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Mostly on the landscape

1. Shape of the landscape
2. Dynamics on the landscape



Loss function fixes the landscape

1. Take an iid dataset and split into two parts Dyain & Diest
2. Form the loss using only D;y4in

£train (9) ! Z K(ya f(97 ZU))

B |Dtrain| ( .
may)eptram
3. Find: 0* = arg min L4, (0)
4. ...and hope that it will work on Diyes;
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Observation 1
GD vs SGD



Moving on the fixed landscape

1. Take an iid dataset and split into two parts Dyain & Diest
2. Form the loss using only D;y4in
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GD is bad use SGD

“Stochastic gradient learning in neural networks”
Léon Bottou, 1991

The total gradient (3) converges to a local minimum of the cost function. The algorithm
then cannot escape this local minimum, which is sometimes a poor solution of the
problem.

In practical situations, the gradient algorithm may get stuck in an area where the cost
is extremely ill conditionned, like a deep ravine of the cost function. This situation
actually is a local minimum in a subspace defined by the largest eigenvalues of the
Hessian matrix of the cost.

The stochastic gradient algorithm (4) usually is able to escape from such bothersome
situations, thanks to its random behavior (Bourrely, 1989).



GD is bad use SGD

Bourrely, 1988




GD is the same as SGD

Fully connected network on MNIST: N ~ 450K

1o Cost vs. step no for 500-300 network
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Different regimes depending on N

Bourrely, 1988
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GD is the same as SGD

Fully connected network on MNIST: N ~ 450K

Cost vs. step no for 500-300 network
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Average number of mistakes: SGD 174, GD 194



Recent theoretical results

s it really the case that in the large N limit, GD = SGD?
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Recent theoretical results

s it really the case that in the large N limit, GD = SGD?

Mean Field approach to 1 hidden layer NNs:

e Mei, Montanari, Nguyen 2018
e Sirignano, Spiliopoulos 2018

e Rotskoff, Vanden-Eijnden 2018
e Chizat, Bach 2018

"when initialized correctly and in the many-particle limit
the gradient flow converges to global minimizers"”
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Regime where SGD is really special?

Accuracy

Where common wisdom may be true (Keskar et. al. 2016):
— Similar training error, but gap in the test error.
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The 'generalization gap' can be filled

® Jastrzebski et. al. 2018

® Goyal et. al. 2018

e Shallue and Lee et. al. 2018
e McCandlish et. al. 2018

e Smith et. al. 2018
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The 'generalization gap' can be filled

Start

Jastrzebski et. al. 2018
Goyal et. al. 2018

Shallue and Lee et. al. 2018
McCandlish et. al. 2018
Smith et. al. 2018

Minimum

Less noise, larger steps

® More noise, smaller steps
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The 'generalization gap' can be filled
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The 'generalization gap' can be filled

® |astrzebski et. al. 2018

® Goyal et. al. 2018

e Shallue and Lee et. al. 2018
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® Smith et. al. 2018

where we have established that (g®)(8;)—g(0})) is an additive zero mean Gaussian random
noise with variance 3(0) = (1/5)C(0). Hence we can rewrite (3) as

T
0111 = 01 — 1g(0) + \/—’g , (4)

where € is a zero mean Gaussian random variable with covariance C(8).
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The 'generalization gap' can be filled

But the noise is not Gaussian!
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Large batch allows parallel training

Accurate, Large Minibatch SGD:
Training ImageNet in 1 Hour

Priya Goyal Piotr Dollér Ross Girshick Pieter Noordhuis
Lukasz Wesolowski ~ Aapo Kyrola Andrew Tulloch  Yangqing Jia Kaiming He

Facebook
Abstract 5401
(0]
o
Deep learning thrives with large neural networks and %35'
large datasets.  However, larger networks and larger %
datasets result in longer training times that impede re- ,?30'
search and development progress. Distributed synchronous &
SGD offers a notential solution to this nroblem bv dividine ® 25+
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Large batch allows parallel training
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Observation 2
A look at the bottom of the loss



Different kinds of minima

Continuing with Keskar et al (2016): LB — sharp, SB — wide...
Also see Jastrzebski et. al. (2018), Chaudhari et. al. (2016)...
Older considerations Pardalos et. al. (1993)

Sharpness depends on parametrization: Dinh et. al. (2017)
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g (R) = f Y f Sx(R — R)f[H(R)|dR'} (2)

where R is a multidimensional vector representing all the coordinates in the molecule.
One of the simplest and most useful forms for S, is a Gaussian

SA(R) = ("(A}(_R"‘_zﬂ
C(AN) = = 2Det ' (A) (3)

where d is the total dimensionality of B. 'I'he function [ included in (2) allows for non-
linear averaging. Two choices motivated by physical considerations are f(r) = r and f(z) =
e~=/k¥8T  These choices correspond respectively to the “diffusion equation™ and “effective
energy” methods which are described below. Wu [77] has presented a general discussion of
transformations of the form of (2).

A highly smoothed Hy ; (from which all high spatial-frequency components have been
removed) will in most cases have fewer local minima than the unsmoothed (“bare™) func
tion, so it will be much easier to identify its global minimum. If the strong spatial-scaling
hypothesis is correct, the position of this minimum can then be iteratively tracked by local-
minimization as A decreases. As A — 0, the position will approach the global minimizer of
the bare objective function.



A look through the local curvature

Eigenvalues of the Hessian at the beginning and at the end

Eigenvalues

1.5

le-1

Full spectrum at large scale

At initial point
At final point

0

1000

2000 3000
Order of eigenvalues

4000

5000

30



A look through the local curvature

Eigenvalues of the Hessian at the beginning and at the end

Eigenvalues

1.5

le-1

Full spectrum at large scale

At initial point
At final point

0

1000

2000 3000
Order of eigenvalues

4000

5000

31



A look through the local curvature

Increasing the batch-size leads to larger outlier eigenvalues:

1lel Right eigenvalue distribution

—— Heuristic threshold
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— the width is sensitive to a very small space only

— small chance for barriers in such a flat landscape
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Gradients live in the top eigenspace
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Attempt to understand this analytically: Vladimir Kirilin
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https://arxiv.org/search/cs?searchtype=author&query=Gur-Ari%2C+G
https://arxiv.org/search/cs?searchtype=author&query=Roberts%2C+D+A
https://arxiv.org/search/cs?searchtype=author&query=Dyer%2C+E

More on the lack of barriers

1. Freeman and Bruna 2017: barriers of order 1/N

2. Baity-Jesi et. al. 2018: no barrier crossing in SGD dynamics
3. Xing et. al. 2018: no barrier crossing in SGD dynamics

4. Garipov et. al. 2018: no barriers between solutions

5. Draxler et. al. 2018: no barriers between solutions
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https://s3.amazonaws.com/media-p.slid.es/videos/563413/ofgWbAnB/string_zerot.mp4

More on the lack of barriers

1. Freeman and Bruna 2017: barriers of order 1/N

2. Baity-Jesi et. al. 2018: no barrier crossing in SGD dynamics
3. Xing et. al. 2018: no barrier crossing in SGD dynamics

4. Garipov et. al. 2018: no barriers between solutions

5. Draxler et. al. 2018: no barriers between solutions
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A toy model



Lessons from observations

Observation 1: captures wide/sharp discussion
Observation 2: captures flatness

Af(91,92) = (*919272
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Defining over-parametrization



Puzzles with partial answers

1. For large N the dynamics don't get stuck
— When is the training landscape nice?

2. Often N >> P, yetitdoesn't it overfit

— Relationship of the landscape with generalization?

e N :number of parameters § ¢ RY
e P :number of examples in the training set |Diyq;n |
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Sharp transition to OP in NNs

N
A

> [

e N :number of parameters § ¢ RY
e P :number of examples in the training set |Diyq;n |
e N*:critical number of parameters that fits D;yqin
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Sharp transition to OP in NNs

> [

e N :number of parameters § ¢ RY
e P :number of examples in the training set |Diyq;n |
e N*:critical number of parameters that fits D;yqin
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Sharp transition to OP in NNs
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Sharp transition to OP in NNs

N .
A R

> [

e N :number of parameters § ¢ RY
e P :number of examples in the training set |Diyq;n |
e N*:critical number of parameters that fits D;yqin
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Jamming is linked to Generalization

Test Error

102 10° 10* 10° 109 107 109 102
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Jamming is linked to Generalization

Belkin et. al. December 31, 2018

under-parameterized over-parameterized

Test risk

“classical”
regime

“modern”
interpolating regime

Risk

~ Training risk

- . _interpolation threshold

—_—

e — — — e— — e— m— m— — m— m— —

Complexity of H

47



Jamming is linked to Generalization

Similar observations 20 years ago

Neural networks with many parameters, trained
on small data sets, sometimes generalize well.

Eg: Face recognition (Lawrence et al, 1996)

m = 50 training patterns.

40
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20 ] 1 l

i
10 :

156 208 260 312 364

Number of weights

Number of patterns

Behnam Neyshabur's slide - also see Neyshabur et. al. 2018
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Ensembling improves generalization

Key is reducing fluctuations
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Open Questions (with partial answers)

What controls the dynamics of SGD?

How is it linked to generalization?

Is the problem essentially convex?

What's the role of the algorithm?

What's the role of priors on performance?

Is ensembling after jamming the best one can get?
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Thank Youl!



