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First formulation and analytical attempt: Kirkpatrick and Wolynes, 1987; PZ, KPZ, KPUZ, CKPUZ, RU, RUYZ (2005-2016)
Exact Realization of the RFOT scenario without activation from Kirkpatrick, Thirumalai and Wolynes (1989)
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First formulation and analytical attempt: Kirkpatrick and Wolynes, 1987; PZ, KPZ, KPUZ, CKPUZ, RU, RUYZ (2005-2016)
Exact Realization of the RFOT scenario without activation from Kirkpatrick, Thirumalai and Wolynes (1989)

yhamics is Only Simple in d—o0
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Challenges of Relating d—o00 and “Real” Glasses
around the dynamical transition.

System Glass Nucl. |Comp. Struct.|d < d.
HS in d = 2 and 3
HSin4<d<6 small small
HSin6<d<8 small small
HS in d > 8 small small X
HS/MK in d — o X X X

In addition, some of the critical exponents are not universal even in MFT.
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In progress: extend density and d range and compute dynamical susceptibility.

Log-normal cage
size distribution

Ex: Typical HS Cages Display non-
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Upon increasing d, O approaches
MF prediction, 6 =1/2

A(pa) — A(¢) = A(¢ — ¢a
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Kundu et al. in preparation (2019)



structureless and interfaceless

MEK(K)

Mari, Kurchan, J. Chem. Phys. (2011)



Challenges of Relating d—o00 and “Real” Glasses
around the dynamical transition.

System Glass Nucl. | Comp. Struct. |d < dy
HSind=2and 3
HSin4<d<6 small small
HSin6<d<8 small small
HSind>8 small small X
HS/MK in d — oo X X X
MK in d = 3 X X X




Typical MK Cages Display MF Criticality

2 ' T ' T ' 1.0 P
1: d=3 d;3
r X 0.8 g1
° ‘ d=5
> d=6
a . L' ‘!'k 0.6
T | %
S 28
b4 %
| -%A
2 1| 0o
"\ogo,
I: | ! I.|\ 2 3 4
0 12 3 p/pa
A/A

Log-normal cage

size distribution MF critical scaling

A(¢a) — Al¢) = A(d — ¢a)™

Charbonneau et al. PNAS (2015)



But Not Every Particle is Caged!
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Mézard et al. (2011); Charbonneau et al. PNAS (2015)
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Hopping Is the Unitying Hypothesis
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reversible jump irreversible jump

But hopping is completely absent
from HS description in d—o0

Charbonneau et al. (2014); Vollmayr-Lee (2004)



Minimal Model for Caging vs Hopping?

Freezing the obstacles in MK makes the problem equivalent to RLG and Void Percolation

Jin and Charbonneau (2015); Franosch et al. (2008)
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Finite-d RLG Localizes But Doesn’t Cage.
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Localization transition is continuous...
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Franosch et al. (2008)



Mean-field description of the random Lorentz gas dynamics
Lorentz gas in high d

Three assumptions:

@ Dynamics of the particle can be described by a generalized
Langevin equation with Gaussian noise:

i) = - [ M (e — O)E( )+ () + €0

~ - single-particle friction coefficient;

M (1) - irreducible memory function (internal friction kernel);

n;(1) - Gaussian colored noise describing the fluctuating force due
to the obstacles, (n;(1)n;(¢')) = To;IM" (t — 1');

¢,(1) - Gaussian white noise, (£;(1)&;(f')) = 2yTo;I6(t — 1').



Mean-field description of the random Lorentz gas dynamics
Three assumptions (cont.)

© Approximate expression for the irreducible memory function:

M"() = B<ZR-F,~(ti”)Zf(-Fj(O)>
BZ<R'Fi(f)R'Fi(O)>

Q

AN

k - unit vector

F;(") - force acting on the moving particle due to obstacle i, at
time t, evolving with irreducible dynamics

F;(1) - force acting on the moving particle due to obstacle i, at time
t, evolving with normal dynamics.



Mean-field description of the random Lorentz gas dynamics
Three assumptions (cont.)

© The last assumption was based on the absence of the correlations
between forces due to different obstacles; this is consistent with
the following equation of motion of the particle with respect to the
obstacle:

i) = K~ [ M~ () + () + €0

r; =r — R;, where R; is the position of obstacle i

Noises n(¢) and n(z) are independent realizations of the noises in
the equation of motion for the particle.



Random Lorentz gas Mean-field description of the random Lorentz gas dynamics

Self-consistent equation for the Lorentz gas memory
function

@ The distance between the particle and the obstacle,
ri(t) =r(t) — Ry, evolves according to:

i) = Fn () - | M (e~ e () + (o) + €0

(n(tn(?)) =TIM™ (1 —7) & (E(E(r')) = 29TIS(t — 1)

where the memory function is determined by the process itself

A

M (1) = nj / dr <12 F(r (1) k- F(r1)> a(r).

@ Having found the memory function, we can study the motion of the
particle,

VE(t) = — /OtMi”(t — Or()dl' +n(t) + £(1).



Random Lorentz gas Mean-field description of the random Lorentz gas dynamics

Localization transition

@ The theory predicts a localization transition; at the transition the
memory function develops a non-decaying component,
lim; 0o M" () = MEp,

Mgp = nB [ ds Pgjow(s) <1A( ' F(l‘)>2

S

2
iAo, oot
(o) = [ dre=B(V()+Mgar?/2=s) Peiow(s) = [ dr (2nTMen )"/

@ The self-consistent equation for the localization transition is
equivalent to the equation derived from the replica approach:
nA Oqa /2 (r)

1= 2™ |4
d ] " oa

Ings/o(r) lkeda & Zamponi, unpublished
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Random Lorentz gas Mean-field description of the random Lorentz gas dynamics

Equation for the localization transition is almost
identical to the equation for the dynamic HS transition

@ Both the dynamic theory and the replica theory predict a
localization transition at the (rescaled) volume fraction equal to
one half of the volume fraction at the dynamic transition of the
hard sphere system: at the localization transition 29¢ /d ~ 2.403.

= g
Jin & Charbonneau, PRE 91, 042313 (2015)

d
@ This result is not inconsistent with numerical results (red circles).



RLG in finite d vs in the limit d— o0

* In finite d, localization is continuous and therefore distinct from caging.

* Inthe limit d — oo, caging is perfect and appears discontinuously (Charbonneau, Hu, lkeda,
Szamel, and Zamponi, unpublished).
* Two possibilities:
» Discontinuity is a general property of high-d percolation
* High d discontinuity is specific to off-lattice models.
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Ant-in-a-labyrinth Analysis in d—o00

Bethe Lattice for connectivity z:
Z

zZ— 2

The (sub)subdiffusive prefactor does not vanish in the d — oo limit; localization and caging never
coexist on a lattice.
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Distinction between caging and hopping might be a feature of off-lattice models!

How to reconcile RLG results?

To be continued...
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Biroli, Charbonneau, Hu, arXiv:1810.7826 (2018)



