(⌧) ⇠ ⌧�(1+µ) (with 0 < µ < 1) which
does not change with the observation time t and whose
exponent µ = �/� controls the parameter of H

x

(w):
x = µ. In step models, the Metropolis dynamical rule
gives rise to a typical distribution of trapping times which
ages during the dynamics [24–26] but which at t � ⌧
also behaves like p(⌧) ⇠ ⌧1+µ, with µ = 2� �/�. Hence
one could also expect an e↵ective trap model behavior

described by an H
x

(w) with parameter x = 2 � �/�.
Fig.2 shows that numerical data are in contradiction
with this expectation, too. Moreover, if we try to ex-
tract empirically the e↵ective parameter x assuming that
C

�,�

(w) = H
x

(w) we find di↵erent results for di↵erent
values of w. In conclusion, the trap paradigm apparently
does not apply to the C

�,�

(w) obtained for step models.
This analysis confirms the deep di↵erence between step
and trap models, besides the emergence of dynamical ef-
fective barriers in the first case. As a confirmation of this
result we give an estimate of trapping times in the step
model. For every energy level E the probability of going
upward P"(E) and downward P#(E) are

P"(E) =

Z 0

E

dE0⇢(E0) exp(��(E0 � E)) =

=
�

� � �
(exp(�E)� exp(�E)) , (4)

and

P#(E) =

Z
E

�1
dE0⇢(E0) = exp(�E) . (5)

Hence in the low temperature range, where � > �, at
the leading order the trapping time in each configuration
⌧(E) = 1

pUP (E)+pDO(E) ⇠ exp(��E) does not depend
on the temperature, as it would for thermal activated
relaxation channels.
A coarse-grained description of the Metropolis

dynamics.– To make a step forward in the study of
this anomalous activated regime, also inspired by
Refs.[27–29], we analyze the dynamics of the model from
a di↵erent point of view. We start by focusing on the
large dynamical basins that periodically appear in the
microscopic time sequence of the explored energy levels.
These basins stem from the fact that for high E one has
p"(E) < p#(E) while, for 0.5 < �/� < 1 (which coincides
with Bertin’s thermal activated regime [26, 30]), and

E < E
th

⌘ 1

� � �
ln

✓
2�� �

�

◆
, the opposite inequality

holds: p"(E) > p#(E). This means that if the dynamics
goes below E

th

(represented in Fig.1 by the thin orizon-
tal line) it will be driven back to larger energy levels
E > E

th

before falling again deep down in the PEL. This
threshold energy plays the role of a dynamical potential
energy barrier self-generated by the competition between
rare downward descents and exponentially suppressed
Metropolis transitions towards higher energies. We will
therefore use E

th

to define spontaneously forming large
dynamical basins. Each time E increases and crosses
E

th

we say that the system changes basin (and we
change color and line-style in Fig.1).
Within this construction in terms of basins we can now
define a new correlation function ⇧BSN

�,�

(t
w

, t
w

+ t) as
the probability of not changing basin between t

w

and
t
w

+ t and study its large t
w

limit, CBSN

�,�

(t/t
w

= w). We
can also study the probability distribution function of
the trapping time in each basin p(⌧BSN ), for t � ⌧BSN .
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Further results

REM used as a first proxy for p-spin (i.e. first steps to dynamics of spiked tensor)

• but REM neglects correlations of neighbouring conf.-> Correlated REM

simulations (well hidden effective threshold and dynamical basins)

analytic study of barriers -> evidence for a minimal barrier

• supercooled liquids, the ultimate challenge:

• the p-spin challenge:

simulations (barriers, metabasins, localisation)

MBJ Achard Biroli 2018

Ravasio, Billoire, Biroli, CC

Ros, Biroli, CC, arXiv:1809.05448 (2018) 

Rocchi, Franz

MBJ, Biroli, Reichman



Conclusion
Goal: understand finite d and sparse networks dynamics 

• Study Mean Field models at t ~ exp(N) 

• Effective description (Trap-like) of dynamics in rough landscapes

• Effective description (Trap-like) of dynamics even without barriers

-> effective barriers can be energetic or entropic 

Glassy landscapes: competition of both factors

- Will effective trap dynamics find application elsewhere?

- Will effective trap descriptions be useful to predict glass dynamics?



Thank you!



Connectine REM and p-spin

● p-spin ≡ p-body interactions

● For activated dynamics need fnite 

N, so p N≤

● Energy correlations in the p-spin:

                            qab: overlap b/  a and b

● E.g. correlation between neighbors

● For any N<! there is always a 

positive correlation, so the p-spin 
cannot tend to the REM

Correlated REM �CREMe

● Construct a REM

● Impose correlations of the p-

spin without constraint p N≤  

MBJ, Achard & Biroli, 2018

EaEb=N qab

p

EaEb=N qab

α N

Smooth interp. between models:

α ~ 1/N:  p-spin regime

α ~ 1:  weak correlations 

α ≥ log(N): REM behavior

REM p-spin

EaEb=e
−2α>0 , α=

p

N
<1EaEb=0



2

exponentially more frequent than saddles [11, 17, 34].
The transition between these two regimes is sharp. It
occurs at a value of the energy density called threshold,
✏
th

(p) ⌘ �p

2(p� 1)/p, at which typical critical points
are characterized by plenty of directions with an almost
zero curvature. Low-temperature dynamics of the p-spin
model starting from high-energy initial conditions is es-
sentially a weak-noise dynamical descent in the energy
landscape (it becomes a gradient descent in the limit of
zero temperature). At small temperatures, penetrating
below the threshold and reaching the equilibrium energy
requires time scales that grow exponentially with N [35–
37]. On these extremely long time-scales the system
decreases its energy by escaping from local minima via
index-one saddles, i.e., crossing barriers. This dynamical
regime has been studied numerically for some mean-field
glassy models in [38–42]. Rigorous results have been ob-
tained for the Random Energy Model [45–47]. In order
to develop a theory of activated dynamics in this and
more complicated settings, it is crucial to understand how
barriers are organized in configuration space. Pioneering
works addressed this problem for mean-field glass sys-
tems like the p-spin at the end of the 90s [12, 28–30, 44].
However the task proved to be so challenging that many
central questions remained unanswered. For instance, it
is still unknown whether the system has to climb up to
the threshold to escape from local minima or can instead
sneak through selected paths that involve lower barriers.
Our goal is to address this and similar issues by the
quenched Kac-Rice formalism we developed in [23]. Our
starting point is the computation of the typical num-
ber of saddles surrounding a given minimum. This prob-
lem was already addressed in [12] but in a simpler set-
ting. For convenience, we re-define the state variables
setting them on the unit sphere, � = s/

p
N , and in-

troduce the rescaled energy h[�] ⌘ p

2/NE[
p
N�] [48].

We denote with g [�] and H [�] its gradient vector and
Hessian matrix, respectively [49]. We take a fixed mini-
mum �0 drawn at random from the population of minima
with energy ✏

0

(✏
gs

 ✏
0

 ✏
th

), and define the number
N�0(✏, q|✏

0

) of stationary points with energy ✏ that are
at fixed distance from �0, measured by one minus the
overlap �0 · � = q (high overlap corresponds to small
distance). Since saddles above ✏

th

are not the ones used
by activated dynamics, we restrict ✏ to the same range
as ✏

0

. N�0(✏, q|✏
0

) is a random variable, and we are in-
terested in its typical value whose logarithm is given by
the quenched constrained complexity:

⌃(✏, q|✏
0

) = lim
N!1

1

N

D

logN�0(✏, q|✏
0

)
E

0

, (2)

where the average is taken over the disorder and the local
minima of energy ✏

0

. Its annealed counterpart given by
ln hN�0i

0

can be used as an approximation and is accessi-
ble to rigorous treatments but it coincides with ⌃(✏, q|✏

0

)
in a few cases only [17, 19] (when the distribution of N�0

concentrates around its average). The calculation of the
quenched complexity follows the method developed re-

FIG. 1. Energy densities ✏

x

(q|✏0) of the stationary points at
overlap q from the fixed minimum and having complexity ⌃ =
x, for p = 3 and ✏0 = �1.167. The green points correspond
to minima and the violet points to index-one saddles. The
evolution of the density of states of the Hessian is sketched
below. Above the threshold energy all points are therefore
saddles of index proportional to N .

cently in [23]. We report below the results and we refer to
the Supplemental Material (SM) for the detailed compu-
tation and extensions of them. The quenched complexity
reads:

⌃(✏, q|✏
0

) =
1

2
log

⇣p

2
(z̃ � ✏)2

⌘

+
p
�

✏2 + ✏z̃
�

2(p� 1)
+

Q

2
(3)

where

Q = log

✓

1� q2

1� q2p�2

◆

�2
�

✏2
0

U
0

(q) + ✏
0

✏U(q) + ✏2U
1

(q)
�

,

with z̃ =
p
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For q = 0, one finds U
0

= U = 0, U
1

= 1, and Q = �2✏2

and we recover the expression of the unconstrained com-
plexity ⌃(✏) [11], which counts the typical number of sta-
tionary points irrespectively of their location in the space
of configurations. The expression (3) for the constrained
quenched complexity turns out to be equal to the one of
the annealed complexity. This is quite surprising since
the presence of the constraint was expected to lead to
non-trivial correlations between critical points, and hence
to a di↵erence between quenched and annealed averages.
It is a fortunate coincidence though, since it simplifies
considerably the analysis of the Hessian, it opens the
way to a rigorous proof of (3), along the lines of [19] and,
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