A Variety of Stellar Deaths: Connecting massive stars to a range of outcomes

Avishay Gal-Yam, Benoziyo Center for Astrophysics Weizmann Institute Bobfest 2009, KITP

Lower mass limit unclear:

<7..11 solar; stable C/O core

7-11

Initial mass

Lower mass limit unclear:

<7..11 solar; stable C/O core

M: 7-11

Accretion induced collapse (AIC)

EC explosion in an old ONeMg WD following accretion (Nomoto 1984)

Possible explanation for new class of SNe: Carich faint SNe Ib, provided donor is a He WD

The Story of SN 2005E

LOSS discovery Type Ib (UCB; CCCP) Member of the Ca-rich Subclass (Filippenko et al.)

Hagai Perets

Dave Arnett, Paolo Mazzali, Daniel Kagan, UCB SN group, CCCP, Anderson & James, Ofek, Bildsten & Co., Quataert & Co.

The Story of SN 2005E (Cont.)

CCCP2 follow-up shows ... nothing

SN 2005E exploded in a remote location, at the outskirts of an isolated, regular, edge-on S0/a galaxy

A type Ib? How did the massive progenitor get there?

Local star formation?

Not detected to deep limits ... unlikely also on theoretical grounds

A weird type Ia?

Spectra conclusively rule out SN Ia identification

A hyper-velocity SN (HVSN) ?

Life in the fast lane?

Not likely: chances to observe HVSNe with LOSS are < 1/100

So what, then?

What will nebular spectra reveal?

Peculiar abundances (C, Ca, O, Ni56) = $(0.12\ 0.06\ 0.02\ 0.003)$ solar Total ejected mass is ~0.2 solar !

Mass estimate confirmed by light curve analysis

 $M \sim 0.3$ solar

A new type of supernova Not a core collapse, nor SN Ia

What can it be?

Possibilities reviewed by Foley, Valenti (for SN 2008ha):

* Core collapse to a black hole ("failed SN") • • • No SFR, hosts
* Weak/partial deflagration • • High velocities, nucleosynthesis
* AIC
* ".Ia" } • • • He accretion in a DD system

Nucleosynthesis

He/C/O accretion/merger result an emerging field

Lower mass limit unclear:

<7..11 solar; stable C/O core

M: 7-11 M: 8-16 M: 17-25

Lower mass limit unclear:

<7..11 solar; stable C/O core

M: 7-11 M: 8-16 M: 17-25 M: 25-30 M: 40-50

Lower mass limit unclear:

<7..11 solar; stable C/O core

M: 7-11 M: 8-16 M: 17-25 M: 25-30 M: 40-50 M: 50-150

SNe IIn from very massive stars (LBVs)

* Direct detection of the progenitor of SN 2005gl: L~10⁶ solar

* In accord with works by Kotak, Smith, Trundle, ...
* May involve the pulsational pair instability (PPSN; Woosley et al. 2007; Smith et al. 2009; Miller et al. 2009)

Lower mass limit unclear:

<7..11 solar; stable C/O core

M: 7-11 M: 8-16 M: 17-25 M: 25-30 M: 40-50 M: 50-150 M> 150

Pair Instability Supernovae (PISNE)

(Barkat, Rakavi & Sack 1967; Heger & Woosley 2002; Waldman 2008 ...)

* Helium cores above ~50 solar masses become pair unstable

* In these low-density high-T cores, $\gamma\gamma \rightarrow e^+e^-$ wins over oxygen ignition, heat is converted to mass and implosion follows

* Inertial oxygen ignition leads to explosion and full disruption

* "This is a uniquely calculable process" (Heger & Woosley 2002); "this is a trivial calculation" (Barkat 2009); "Pretty neat homework problem" (Gal-Yam 1996)

"Smoking gun": Core mass > 50 solar

Pair Instability Supernovae (PISNE)

(Barkat, Rakavi & Sack 1967; Heger & Woosley 2002; Waldman 2008 ...)

* Helium cores above the threshold robustly explode

* PISNe care not for metallicity, but for mass loss

* PISNe progenitors seem not to exist in our Galaxy – require M > 140 solar -(though transitional pulsational events might)

* At early Universe, M~1000 stars may have existed

SN 2007bi=SNF20070406-008

(PTF "dry run")

* Type Ic SN similar to SN1999as. No interaction, no dust, v=12000 km/s

* Luminous peak (-21.3), slow rise (~77 days), ⁵⁶Co decay

* M>3 solar masses of ⁵⁶Ni, ejected mass ~100 solar, E_k ~1e53 (scaling), 4-11 solar masses of ⁵⁶Ni (87A)

* Well-fit by models (Kasen)

* Nebular spectra: 4-6 solar mass of ⁵⁶Ni; >50 solar total (Mazzali), consistent with 98bw

Core mass > 50 robustly established; Gal-Yam et al. 2009, also Young et al. 2009

* A helium core ~100 solar detected at Z ~ SMC

* Mass loss models are wrong

* PISNe happen locally, Universally, models are ~ok

* Dwarfs have stars above Galactic limit (>200 solar, probably)

* Hydrogen efficiently removed (pulsations?)

Physical parameters:

Quantity	Method	Value [range]	Assumptions
⁵⁶ Ni mass	Peak magnitude	$3.5{ m M}_{\odot}$	
	SN 1987A comparison	$5.3 [4.4 7] M_{\odot}$	$t_{rise} = [45110] \text{ days}, BC_R = [-0.751] \text{ mag}$
	Nebular modelling	$[3.7 7.4] M_{\odot}$	$t_{rise} = [45110] days$
	SN 1998bw comparison	$8.9~[7.7~~11.3]~{ m M}_{\odot}$	$t_{rise} = [45110] days$
	Light-curve models	$[2.7 \dots 11] M_{\odot}$	ref. 8
Ejected mass	Nebular modelling	[51 61] M _☉	$t_{rise} = [45110] days$
	Light-curve scaling	$105 [37 173] M_{\odot}$	$t_{\rm rise} = [45110] \rm days$
	Light-curve models	$[95\\ 110]\ {\rm M}_{\odot}$	ref. 8
Kinetic energy	Light curve scaling	132 [68 273] 10 ⁵¹ erg	$t_{\rm rise} = [45110] \rm days$
	$(1/2)M_{\rm ej} imes \bar{v}^2$	$80 \ 10^{51} \ \mathrm{erg}$	$M_{\rm ej} = 100 {\rm M_{\odot}}, \bar{v} = 8,000 {\rm km s^{-1}}$
Radiated energy	Direct integration	[1 2] 10 ⁵¹ erg	$BC_R = [-0.751] \text{ mag}$

Lower mass limit unclear:

<7..11 solar; stable C/O core

M: 7-11 M: 8-16 M: 17-25 M: 25-30 M: 40-50 M: 50-150 M> 150

"Spectrum is truth" (RPK)

PTF news ... young SNe Ia to HST ...

Thanks