Discussion

Neural Tangent Kernel: Convergence and Generalization in Neural Networks

NIPS 18

Arthur Jacot

École Polytechnique Fédérale de Lausanne arthur.jacot@netopera.net

Franck Gabriel

Imperial College London and École Polytechnique Fédérale de Lausanne franckrgabriel@gmail.com

Clément Hongler

École Polytechnique Fédérale de Lausanne clement.hongler@gmail.com

Scaling description of generalization with number of parameters in deep learning

arxiv 19

Mario Geiger * ¹, Arthur Jacot * ¹, Stefano Spigler ¹, Franck Gabriel ¹, Levent Sagun ¹, Stéphane d'Ascoli ², Giulio Biroli ², Clément Hongler ¹, and Matthieu Wyart ¹

Why does deep learning work?

- when can one fit the data (not stuck bad minimum)?
 crank up the number of parameters
- Why does it generalize well, even when the number of parameters is large?

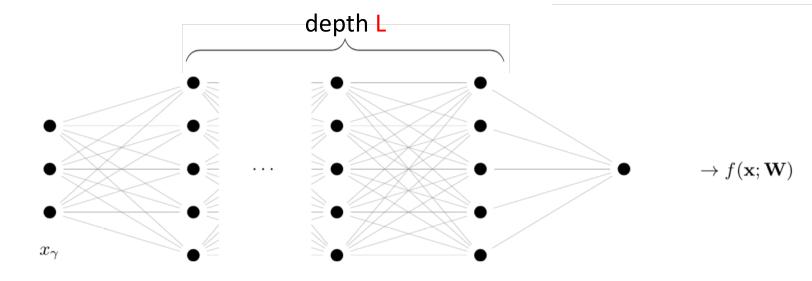
Generalization keeps improving with number of parameters...

MENU:

- 1/ Quantification of evolution of generalization with number of parameters
- 2/ Neural Tangeant Kernel (NTK)
- 3/ NTK and generalization as number of parameters becomes asymptotically large

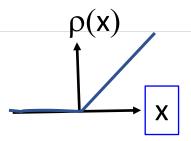
Set-up

- binary classification task, P training data $\{\mathbf{x}_i, y_i = \pm 1\}$
- Deep net $f_{\mathbf{W}}(\mathbf{x}_i)$ with N parameters, width h (N^h²)



$$a_{\beta} = \rho (\sum_{\alpha \in \text{ previous layer}} W_{\alpha,\beta} a_{\beta} - B_{\beta})$$

ρ: non-linear function



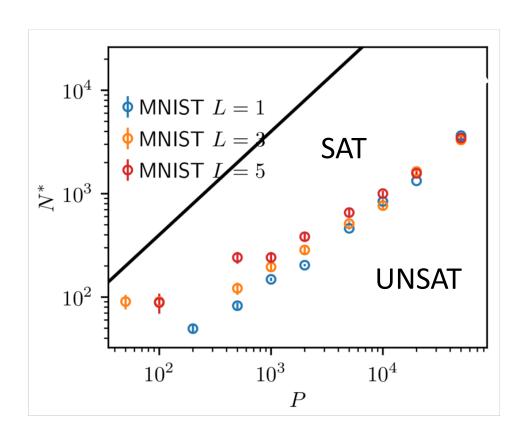
Learning

- Learning: gradient descent in loss function $\,\mathcal{L} = rac{1}{P} \sum_{i}^{F} l_i(f_{\mathbf{W}}(x_i))\,$
- Hinge Loss: $l_i(f_{\mathbf{W}}(x_i)) = (f_{\mathbf{W}}(x_i)y_i 1)^2$ if $f_{\mathbf{W}}(x_i)y_i < 1$ otherwise 0
- $\mathcal{L} = 0 \Leftrightarrow f_{\mathbf{W}}(x_i)y_i > 1 \forall i$ satisfability problem
- Dynamics stops in the SAT phase.
- Expect transition at some N*(P)

Empirical tests: MNIST (parity)

Geiger et al., arxiv 180909349,

• 6*10⁴ images of digits



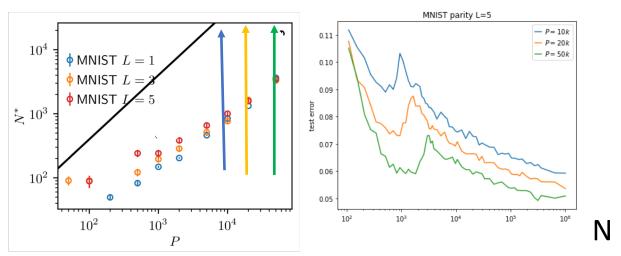
```
0123456789
0123456789
0123456789
0123456789
0123456789
0123456789
```

position of transition depends on dynamics (GD, adams, fire...)

Generalization

Spigler et al. arxiv 1810.09665,

test error



see also Advani and Saxe 17, Neal et al. 18, Neyshabur et al., 15, 17.

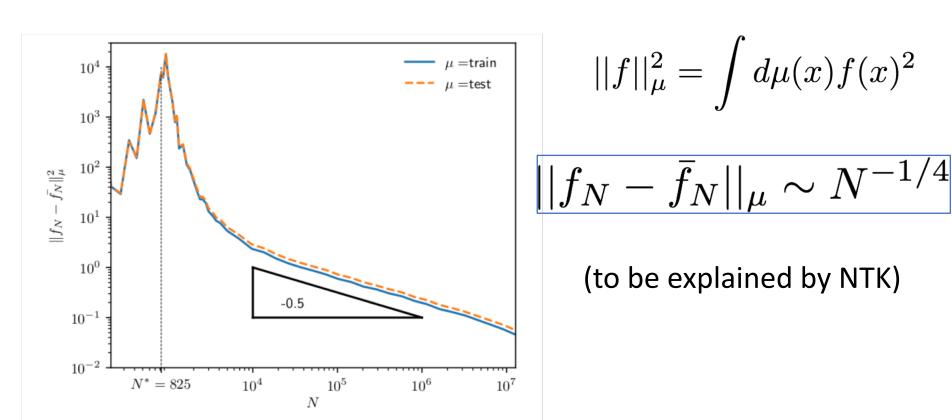
2 interesting asymptotic regimes:

- peak at the SAT-UNSAT transition
- perfomance improves with N in the SAT phase??? talks Rakhlin, Srebro: increased regularization with N Quantitative description? importance of N=∞

Quantifying fluctuations induced by initialization

- fixed data set, output function f stochastic due to initialization
- This stochasticity is reduced as N grows Neal et al. arxiv 1810591

 $ar{f}_N$: ensemble average of f_N on (20) initial conditions



Test and practical consequences

Geiger et al., arxiv 1901.01608

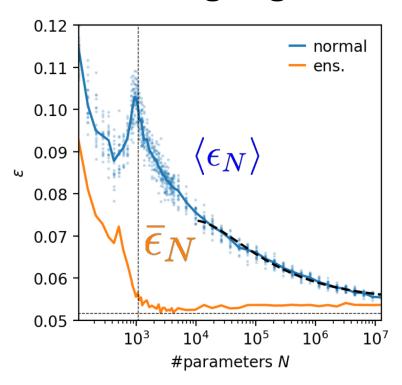
Reduce fluctuations by averaging

 $ar{\epsilon}_N$: test error of $ar{f}_N$

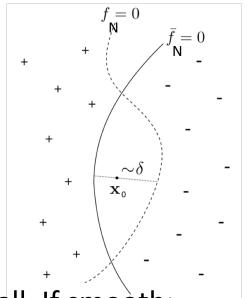


- test error becomes nearly flat for N>N*, optimal near N*
- Best procedure: ensemble average near SAT-UNSAT transition!!!

Scaling argument for generalization error



• seek to compute $\langle \epsilon_N \rangle - \bar{\epsilon}_N$ using $\delta f_N = f_N - \bar{f}_N$ very small



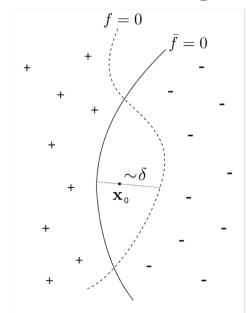
decision boundary

• signed distances $\delta(x)$ becomes small. If smooth:

$$\delta(x) = \frac{\delta f_N(x)}{||\nabla \bar{f}_N(x)||} + \mathcal{O}(\delta f_N^2)$$

$$\delta(x) \sim ||\delta f_N||_{\mu} \quad ext{(NTK)}$$
 $\langle \delta(x)
angle \sim ||\delta f_N||_{\mu}^2$

Scaling argument for generalization error

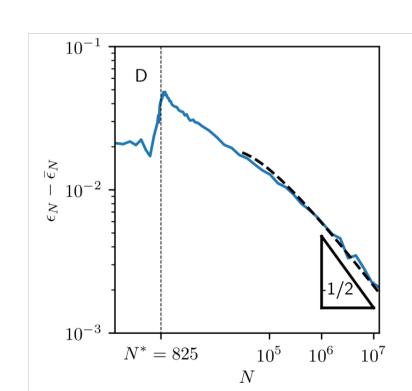


$$\Delta \epsilon = \int_{B} dx^{d-1} \left[\frac{\partial \epsilon}{\partial \delta(x)} \delta(x) + \frac{1}{2} \frac{\partial^{2} \epsilon}{\partial^{2} \delta(x)} \delta^{2}(x) + \mathcal{O}(\delta^{3}(x)) \right].$$

$$\langle \Delta \epsilon \rangle = c_0 ||\delta f||^2 + \mathcal{O}(||\delta f||^3)$$

expect $c_0>0$ if $\overline{\epsilon}$ small

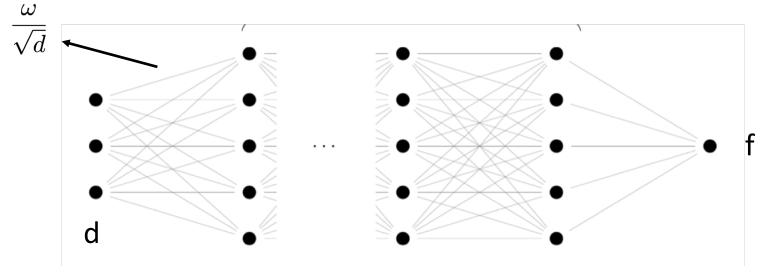
$$\langle \epsilon_N \rangle - \bar{\epsilon}_N \sim ||\bar{f}_N - f_N||^2 \sim 1/\sqrt{N}$$



Propagation in infinitely wide nets at t=0

Neal 96, williams 98, Lee et al 18, Ganguli et al.

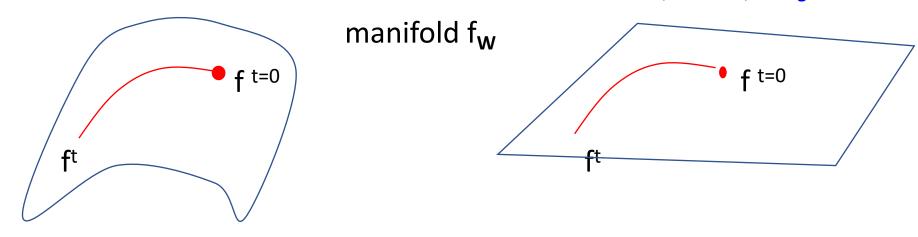
set-up: initialization iid weights =
$$\frac{\omega}{h^{1/2}}$$
 where $\omega \sim \mathcal{N}(0,1)$



- Non-trivial limit for propagation, pre-activation $\,lpha\sim 1\,$ and f $^\sim 1\,$
- pre-activation and output are iid gaussian processes as $h \to \infty$ $\langle \alpha_i^\ell(x) \alpha_i^\ell(x') \rangle = \delta_{i,j} \Sigma_\ell(x,x')$
- recursive relation for Σ_{ℓ}
- results: $\partial f/\partial \alpha \sim 1/\sqrt{h}$, between hidden neurons $\partial f/\partial \omega \sim 1/h$

Learning: Neural Tangent Kernel

Jacot, Gabriel, Hongler NIPS 18



small h: $\partial f/\partial w$ evolves

large h: $\partial f/\partial w$ fixed

- weights change a little bit $\,\omega^t \omega^0 \sim 1/h\,$
- sufficient to change f (positive interference)
- does not change $\partial f/\partial w$

Results

$$\mathcal{L} = \frac{1}{P} \sum_{i}^{P} l_i(f_{\mathbf{W}}(x_i))$$
 gradient descent

$$\frac{df(x)}{dt} = -\frac{1}{P} \sum_{i=1}^{P} \Theta_N^t(x_i, x) l_i'(f(x_i))$$

$$\Theta_N^t(x_i,x) = \sum \frac{\partial f^t(x_i)}{\partial \omega} \frac{\partial f^t(x)}{\partial \omega} \quad \text{useless in general...}$$

Theorem 1: at t=0, kernel does not depend on initialization at large N

$$\lim_{N\to\infty} \Theta_N^{t=0}(x_i,x) = \Theta_\infty(x_i,x) \qquad \text{(recursive proof)}$$

scaling makes sense. All layers contribute to Kernel.

Results

• Theorem 2: kernel does not depend on time

$$\lim_{N \to \infty} \Theta_N^t(x_i, x) = \Theta_\infty(x_i, x)$$

$$\frac{df(x)}{dt} = -\frac{1}{P} \sum_{i=1}^{P} \Theta_{\infty}(x_i, x) l_i'(f(x_i))$$

deep learning equivalent to kernel learning as $N o\infty$

Self-consistency:

- learning occurs on time $t \sim \mathcal{O}(1)$
- on that time scale, weights change very little

$$\omega^t - \omega^{t=0} \sim d\mathcal{L}/d\omega \sim \partial f/\partial\omega \sim 1/h$$

Results

• Theorem 3: Dynamics find global minimum of the loss if loss l_i convex and activation function non-polynomial

Gram matrix $\Theta_{\infty}(x_i,x_j)$ positive definite

$$\frac{df(x)}{dt} = -\frac{1}{P} \sum_{i=1}^{P} \Theta_{\infty}(x_i, x) l_i'(f(x_i))$$

• Result 4: smoothness of $f^t(x)$ can be deduced

$$f^{t}(x) = f^{t=0}(x) + \sum_{i=1}^{P} c_{i}(t)\Theta_{\infty}(x, x_{i})$$

Finite N Geiger et al. 19, Jacot et al 19

- Fluctuations of $\Theta_N^{t=0}$ go as $1/\sqrt{h} \sim N^{-1/4}$
- ullet evolution in time much smaller $heta_N^t heta_N^{t=0} \sim 1/\sqrt{N}$

$$\frac{df(x)}{dt} = -\frac{1}{P} \sum_{i=1}^{P} \Theta_N^t(x_i, x) l_i'(f(x_i))$$

 leads to fluctuations of similar magnitude for output function (proof mean square loss)

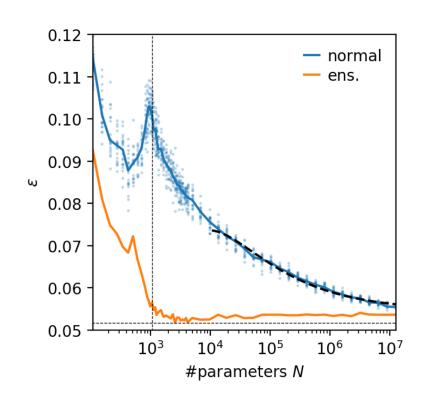
$$||f_N - \bar{f}_N||_{\mu} \sim N^{-1/4}$$

Is learning features useful?

• neurons pattern of activity barely changes as $N \to \infty$

$$\alpha^t(x) - \alpha^{t=0}(x) \sim 1/\sqrt{h}$$

- success of deep learning believes to be associated with the emergence of good features....
- Small effect at best on MNIST...



More data needed.