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The ultimate fate of a star depends on 
its mass.
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White dwarfs provide one 
observational means to 

determine the fate of stars.

M34: Main Sequence Turnoff Mass~4M

G. Rettig
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Deriving the progenitor masses of white 
dwarfs involves many model-dependent 

steps.
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The initial-final mass relation is well-
defined and approximates theoretically-

derived IFMRs.
Dominguez et al. 1999

Weidemann 2000

Marigo 2007

Ferrario et al. 2005

M35 (Williams et al. 2009)

NGC 2516 (Koester & 
Reimers 1996; Dobbie & 
Williams, in prep)

NGC 3532/2287 (Dobbie et al 
2009)

Pleiades (e.g., Dobbie et al 
2006)

Sirius B (Liebert et al. 2005)

Everything else
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The major systematic error for 
young clusters is the uncertainty 

in a star cluster’s age.
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A Monte Carlo calculation gives 
an observational lower limit 
(90%) on Mw of ~6.5M.
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The lower limit on Mw is not highly 
sensitive to most systematics.

Systematics 90% 50%

Default 6.48 7.92

Z=0.013 6.43 7.90

Include GD50 & PG0136 6.79 8.37

No ONe WDs 6.58 8.29

Include Systematic WD Fitting Errors 6.29 7.83
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In M35, we found one white dwarf with 
spectral features of carbon, but no 

hydrogen or helium.

Williams et al. (2006)

Dufour & Williams, in prep.
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In 2007, Patrick Dufour recognized that 
such white dwarfs, spectral type hot DQ, 
had (nearly) pure carbon atmospheres.

Dufour et al. (2008)
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Hot DQ white dwarfs have ensemble 
properties greatly different from 

other white dwarfs.

Hot DQs Other WDs

Surface 
Composition

log(C/H) > 1.5
log(C/He) > 0

Dufour et al. (2008)

log(C/He)<-2.5

Dufour et al. (2005)

Mass ~1M 
(parallax & M35 association; 
spectroscopic fits come in 

lower)

0.6M 

(85% < 0.8M)
(e.g., Liebert et al. 2005)

Incidence of 
Magnetism (≳1MG)

≳50% <10%
(e.g., Liebert 1988)
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Pure carbon models can predict the 
“blue edge” of the instability strip.

unstable stable

M*=0.6 M

M*=1.2 M 

M*=0.9 M 

Montgomery et al. (2008)
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Pure carbon models can predict the 
“blue edge” of the instability strip.

unstable stable

M*=0.6 M

M*=1.2 M 

M*=0.9 M 

SDSS 1426
+5752

Montgomery et al. (2008)
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The hot DQ SDSS J1426+5752 exhibits 
1.7% amplitude variations every 417 

seconds.
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However, the variable DQs (DQVs) may not 
be ordinary pulsators.

AM CVn

DAV

DBV

Montgomery et al. 2008
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DBV

Montgomery et al. 2008

Since last spring, four more DQVs have been 
found with similar characteristics.
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Pulsating White Dwarfs

It remains to be proven that the DQVs 
are indeed pulsating stars, but we 

prefer that explanation. 

Interacting Binary

Starspot

✓Pulsations predicted before 
variability was discovered
✓Emerging evidence for 
multiple periodicities
✓Emerging evidence for 
temperature dependence

✘ Odd pulse shape
✘ Magnetic field (?)

✓Pulse shape similarities ✘ No accretion signatures in 
spectrum

✘ No starspots are known on 
white dwarfs

✓Can explain pulse shapes 
and harmonics
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Where do hot DQs come from?

Born-again scenario (e.g., Althaus et al. 2009)
✓Explains atmospheric 
composition
✓Explains spectral evolution

✘ Does not require high masses
✘ Does not explain magnetic 
field

Other clues to the origin:

• The Messier 35 hot DQ, if a cluster member, requires 
a progenitor mass >7M.  

• High parallax masses ⇒ high progenitor masses.

Hot DQs may arise from the most massive 
stars to make white dwarfs
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• White dwarfs give an observational lower limit on 
Mw, but these limits are very sensitive to 
observational and model uncertainties. 

• Based on available WD observations, Mw>6.5 M 
(90% confidence). 

• Carbon-atmosphere WDs (hot DQs and H1504+65) 
may be the progeny of 7-11 M stars

• If the observed variability in many hot DQs is due to 
standard white dwarf pulsations, asteroseismology 
should be able to tell us their core composition.

Conclusions & Future Work
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