

Role and impact of SASI on core collapse supernovae

T. Foglizzo, CEA Saclay J. Guilet, J. Sato, T. Yamasaki, S. Fromang

A very narrow window in space and time

Stationary Accretion Shock Instability: SASI

Numerical simulations: SASI is ubiquitous since 2003

		initial	sym.	SASI	v-heat
2003	Blondin et al.	stalled	2D axi.	X	-
2004	Scheck et al.	collapse	2D axi.	X	X
2006	Scheck et al.	collapse	2D axi.	Х	Х
	Burrows et al.	<u>collapse</u>	2D axi.	Х	Х
	Ohnishi et al.	stalled	2D axi.	Х	Х
	Blondin & Mezzacappa	stalled	2D axi.	X	-
2007	Blondin & Mezzacappa	stalled	3D	spiral	-
	Kotake et al.	stalled	2D axi.	Х	Х
	Burrows et al.	<u>collapse</u>	2D axi.	Х	Х
	Blondin & Shaw	stalled	2D eq.	spiral	-
	Fryer & Young	collapse	3D	X	Х
2008	Scheck et al.	collapse	2D axi.	Х	Х
	lwakami et al.	stalled	3D	Х	Х
	Murphy & Burrows	collapse	2D axi.	Х	Х
	Ott et al.	collapse	2D axi.	X	Х
2009	Marek & Janka	<u>collapse</u>	2D axi.	Х	Х
	lwakami et al.	stalled	3D	spiral ?	Х
	Fernandez & Thompson	stalled	2D axi.	Х	-
	Fernandez & Thompson	stalled	2D axi.	Х	Х
	Endeve et al.	stalled	2D axi.	MHD	-
	Murphy et al.	collapse	2D axi.	Х	Х

The unexpected possible consequences of SASI

- successful explosion based on neutrino energy 15M_{sol} (Marek & Janka 09)

- new explosion mechanism based on acoustic energy 11-25M_{sol} (Burrows et al. 06, 07, but Weinberg & Quataert 08)

- pulsar kick (Scheck et al. 04, 06)

- pulsar spin (Blondin & Mezzacappa 07)

- H/He mixing in SN1987A (Kifonidis et al. 06)
- gravitational waves (Ott et al. 06, Kotake et al. 07, Marek et al. 09, Ott 08, Murphy et al. 09)

How does SASI help the neutrino-driven explosion?

3D effects on SASI evolution

First order effect of rotation:

- negligible centrifugal force α Ω^2
- Doppler shifted frequency ω -m Ω

Dominant spiral mode when the core is rotating (Iwakami et al. 08, 09)

Can the spiral mode dominate even for slow rotators?

What is the mechanism at work behind SASI?

- Growing evidence for the advective-acoustic mechanism

- cycle efficiency of overtones, wkb (Foglizzo et al. 07)
- timescales in simulations (Scheck et al. 08)

Cycle advectif-acoustique

---cycle acoustique

---cycle acoustique

Oscillation frequency

- timescale of the dominant mode (Fernandez & Thompson 09)
- $t_{\rm advect} \sim t_{\rm acoust}$

- Knowing the mechanism

- what grid size in simulations ? (Sato et al. 09)
- why is SASI a low I=1,2, low frequency instability? (Foglizzo 09)
- what saturation mechanism ? (poster by J. Guilet)

The simplest example of a 2D advective-acoustic cycle (Foglizzo 09)

Main hypothesis:

- plane parallel flow
- localized region of deceleration
- adiabatic deceleration through an external potential

- adiabatic index
- Mach number
- size of the deceleration region
- strength of deceleration
- aspect ratio Lx/H

Explicit analytical coupling efficiencies

$$\begin{split} \mathcal{R}_{\rm sh} &\equiv \frac{\delta f_{\rm sh}^{+}}{\delta f_{\rm sh}^{-}} = \frac{1 + \mu_{\rm sh} \mathcal{M}_{\rm sh}}{1 - \mu_{\rm sh} \mathcal{M}_{\rm sh}} \frac{\delta p_{\rm sh}^{+}}{\delta p_{\rm sh}^{-}}, \\ &= -\frac{\mu_{\rm sh}^{2} - 2 \mathcal{M}_{\rm sh} \mu_{\rm sh} + \mathcal{M}_{1}^{-2}}{\mu_{\rm sh}^{2} + 2 \mathcal{M}_{\rm sh} \mu_{\rm sh} + \mathcal{M}_{1}^{-2}} \frac{1 + \mu_{\rm sh} \mathcal{M}_{\rm sh}}{1 - \mu_{\rm sh} \mathcal{M}_{\rm sh}}. \end{split}$$

$$\begin{split} \mathcal{Q}_{\mathrm{sh}} &\equiv \frac{\delta f_{\mathrm{sh}}^S}{\delta f_{\mathrm{sh}}^-} = \frac{1}{1 - \mu_{\mathrm{sh}} \mathcal{M}_{\mathrm{sh}}} \frac{p_{\mathrm{sh}} \delta S_{\mathrm{sh}}}{\delta p_{\mathrm{sh}}^-}, \\ &= \frac{2}{\mathcal{M}_{\mathrm{sh}}} \frac{1 - \mathcal{M}_{\mathrm{sh}}^2}{1 + \gamma \mathcal{M}_{\mathrm{sh}}^2} \left(1 - \frac{\mathcal{M}_{\mathrm{sh}}^2}{\mathcal{M}_{\mathrm{1}}^2}\right) \\ &\times \frac{\mu_{\mathrm{sh}}}{\left(1 - \mu_{\mathrm{sh}} \mathcal{M}_{\mathrm{sh}}\right) (\mu_{\mathrm{sh}}^2 + 2\mu_{\mathrm{sh}} \mathcal{M}_{\mathrm{sh}} + \mathcal{M}_{\mathrm{1}}^{-2})}, \end{split}$$

$$\mathcal{R}_{\nabla} = \frac{\mu_{\text{in}} \mathcal{M}_{\text{out}} c_{\text{out}}^2 - \mu_{\text{out}} \mathcal{M}_{\text{in}} c_{\text{in}}^2}{\mu_{\text{in}} \mathcal{M}_{\text{out}} c_{\text{out}}^2 + \mu_{\text{out}} \mathcal{M}_{\text{in}} c_{\text{in}}^2} e^{i\omega \tau_{\mathcal{R}}},$$

$$\begin{split} \mathcal{Q}_{\nabla} &= \frac{\mathcal{M}_{\text{out}} + \mu_{\text{out}}}{1 + \mu_{\text{out}} \mathcal{M}_{\text{out}}} \frac{\mathrm{e}^{t\omega\tau_{\mathcal{Q}}}}{\mu_{\text{out}} \frac{c_{\text{in}}^2}{c_{\text{out}}^2} + \mu_{\text{in}} \frac{\mathcal{M}_{\text{out}}}{\mathcal{M}_{\text{in}}}} \\ &\times \left[1 - \frac{c_{\text{in}}^2}{c_{\text{out}}^2} + \frac{k_x^2 c_{\text{in}}^2}{\omega^2} (\mathcal{M}_{\text{in}}^2 - \mathcal{M}_{\text{out}}^2) \right], \end{split}$$

Linear coupling between the acoustic wave

and the entropy/vorticity wave

(Sato, Foglizzo & Fromang 09)

Why is SASI a low frequency instability ? (Foglizzo 08)

where

$$\begin{split} b_0 &\equiv \frac{1}{2} \left(1 + \frac{k_x^2 v_{\rm sh}^2}{\omega^2} \right) \left(1 - \mathcal{R}_\nabla - \frac{1 + \mathcal{R}_\nabla}{\mu_{\rm sh} \mathcal{M}_{\rm sh}} \right) \\ &= \frac{1 - \mathcal{M}^2}{1 - \mathcal{M}_{\rm sh}^2} \frac{\mathcal{M}_{\rm sh}^2}{\mathcal{M}^2} \left(\frac{\delta p_0}{p} \right)_{\rm sh}^{-1} \mathrm{e}^{-\int_{\rm sh} \frac{i\omega}{c} \frac{2\mathcal{M}}{1 - \mathcal{M}^2} \mathrm{d}z}, \\ b_\nabla &\equiv \frac{i\omega}{c_{\rm sh}^2} \frac{i\omega - 2v \frac{\partial \log \mathcal{M}}{\partial z}}{k_x^2 \mathcal{M}^2 + \frac{\omega^2}{c^2} - v \mathcal{M}^2 \frac{\partial}{\partial z} \frac{i\omega}{v^2}}. \end{split}$$

 $\omega \gg \frac{1}{\tau_{\nabla}}$

acoustic

phase

mixing

by advection

The saturation of SASI by parasitic instabilities

- propagate against the flow
- their effective growth rate exceed the SASI growth rate

Comparison with numerical simulations

poster J. Guilet

Fernandez & Thompson 09 (no heating)

interaction with v-driven convection?

Conclusion

Potential consequences of SASI are numerous:

neutrino driven explosion acoustic explosion NS kick NS spin mixing grav. waves magnetic field

Still large uncertainties concerning 3D

Understanding SASI can be helpful:

perturbative analysis: code accuracy, mechanism

toy model: SASI properties

first insight into non linear saturation: SASI vs convection?

Measuring the earth from KITP with a hose

 $R \sim 6780 \text{ km} \pm 180 \pm 340$

(yesterday)