Plastic deformation of tubular crystals by dislocation glide

Daniel Beller, David Nelson

Geometry, elasticity, fluctuations, and order in 2D soft matter
Kavli Institute for Theoretical Physics

January 14, 2016

Plastic deformation of tubular crystals by dislocation glide

Daniel Beller, David Nelson

Geometry, elasticity, fluctuations, and order in 2D soft matter
Kavli Institute for Theoretical Physics

January 14, 2016

Plastic deformation of tubular crystals by dislocation glide

Daniel Beller, David Nelson

Geometry, elasticity, fluctuations, and order in 2D soft matter
Kavli Institute for Theoretical Physics

January 14, 2016

Examples of tubular crystals

Single-walled carbon nanotubes

Bacterial cell wall

 (peptidoglycan mesh)(a)

Chrétien et al., Eur Biophys J, 1998.
Amir \& Nelson, "Dislocationmediated growth of bacterial cell walls", PNAS 109:9833 (2012)

Each of these systems may contain dislocations...

Dislocation

Dislocation

(In a triangular lattice)
7-fold disclination
5-fold disclination

Dislocation

(In a triangular lattice)
7-fold disclination

5-fold disclination

Dislocation pair

Dislocation

(In a triangular lattice)
7-fold disclination

5-fold disclination

Dislocation pair

Single-walled carbon nanotubes

 plastically deform by dislocation motion at high tempSimulation

Experiment
a)

b)

Axial strain ~ 10% temperature $=3000 \mathrm{~K}$ Nardelli et al., PRL 81:4656 (1998)

Dislocation pairs found at $\mathrm{T}=2273 \mathrm{~K}$

Torsional strain ~ 10\%
Zhang et al., J. Chem. Phys. 130:071101 (2009)

Dislocations migrate in presence of kink

Suenaga et al., Nature Nanotech. 2:358 (2007)

In this talk:

Dislocations in triangular crystals on tubes

Plastic deformation of tubular crystals

- Background: Phyllotactic geometry of tubular crystals
- Mechanics of plastic deformation: Analytic predictions
- Numerical modeling
- Necks in tubes: Radius profiles near dislocations

Phyllotaxis ("leaf-arrangement") in Botany

(Not the subject of this talk, but fascinating!)

sunflower

Pennybacker et al.,
Physica D 306:48 (2015)
^^^ a great review article!

Pineapple (D.A.B./Whole Foods)

aloe
Wikipedia

Romanesco broccoli

www.fourmilab.ch

Pincushion cactus
www.cactuslovers.com

Pine cone
Warren Photographic

Parastichies

Lattice lines \rightarrow Spirals or helices

Phyllotaxis ("leaf-arrangement") in Botany
(Not the subject of this talk, but fascinating!)

Phyllotactic packing is described by parastichy numbers
= number of distinct parastichies in a parastichy family

Romanesco broccoli
www.fourmilab.ch

Phyllotaxis as the geometry of tubular crystals

Erickson, Science 181:705 (1973)

parastichy numbers

$$
(m, n)=(6,5)
$$

Circumference
 $\mathbf{C}=m \mathbf{a}_{2}-n \mathbf{a}_{1}$

$$
\tan \phi \approx \frac{2}{\sqrt{3}}\left(\frac{m}{n}-\frac{1}{2}\right) \quad R \approx \frac{1}{2 \pi}|\mathbf{C}|=\frac{a}{2 \pi} \sqrt{m^{2}+n^{2}-m n}
$$

Phyllotaxis as the geometry of tubular crystals

Erickson, Science 181:705 (1973)

parastichy numbers

$$
(m, n)=(6,5)
$$

Circumference
$\mathbf{C}=m \mathrm{a}_{2}-n \mathbf{a}_{1}$

$\longleftrightarrow R=|\mathbf{C}| / 2 \pi$

$$
\tan \phi \approx \frac{2}{\sqrt{3}}\left(\frac{m}{n}-\frac{1}{2}\right) \quad R \approx \frac{1}{2 \pi}|\mathbf{C}|=\frac{a}{2 \pi} \sqrt{m^{2}+n^{2}-m n}
$$

Phyllotaxis as the geometry of tubular crystals

Erickson, Science 181:705 (1973)

parastichy numbers

$$
(m, n)=(6,5)
$$

Circumference
 $\mathbf{C}=m \mathbf{a}_{2}-n \mathbf{a}_{1}$

$$
\tan \phi \approx \frac{2}{\sqrt{3}}\left(\frac{m}{n}-\frac{1}{2}\right) \quad R \approx \frac{1}{2 \pi}|\mathbf{C}|=\frac{a}{2 \pi} \sqrt{m^{2}+n^{2}-m n}
$$

$$
(m, n)=(20,20) \rightarrow(20,19)
$$

This talk is about

Parastichy transitions, i.e., changes in (m, n), as plastic deformations accomplished by unbinding and separation of pairs of dislocation defects

Key questions

- How much stress is required to plastically deform a tubular crystal via dislocation motion?
- How do the softest plastic modes change the tube geometry?
- How well does continuum elasticity theory predict deformations in very small tubes?
- How does a crystals' bending modulus change the plastic deformation mechanics as compared with the plane?

$$
(m, n)=(20,20) \rightarrow(20,19)
$$

This talk is about

Parastichy transitions, i.e., changes in (m, n), as plastic deformations accomplished by unbinding and separation of pairs of dislocation defects

Key questions

- How much stress is required to plastically deform a tubular crystal via dislocation motion?
- How do the softest plastic modes change the tube geometry?
- How well does continuum elasticity theory predict deformations in very small tubes?
- How does a crystals' bending modulus change the plastic deformation mechanics as compared with the plane?

Phyllotactic packings on cylinders of fixed radius: Recent work
Colloidal spheres in capillaries

Lohr et al., PRE 81:040401 (2010)

Mughal et al., PRL 106:115704 (2011)

Phyllotactic packings on cylinders of fixed radius: Recent work
Colloidal spheres in capillaries

(134)

Lohr et al., PRE 81:040401 (2010)
What happens if the cylinder radius is incommensurate with any perfect phyllotactic packing?

Mughal and Weaire, PRE 89:042307 (2014)

Rhombic (or "oblique") lattice

Mughal et al., PRL 106:115704 (2011)

Helical "line-slip" defects in a triangular lattice

Phyllotactic packings on cylinders of fixed radius: Recent work Colloidal spheres in capillaries

Lohr et al., PRE 81:040401 (2010)
What happens if the cylinder radius is incommensurate with any perfect phyllotactic packing?

Mughal and Weaire, PRE 89:042307 (2014)

Rhombic (or "oblique") lattice

Mughal et al., PRL 106:115704 (2011)

Helical "line-slip" defects in a triangular lattice

Phyllotactic packings on cylinders of fixed radius: Recent work
Colloidal spheres in capillaries

Lohr et al., PRE 81:040401 (2010)
What happens if the cylinder radius is incommensurate with any perfect phyllotactic packing?

Mughal and Weaire, PRE 89:042307 (2014)

Rhombic lattice favored for soft potentials Wood et al., Soft Matter 9:10016 (2013)

Rhombic (or "oblique") lattice

Dislocation interaction energetics on a cylinder

Mughal et al., PRL 106:115704 (2011)

Helical "line-slip" defects in a triangular lattice

Amir, Paulose, Nelson, PRE 87:042314 (2013)

This work:
Dislocation-mediated plastic deformation of tubular crystals where the tube radius is not fixed:
R varies in space and time

This work:
Dislocation-mediated plastic deformation of tubular crystals where the tube radius is not fixed:
R varies in space and time

Dislocation motion: Glide and climb

usually easier for mass-conserving systems

Climb: $\mathrm{d} \mathbf{x} / \mathrm{d} t \perp \mathbf{b}$

relevant to systems with growth/

e.g., Bacterial cell wall growth Amir \& Nelson, PNAS 109:9833 (2012)

b of the
right-moving dislocation

The six elementary Burgers vector pairs on a triangular lattice

Dislocation motion: Glide and climb

usually easier for mass-conserving systems

Climb: $\mathrm{d} \mathbf{x} / \mathrm{d} t \perp \mathbf{b}$

relevant to systems with growth/

e.g., Bacterial cell wall growth Amir \& Nelson, PNAS 109:9833 (2012)

b of the
right-moving dislocation

The six elementary Burgers vector pairs on a triangular lattice

A dislocation passing through the system changes (m, n)

A dislocation passing through the system changes (m, n)

A dislocation passing through the system changes (m, n)

y

$\mathbf{C}=7 \mathbf{a}_{2}-5 \mathbf{a}_{1}$

A dislocation passing through the system changes (m, n)

$$
\mathbf{C}=m \mathbf{a}_{2}-n \mathbf{a}_{1}
$$

y

$\mathbf{C}=7 \mathbf{a}_{2}-5 \mathbf{a}_{1}$

$\mathbf{C}^{\prime}=7 \mathrm{a}_{2}-4 \mathbf{a}_{1}$
$(m, n) \rightarrow(m, n-1)$

A dislocation passing through the system changes (m, n)

Altered circumference $\quad \mathbf{C}^{\prime}=\mathbf{C}+\mathbf{b}$

$$
\mathbf{C}=m \mathbf{a}_{2}-n \mathbf{a}_{1}
$$

y

$\mathbf{C}=7 \mathbf{a}_{2}-5 \mathbf{a}_{1}$

$\mathbf{C}^{\prime}=7 \mathbf{a}_{2}-4 \mathbf{a}_{1}$
$(m, n) \rightarrow(m, n-1)$

\mathbf{b}	\mathbf{a}_{1}	\mathbf{a}_{2}	\mathbf{a}_{3}	$-\mathbf{a}_{1}$	$-\mathbf{a}_{2}$	$-\mathbf{a}_{3}$
Δm	0	+1	+1	0	-1	-1
Δn	-1	0	+1	+1	0	-1

A dislocation passing through the system changes (m, n)

$$
\underset{\text { vector: }}{\text { Altered circumference }} \quad \mathbf{C}^{\prime}=\mathbf{C}+\mathbf{b}
$$

The right-moving dislocation has $\mathbf{b}=\mathbf{a}_{1}$

\mathbf{b}	\mathbf{a}_{1}	\mathbf{a}_{2}	\mathbf{a}_{3}	$-\mathbf{a}_{1}$	$-\mathbf{a}_{2}$	$-\mathbf{a}_{3}$
Δm	0	+1	+1	0	-1	-1
Δn	-1	0	+1	+1	0	-1

A dislocation passing through the system changes (m, n)

$$
\begin{aligned}
& \text { Altered circumference } \\
& \text { vector: }
\end{aligned} \mathbf{C}^{\prime}=\mathbf{C}+\mathbf{b}
$$

The right-moving dislocation has $\mathbf{b}=\mathbf{a}_{1}$
Dislocation motion \Rightarrow Parastichy transition!

Plastic deformation of tubular crystals

- Background: Phyllotactic geometry of tubular crystals
- Mechanics of plastic deformation: Analytic predictions
- Numerical modeling
- Necks in tubes: Radius profiles near dislocations

Energetics of dislocations on the plane

Stretching energy

$$
\begin{aligned}
E_{s} & =\frac{1}{2} \int d \mathbf{x}\left(2 \mu u_{i j} u_{i j}+\lambda u_{k k}^{2}\right) \\
& =\frac{1}{2} \cdot \frac{3}{8} Y \int d \mathbf{x}\left(2 u_{i j} u_{i j}+u_{k k}^{2}\right)
\end{aligned}
$$

- $\mu, \lambda=$ Lamé coefficients
- "Harmonic springs" assumption:

$$
\mu=\lambda=\frac{3}{8} Y
$$

where $Y=4 \pi A=$ Young's modulus

- strain tensor $u_{i j}=\frac{1}{2}\left(\partial_{i} u_{j}+\partial_{j} u_{i}\right)$ where $\vec{u}(\mathbf{x})=$ displacement field

Energetics of dislocations on the plane

Stretching energy

$$
\begin{aligned}
E_{s} & =\frac{1}{2} \int d \mathbf{x}\left(2 \mu u_{i j} u_{i j}+\lambda u_{k k}^{2}\right) \\
& =\frac{1}{2} \cdot \frac{3}{8} Y \int d \mathbf{x}\left(2 u_{i j} u_{i j}+u_{k k}^{2}\right)
\end{aligned}
$$

- $\mu, \lambda=$ Lamé coefficients
- "Harmonic springs" assumption:

$$
\mu=\lambda=\frac{3}{8} Y
$$

where $Y=4 \pi A=$ Young's modulus

- strain tensor $u_{i j}=\frac{1}{2}\left(\partial_{i} u_{j}+\partial_{j} u_{i}\right)$ where $\vec{u}(\mathbf{x})=$ displacement field

Peach-Kohler force:

Force on a dislocation \mathbf{b} in a stress field σ

$$
f_{i}=\epsilon_{i j z} b_{k} \sigma_{j k}
$$

Energetics of dislocations on the plane

Stretching energy

$$
\begin{aligned}
E_{s} & =\frac{1}{2} \int d \mathbf{x}\left(2 \mu u_{i j} u_{i j}+\lambda u_{k k}^{2}\right) \\
& =\frac{1}{2} \cdot \frac{3}{8} Y \int d \mathbf{x}\left(2 u_{i j} u_{i j}+u_{k k}^{2}\right)
\end{aligned}
$$

- $\mu, \lambda=$ Lamé coefficients
- "Harmonic springs" assumption:

$$
\mu=\lambda=\frac{3}{8} Y
$$

$$
\text { where } Y=4 \pi A=\text { Young's modulus }
$$

- strain tensor $u_{i j}=\frac{1}{2}\left(\partial_{i} u_{j}+\partial_{j} u_{i}\right)$ where $\vec{u}(\mathbf{x})=$ displacement field

Peach-Kohler force:

Force on a dislocation bin a stress field σ

$$
f_{i}=\epsilon_{i j z} b_{k} \sigma_{j k}
$$

Energetics of dislocations on the plane

Stretching energy

$$
\begin{aligned}
E_{s} & =\frac{1}{2} \int d \mathbf{x}\left(2 \mu u_{i j} u_{i j}+\lambda u_{k k}^{2}\right) \\
& =\frac{1}{2} \cdot \frac{3}{8} Y \int d \mathbf{x}\left(2 u_{i j} u_{i j}+u_{k k}^{2}\right)
\end{aligned}
$$

- $\mu, \lambda=$ Lamé coefficients
- "Harmonic springs" assumption:

$$
\mu=\lambda=\frac{3}{8} Y
$$

where $Y=4 \pi A=$ Young's modulus

- strain tensor $u_{i j}=\frac{1}{2}\left(\partial_{i} u_{j}+\partial_{j} u_{i}\right)$ where $\vec{u}(\mathbf{x})=$ displacement field

Energetics of dislocations on the plane

Stretching energy

$$
\begin{aligned}
E_{s} & =\frac{1}{2} \int d \mathbf{x}\left(2 \mu u_{i j} u_{i j}+\lambda u_{k k}^{2}\right) \\
& =\frac{1}{2} \cdot \frac{3}{8} Y \int d \mathbf{x}\left(2 u_{i j} u_{i j}+u_{k k}^{2}\right)
\end{aligned}
$$

- $\mu, \lambda=$ Lamé coefficients
- "Harmonic springs" assumption:

$$
\mu=\lambda=\frac{3}{8} Y
$$

where $Y=4 \pi A=$ Young's modulus

- strain tensor $u_{i j}=\frac{1}{2}\left(\partial_{i} u_{j}+\partial_{j} u_{i}\right)$ where $\vec{u}(\mathbf{x})=$ displacement field

$$
\mathbf{b}_{1}=-\mathbf{b}_{2} \equiv \mathbf{b}=a(\cos \theta, \sin \theta)
$$

Energetics of dislocations on the plane

Stretching energy

$$
\begin{aligned}
E_{s} & =\frac{1}{2} \int d \mathbf{x}\left(2 \mu u_{i j} u_{i j}+\lambda u_{k k}^{2}\right) \\
& =\frac{1}{2} \cdot \frac{3}{8} Y \int d \mathbf{x}\left(2 u_{i j} u_{i j}+u_{k k}^{2}\right)
\end{aligned}
$$

$$
\mathbf{b}_{1}=-\mathbf{b}_{2} \equiv \mathbf{b}=a(\cos \theta, \sin \theta)
$$

$$
\begin{aligned}
& E_{s}(r)= A a^{2} \ln (r / a) \\
&+s \cdot a \cdot r \cdot\left[\frac{1}{2} \sin (2 \theta)\left(\sigma_{x x}^{\mathrm{ext}}-\sigma_{y y}^{\mathrm{ext}}\right)-\cos (2 \theta) \sigma_{x y}^{\mathrm{ext}}\right] \\
& s=\operatorname{sign}[\cos (\theta)]
\end{aligned}
$$

Energetics of dislocations on the plane

Stretching energy

$$
\begin{aligned}
E_{s} & =\frac{1}{2} \int d \mathbf{x}\left(2 \mu u_{i j} u_{i j}+\lambda u_{k k}^{2}\right) \\
& =\frac{1}{2} \cdot \frac{3}{8} Y \int d \mathbf{x}\left(2 u_{i j} u_{i j}+u_{k k}^{2}\right)
\end{aligned}
$$

- $\mu, \lambda=$ Lamé coefficients
- "Harmonic springs" assumption:

$$
\mu=\lambda=\frac{3}{8} Y
$$

where

$$
Y=4 \pi A=\text { Young's modulus }
$$

- strain tensor $u_{i j}=\frac{1}{2}\left(\partial_{i} u_{j}+\partial_{j} u_{i}\right)$ where $\vec{u}(\mathbf{x})=$ displacement field

$$
\mathbf{b}_{1}=-\mathbf{b}_{2} \equiv \mathbf{b}=a(\cos \theta, \sin \theta)
$$

$$
\begin{aligned}
& E_{s}(r)= A a^{2} \ln (r / a) \leftarrow \text { dislocations' interaction } \\
&+s \cdot a \cdot r \cdot\left[\frac{1}{2} \sin (2 \theta)\left(\sigma_{x x}^{\text {ext }}-\sigma_{y y}^{\text {ext }}\right)-\cos (2 \theta) \sigma_{x y}^{\mathrm{ext}}\right] \\
& s=\operatorname{sign}[\cos (\theta)]
\end{aligned}
$$

Energetics of dislocations on the plane

Stretching energy

$$
\begin{aligned}
E_{s} & =\frac{1}{2} \int d \mathbf{x}\left(2 \mu u_{i j} u_{i j}+\lambda u_{k k}^{2}\right) \\
& =\frac{1}{2} \cdot \frac{3}{8} Y \int d \mathbf{x}\left(2 u_{i j} u_{i j}+u_{k k}^{2}\right)
\end{aligned}
$$

- $\mu, \lambda=$ Lamé coefficients
- "Harmonic springs" assumption:

$$
\mu=\lambda=\frac{3}{8} Y
$$

where

$$
Y=4 \pi A=\text { Young's modulus }
$$

- strain tensor $u_{i j}=\frac{1}{2}\left(\partial_{i} u_{j}+\partial_{j} u_{i}\right)$ where $\vec{u}(\mathbf{x})=$ displacement field

$$
\mathbf{b}_{1}=-\mathbf{b}_{2} \equiv \mathbf{b}=a(\cos \theta, \sin \theta)
$$

$$
\begin{aligned}
& E_{s}(r)= A a^{2} \ln (r / a) \leftarrow \text { dislocations' interaction } \\
&+s \cdot a \cdot r \cdot\left[\frac{1}{2} \sin (2 \theta)\left(\sigma_{x x}^{\text {ext }}-\sigma_{y y}^{\text {ext }}\right)-\cos (2 \theta) \sigma_{x y}^{\mathrm{ext}}\right] \\
& s=\operatorname{sign}[\cos (\theta)] \quad \text { coupling to external stress }
\end{aligned}
$$

Dislocation pair energy landscape

$$
\begin{aligned}
& E_{s}(r)=A a^{2} \ln (r / a)+s \cdot a \cdot r \cdot {\left[\frac{1}{2} \sin (2 \theta)\left(\sigma_{x x}^{\mathrm{ext}}-\sigma_{y y}^{\mathrm{ext}}\right)-\cos (2 \theta) \sigma_{x y}^{\mathrm{ext}}\right]+\text { const. } } \\
& s=\operatorname{sign}[\cos (\theta)]
\end{aligned}
$$

Dislocation pair energy landscape

$$
\begin{aligned}
& E_{s}(r)=A a^{2} \ln (r / a)+s \cdot a \cdot r \cdot {\left[\frac{1}{2} \sin (2 \theta)\left(\sigma_{x x}^{\mathrm{ext}}-\sigma_{y y}^{\mathrm{ext}}\right)-\cos (2 \theta) \sigma_{x y}^{\mathrm{ext}}\right]+\text { const. } } \\
& s=\operatorname{sign}[\cos (\theta)]
\end{aligned}
$$

short-distance
logarithmic attraction

Dislocation pair energy landscape

$$
\begin{aligned}
& E_{s}(r)=A a^{2} \ln (r / a)+s \cdot a \cdot r \cdot {\left[\frac{1}{2} \sin (2 \theta)\left(\sigma_{x x}^{\mathrm{ext}}-\sigma_{y y}^{\mathrm{ext}}\right)-\cos (2 \theta) \sigma_{x y}^{\mathrm{ext}}\right]+\text { const. } } \\
& s=\operatorname{sign}[\cos (\theta)]
\end{aligned}
$$

short-distance
logarithmic attraction

Dislocation pair energy landscape

$$
\begin{aligned}
& E_{s}(r)=A a^{2} \ln (r / a)+s \cdot a \cdot r \cdot {\left[\frac{1}{2} \sin (2 \theta)\left(\sigma_{x x}^{\mathrm{ext}}-\sigma_{y y}^{\mathrm{ext}}\right)-\cos (2 \theta) \sigma_{x y}^{\mathrm{ext}}\right]+\text { const. } } \\
& s=\operatorname{sign}[\cos (\theta)]
\end{aligned}
$$

short-distance
logarithmic attraction

Dislocation pair energy landscape

$$
\begin{aligned}
& E_{s}(r)=A a^{2} \ln (r / a)+s \cdot a \cdot r \cdot {\left[\frac{1}{2} \sin (2 \theta)\left(\sigma_{x x}^{\mathrm{ext}}-\sigma_{y y}^{\mathrm{ext}}\right)-\cos (2 \theta) \sigma_{x y}^{\mathrm{ext}}\right]+\text { const. } } \\
& s=\operatorname{sign}[\cos (\theta)]
\end{aligned}
$$

Dislocation pair energy landscape

$$
\begin{aligned}
E_{s}(r)=A a^{2} \ln (r / a)+s \cdot a \cdot r \cdot & {\left[\frac{1}{2} \sin (2 \theta)\left(\sigma_{x x}^{\mathrm{ext}}-\sigma_{y y}^{\mathrm{ext}}\right)-\cos (2 \theta) \sigma_{x y}^{\mathrm{ext}}\right]+\mathrm{const} } \\
& s=\operatorname{sign}[\cos (\theta)]
\end{aligned}
$$

short-distance
logarithmic attraction

$$
r^{*}=\text { location of }
$$

$$
0=\left.\frac{d E_{s}}{d r}\right|_{r=r^{*}} \quad r^{*}=\frac{s A a}{\sigma_{x y}^{\mathrm{ext}} \cos (2 \theta)-\frac{1}{2}\left(\sigma_{x x}^{\mathrm{ext}}-\sigma_{y y}^{\mathrm{ext}}\right) \sin (2 \theta)}
$$

Dislocation pair energy landscape

$$
\begin{aligned}
& E_{s}(r)=A a^{2} \ln (r / a)+s \cdot a \cdot r \cdot {\left[\frac{1}{2} \sin (2 \theta)\left(\sigma_{x x}^{\mathrm{ext}}-\sigma_{y y}^{\mathrm{ext}}\right)-\cos (2 \theta) \sigma_{x y}^{\mathrm{ext}}\right]+\text { const. } } \\
& s=\operatorname{sign}[\cos (\theta)]
\end{aligned}
$$

$$
0=\left.\frac{d E_{s}}{d r}\right|_{r=r^{*}} \quad r^{*}=\frac{s A a}{\sigma_{x y}^{\text {ext }} \cos (2 \theta)-\frac{1}{2}\left(\sigma_{x x}^{\text {ext }}-\sigma_{y y}^{\text {ext }}\right) \sin (2 \theta)}
$$

Dislocation pair energy landscape

$$
\begin{aligned}
& E_{s}(r)=A a^{2} \ln (r / a)+s \cdot a \cdot r \cdot {\left[\frac{1}{2} \sin (2 \theta)\left(\sigma_{x x}^{\mathrm{ext}}-\sigma_{y y}^{\mathrm{ext}}\right)-\cos (2 \theta) \sigma_{x y}^{\mathrm{ext}}\right]+\text { const. } } \\
& s=\operatorname{sign}[\cos (\theta)]
\end{aligned}
$$

$$
0=\left.\frac{d E_{s}}{d r}\right|_{r=r^{*}}
$$

$$
r^{*}=\frac{s A a}{\sigma_{x y}^{\text {ext }} \cos (2 \theta)-\frac{1}{2}\left(\sigma_{x x}^{\text {ext }}-\sigma_{y y}^{\text {ext }}\right) \sin (2 \theta)}
$$

Dislocation pair energy landscape

$$
\begin{aligned}
& E_{s}(r)=A a^{2} \ln (r / a)+s \cdot a \cdot r \cdot {\left[\frac{1}{2} \sin (2 \theta)\left(\sigma_{x x}^{\mathrm{ext}}-\sigma_{y y}^{\mathrm{ext}}\right)-\cos (2 \theta) \sigma_{x y}^{\mathrm{ext}}\right]+\text { const. } } \\
& s=\operatorname{sign}[\cos (\theta)]
\end{aligned}
$$

$$
0=\left.\frac{d E_{s}}{d r}\right|_{r=r^{*}} \quad r^{*}=\frac{s A a}{\sigma_{x y}^{\text {ext }} \cos (2 \theta)-\frac{1}{2}\left(\sigma_{x x}^{\text {ext }}-\sigma_{y y}^{\text {ext }}\right) \sin (2 \theta)}
$$

Dislocation pair energy landscape

$$
\begin{gathered}
E_{s}(r)=A a^{2} \ln (r / a)+s \cdot a \cdot r \cdot\left[\frac{1}{2} \sin (2 \theta)\left(\sigma_{x x}^{\mathrm{ext}}-\sigma_{y y}^{\mathrm{ext}}\right)-\cos (2 \theta) \sigma_{x y}^{\mathrm{ext}}\right]+\text { const. } \\
s=\operatorname{sign}[\cos (\theta)]
\end{gathered}
$$

$$
0=\left.\frac{d E_{s}}{d r}\right|_{r=r^{*}}
$$

$$
r^{*}=\frac{s A a}{\sigma_{x y}^{\text {ext }} \cos (2 \theta)-\frac{1}{2}\left(\sigma_{x x}^{\text {ext }}-\sigma_{y y}^{\text {ext }}\right) \sin (2 \theta)}
$$

Dislocation pair energy landscape

$$
\begin{aligned}
E_{s}(r)=A a^{2} \ln (r / a)+s \cdot a \cdot r \cdot & {\left[\frac{1}{2} \sin (2 \theta)\left(\sigma_{x x}^{\mathrm{ext}}-\sigma_{y y}^{\mathrm{ext}}\right)-\cos (2 \theta) \sigma_{x y}^{\mathrm{ext}}\right]+\mathrm{const} } \\
& s=\operatorname{sign}[\cos (\theta)]
\end{aligned}
$$

$$
0=\left.\frac{d E_{s}}{d r}\right|_{r=r^{*}}
$$

$$
r^{*}=\frac{s A a}{\sigma_{x y}^{\text {ext }} \cos (2 \theta)-\frac{1}{2}\left(\sigma_{x x}^{\text {ext }}-\sigma_{y y}^{\text {ext }}\right) \sin (2 \theta)}
$$

Critical stress for plastic deformation of pristine lattice: How strong must $\sigma^{\text {ext }}$ be to make $r^{*}=a$?

Critical stress required for instability to dislocation pair unbinding

Critical stress σ^{\dagger} to unbind an elementary dislocation pair $(|\mathbf{b}|=r=a)$ and plastically deform the tube by dislocation glide:

Axial tension
$\left(\sigma_{x x}-\sigma_{y y}\right)^{\dagger}=2 s A / \sin (2 \theta)$

Key:
increases R decreases R

Torsion

$$
\sigma_{x y}^{\dagger}=s A / \cos (2 \theta)
$$

$s=\operatorname{sign}[\cos (\theta)]$

Critical stress required for instability to dislocation pair unbinding

Critical stress σ^{\dagger} to unbind an elementary dislocation pair $(|\mathbf{b}|=r=a)$ and plastically deform the tube by dislocation glide:

Critical stress required for instability to dislocation pair unbinding

Critical stress σ^{\dagger} to unbind an elementary dislocation pair $(|\mathbf{b}|=r=a)$ and plastically deform the tube by dislocation glide:

Critical stress required for instability to dislocation pair unbinding

Critical stress σ^{\dagger} to unbind an elementary dislocation pair $(|\mathbf{b}|=r=a)$ and plastically deform the tube by dislocation glide:

Critical stress required for instability to dislocation pair unbinding

Critical stress σ^{\dagger} to unbind an elementary dislocation pair $(|\mathbf{b}|=r=a)$ and plastically deform the tube by dislocation glide:

Critical stress required for instability to dislocation pair unbinding

Critical stress σ^{\dagger} to unbind an elementary dislocation pair $(|\mathbf{b}|=r=a)$ and plastically deform the tube by dislocation glide:

Axial tension

$$
\left(\sigma_{x x}-\sigma_{y y}\right)^{\dagger}=2 s A / \sin (2 \theta)
$$

Key:

$\cdots \cdots$........ decreases R

So far we have only been considering planar dislocation interactions. How does being on a cylinder change defect interactions?

Torsion

$$
\sigma_{x y}^{\dagger}=s A / \cos (2 \theta)
$$

$s=\operatorname{sign}[\cos (\theta)]$

The bending energy

- Helfrich free energy for a bent membrane

$$
E_{b}=\int d \mathbf{x}\left[\frac{1}{2} \kappa(H(\mathbf{x}))^{2}+\bar{\kappa} K(\mathbf{x})\right]
$$

- Infinite cylinders/periodic B.C.'s $\Rightarrow \int d \mathbf{x} K(\mathbf{x})=0$.

> Mean curvature $H=\frac{1}{R_{1}}+\frac{1}{R_{2}}$
> Gaussian curvature $K=\frac{1}{R_{1} R_{2}}$

- For a perfect cylinder, $H=1 / R$ so bending energy per unit length is $E_{b} / L=\pi \kappa / R$.

The bending energy

- Helfrich free energy for a bent membrane

$$
E_{b}=\int d \mathbf{x}\left[\frac{1}{2} \kappa(H(\mathbf{x}))^{2}+\bar{\kappa} \underset{\kappa}{ }(\mathbf{x})\right]
$$

- Infinite cylinders/periodic B.C.'s $\Rightarrow \int d \mathbf{x} K(\mathbf{x})=0$.
- For a perfect cylinder, $H=1 / R$ so bending energy per unit length is $E_{b} / L=\pi \kappa / R$.

The bending energy

- Helfrich free energy for a bent membrane

$$
E_{b}=\int d \mathbf{x}\left[\frac{1}{2} \kappa(H(\mathbf{x}))^{2}+\bar{\kappa} \underset{x}{ }(\mathbf{x})\right]
$$

- Infinite cylinders/periodic B.C.'s $\Rightarrow \int d \mathbf{x} K(\mathbf{x})=0$.

$$
\begin{aligned}
& \text { Mean curvature } H=\frac{1}{R_{1}}+\frac{1}{R_{2}} \\
& \text { Gaussian curvature } K=\frac{1}{R_{1} R_{2}}
\end{aligned}
$$

- For a perfect cylinder, $H=1 / R$ so bending energy per unit length is $E_{b} / L=\pi \kappa / R$.

The bending energy

- Helfrich free energy for a bent membrane

$$
E_{b}=\int d \mathbf{x}\left[\frac{1}{2} \kappa(H(\mathbf{x}))^{2}+\bar{\kappa} \underset{\sim}{x}(\mathbf{x})\right]
$$

- Infinite cylinders/periodic B.C.'s $\Rightarrow \int d \mathbf{x} K(\mathbf{x})=0$.

$$
\begin{aligned}
& \text { Mean curvature } H=\frac{1}{R_{1}}+\frac{1}{R_{2}} \\
& \text { Gaussian curvature } K=\frac{1}{R_{1} R_{2}}
\end{aligned}
$$

- For a perfect cylinder, $H=1 / R$ so bending energy per unit length is $E_{b} / L=\pi \kappa / R$.
- How important is bending energy E_{b} compared to stretching energy E_{s} ?
- Dimesionless ratio: the Föppl-van Kármán number

$$
\gamma \equiv \frac{Y R^{2}}{\kappa}
$$

- For large γ, bending is easier than stretching.
- E.g. For single-walled carbon nanotubes, $\gamma \sim 10^{2}-10^{3}$.

The bending energy as a perturbation

$$
\text { Föppl-van Kármán number } \gamma \equiv \frac{Y R^{2}}{\kappa} \gg 1
$$

The bending energy as a perturbation

Föppl-van Kármán number $\gamma \equiv \frac{Y R^{2}}{\kappa} \gg 1$

- Radius preferred by stretching energy:

$$
R_{0} \approx \frac{a}{2 \pi} \sqrt{m^{2}+n^{2}-m n}
$$

- With stretching and bending energies,

$$
\begin{aligned}
& L_{0} \rightarrow L=L_{0}\left(1+u_{x x}\right) \\
& R_{0} \rightarrow R=R_{0}\left(1+u_{y y}\right)
\end{aligned}
$$

- Expand $E_{\text {tot }}=E_{s}+E_{b}$ in small $\gamma^{-1}, u_{x x}$, and $u_{y y}$.

The bending energy as a perturbation

Föppl-van Kármán number $\gamma \equiv \frac{Y R^{2}}{\kappa} \gg 1$

- Radius preferred by stretching energy:

$$
R_{0} \approx \frac{a}{2 \pi} \sqrt{m^{2}+n^{2}-m n}
$$

- With stretching and bending energies,

$$
\begin{aligned}
& L_{0} \rightarrow L=L_{0}\left(1+u_{x x}\right) \\
& R_{0} \rightarrow R=R_{0}\left(1+u_{y y}\right)
\end{aligned}
$$

- Expand $E_{\text {tot }}=E_{s}+E_{b}$ in small $\gamma^{-1}, u_{x x}$, and $u_{y y}$.

$$
\begin{aligned}
E_{\mathrm{tot}} & =E_{s}+E_{b} \\
& =\frac{1}{2} \cdot \frac{3}{8} Y \int d \mathbf{x}\left(2 u_{i j} u_{i j}+u_{k k}^{2}\right)+\frac{1}{2} \kappa \int d \mathbf{x} R^{-2} \\
& =\frac{1}{2} \cdot \frac{3}{8} Y(2 \pi R L)\left[2\left(u_{x x}^{2}+u_{y y}^{2}\right)+\left(u_{x x}+u_{y y}\right)^{2}\right]+\frac{\pi \kappa L}{R} \\
& \approx \pi Y R_{0} L_{0}\left[\frac{3}{8}\left(3 u_{x x}^{2}+3 u_{y y}^{2}+2 u_{x x} u_{y y}\right)+\frac{\kappa}{Y R_{0}^{2}}\left(1+u_{x x}-u_{y y}\right)\right]
\end{aligned}
$$

The bending energy as a perturbation

Föppl-van Kármán number $\gamma \equiv \frac{Y R^{2}}{\kappa} \gg 1$

- Radius preferred by stretching energy:

$$
R_{0} \approx \frac{a}{2 \pi} \sqrt{m^{2}+n^{2}-m n}
$$

- With stretching and bending energies,

$$
\begin{aligned}
& L_{0} \rightarrow L=L_{0}\left(1+u_{x x}\right) \\
& R_{0} \rightarrow R=R_{0}\left(1+u_{y y}\right)
\end{aligned}
$$

- Expand $E_{\text {tot }}=E_{s}+E_{b}$ in small $\gamma^{-1}, u_{x x}$, and $u_{y y}$.

$$
\begin{aligned}
E_{\mathrm{tot}} & =E_{s}+E_{b} \\
& =\frac{1}{2} \cdot \frac{3}{8} Y \int d \mathbf{x}\left(2 u_{i j} u_{i j}+u_{k k}^{2}\right)+\frac{1}{2} \kappa \int d \mathbf{x} R^{-2} \\
& =\frac{1}{2} \cdot \frac{3}{8} Y(2 \pi R L)\left[2\left(u_{x x}^{2}+u_{y y}^{2}\right)+\left(u_{x x}+u_{y y}\right)^{2}\right]+\frac{\pi \kappa L}{R} \\
& \approx \pi Y R_{0} L_{0}\left[\frac{3}{8}\left(3 u_{x x}^{2}+3 u_{y y}^{2}+2 u_{x x} u_{y y}\right)+\frac{\kappa}{Y R_{0}^{2}}\left(1+u_{x x}-u_{y y}\right)\right]
\end{aligned}
$$

The bending energy as a perturbation

Föppl-van Kármán number $\gamma \equiv \frac{Y R^{2}}{\kappa} \gg 1$

- Radius preferred by stretching energy:

$$
R_{0} \approx \frac{a}{2 \pi} \sqrt{m^{2}+n^{2}-m n}
$$

- With stretching and bending energies,

$$
\begin{aligned}
& L_{0} \rightarrow L=L_{0}\left(1+u_{x x}\right) \\
& R_{0} \rightarrow R=R_{0}\left(1+u_{y y}\right)
\end{aligned}
$$

- Expand $E_{\text {tot }}=E_{s}+E_{b}$ in small $\gamma^{-1}, u_{x x}$, and $u_{y y}$.

$$
\begin{aligned}
E_{\mathrm{tot}} & =E_{s}+E_{b} \\
& =\frac{1}{2} \cdot \frac{3}{8} Y \int d \mathbf{x}\left(2 u_{i j} u_{i j}+u_{k k}^{2}\right)+\frac{1}{2} \kappa \int d \mathbf{x} R^{-2}
\end{aligned}
$$

$$
=\frac{1}{2} \cdot \frac{3}{8} Y(2 \pi R L)\left[2\left(u_{x x}^{2}+u_{y y}^{2}\right)+\left(u_{x x}+u_{y y}\right)^{2}\right]+\frac{\pi \kappa L}{R}
$$

$+\frac{\frac{\pi \kappa L}{R}}{\left.\left(1+u_{x x}-u_{y y}\right)\right]}$

$$
\approx \pi Y R_{0} L_{0}\left[\frac{3}{8}\left(3 u_{x x}^{2}+3 u_{y y}^{2}+2 u_{x x} u_{y y}\right)+\frac{\kappa}{Y R_{0}^{2}}\left(1+u_{x x}-u_{y y}\right)\right]
$$

The bending energy as a perturbation

Föppl-van Kármán number $\gamma \equiv \frac{Y R^{2}}{\kappa} \gg 1$

- Radius preferred by stretching energy:

$$
R_{0} \approx \frac{a}{2 \pi} \sqrt{m^{2}+n^{2}-m n}
$$

- With stretching and bending energies,

$$
\begin{aligned}
& L_{0} \rightarrow L=L_{0}\left(1+u_{x x}\right) \\
& R_{0} \rightarrow R=R_{0}\left(1+u_{y y}\right)
\end{aligned}
$$

- Expand $E_{\text {tot }}=E_{s}+E_{b}$ in small $\gamma^{-1}, u_{x x}$, and $u_{y y}$.

$$
\begin{aligned}
& E_{\mathrm{tot}}=E_{s}+E_{b} \\
&=\frac{1}{2} \cdot \frac{3}{8} Y \int d \mathbf{x}\left(2 u_{i j} u_{i j}+u_{k k}^{2}\right)+\frac{1}{2} \kappa \int d \mathbf{x} R^{-2} \\
&=\frac{1}{2} \cdot \frac{3}{8} Y(2 \pi R L)\left[2\left(u_{x x}^{2}+u_{y y}^{2}\right)+\left(u_{x x}+u_{y y}\right)^{2}\right]+\frac{\pi \kappa L}{R} \\
& \approx \pi Y R_{0} L_{0}\left[\frac{3}{8}\left(3 u_{x x}^{2}+3 u_{y y}^{2}+2 u_{x x} u_{y y}\right)+\frac{\kappa}{Y R_{0}^{2}}\left(1+u_{x x}-u_{y y}\right)\right] \\
& \partial E_{\mathrm{tot}} / \partial u_{x x}=\partial E_{\mathrm{tot}} / \partial u_{y y}=0 \Rightarrow u_{y y}=-u_{x x} \approx \frac{2}{3} \gamma^{-1}
\end{aligned}
$$

The bending energy as a perturbation

Föppl-van Kármán number $\gamma \equiv \frac{Y R^{2}}{\kappa} \gg 1$

- Radius preferred by stretching energy:

$$
R_{0} \approx \frac{a}{2 \pi} \sqrt{m^{2}+n^{2}-m n}
$$

- With stretching and bending energies,

$$
\begin{aligned}
& L_{0} \rightarrow L=L_{0}\left(1+u_{x x}\right) \\
& R_{0} \rightarrow R=R_{0}\left(1+u_{y y}\right)
\end{aligned}
$$

- Expand $E_{\text {tot }}=E_{s}+E_{b}$ in small $\gamma^{-1}, u_{x x}$, and $u_{y y}$.

$$
\begin{aligned}
& E_{\mathrm{tot}}=E_{s}+E_{b} \\
&=\frac{1}{2} \cdot \frac{3}{8} Y \int d \mathbf{x}\left(2 u_{i j} u_{i j}+u_{k k}^{2}\right)+\frac{1}{2} \kappa \int d \mathbf{x} R^{-2} \\
&=\frac{1}{2} \cdot \frac{3}{8} Y(2 \pi R L)\left[2\left(u_{x x}^{2}+u_{y y}^{2}\right)+\left(u_{x x}+u_{y y}\right)^{2}\right]+\frac{\pi \kappa L}{R} \\
& \approx \pi Y R_{0} L_{0}\left[\frac{3}{8}\left(3 u_{x x}^{2}+3 u_{y y}^{2}+2 u_{x x} u_{y y}\right)+\frac{\kappa}{Y R_{0}^{2}}\left(1+u_{x x}-u_{y y}\right)\right] \\
& \partial E_{\mathrm{tot}} / \partial u_{x x}=\partial E_{\mathrm{tot}} / \partial u_{y y}=0 \Rightarrow u_{y y}=-u_{x x} \approx \frac{2}{3} \gamma^{-1}
\end{aligned}
$$

$$
\gamma^{-1}
$$

$$
E_{b} \text { preserves area: }
$$

$$
L \times R=L_{0} \times R_{0}
$$

The bending energy as a perturbation

Föppl-van Kármán number $\gamma \equiv \frac{Y R^{2}}{\kappa} \gg 1$

- Radius preferred by stretching energy:

$$
R_{0} \approx \frac{a}{2 \pi} \sqrt{m^{2}+n^{2}-m n}
$$

- With stretching and bending energies,

$$
\begin{aligned}
& L_{0} \rightarrow L=L_{0}\left(1+u_{x x}\right) \\
& R_{0} \rightarrow R=R_{0}\left(1+u_{y y}\right)
\end{aligned}
$$

- Expand $E_{\text {tot }}=E_{s}+E_{b}$ in small $\gamma^{-1}, u_{x x}$, and $u_{y y}$.

$$
E_{\mathrm{tot}}=E_{s}+E_{b}
$$

$$
=\frac{1}{2} \cdot \frac{3}{8} Y(2 \pi R L)\left[2\left(u_{x x}^{2}+u_{y y}^{2}\right)+\left(u_{x x}+u_{y y}\right)^{2}\right]+\frac{\pi \kappa L}{R}
$$

$$
\approx \pi Y R_{0} L_{0}\left[\frac{3}{8}\left(3 u_{x x}^{2}+3 u_{y y}^{2}+2 u_{x x} u_{y y}\right)+\frac{\kappa}{Y R_{0}^{2}}\left(1+u_{x x}-u_{y y}\right)\right] \quad \begin{aligned}
& E_{b} \text { preserves area: } \\
& L \times R=L_{0} \times R_{0}
\end{aligned}
$$

$$
\partial E_{\mathrm{tot}} / \partial u_{x x}=\partial E_{\mathrm{tot}} / \partial u_{y y}=0 \Rightarrow u_{y y}=-u_{x x} \approx \frac{2}{3} \gamma^{-1} \quad \Rightarrow R \approx R_{0}\left(1+\frac{2}{3} \gamma^{-1}\right)
$$

The bending energy as an effective stress

Föppl-van Kármán number $\gamma \equiv \frac{Y R^{2}}{\kappa} \gg 1$

- $u_{y y}=-u_{x x} \approx \frac{2}{3} \gamma^{-1}$
- Bending energy has same effect as an external stress tensor

$$
\begin{gathered}
\sigma^{b}=\left(\begin{array}{cc}
\sigma_{x x}^{b} & \sigma_{x y}^{b} \\
\sigma_{x y}^{b} & \sigma_{y y}^{b}
\end{array}\right)=\frac{1}{2} Y \gamma^{-1}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \\
E_{b}=\frac{1}{2} \kappa \int d \mathbf{x} H^{2} \rightarrow-\int d \mathbf{x} \sigma_{i j}^{b} u_{i j}
\end{gathered}
$$

- Therefore, the effective critical tensile stress contains a simple "curvature offset",

$$
\begin{aligned}
\left(\sigma_{x x}-\sigma_{y y}\right)^{\dagger \mathrm{eff}} & =\left(\sigma_{x x}-\sigma_{y y}\right)^{\dagger}+\left(\sigma_{x x}^{b}-\sigma_{y y}^{b}\right) \\
& =\left(\sigma_{x x}-\sigma_{y y}\right)^{\dagger}-Y \gamma^{-1}
\end{aligned}
$$

The bending energy as an effective stress

Föppl-van Kármán number $\gamma \equiv \frac{Y R^{2}}{\kappa} \gg 1$

- $u_{y y}=-u_{x x} \approx \frac{2}{3} \gamma^{-1}$
- Bending energy has same effect as an external stress tensor

$$
\begin{gathered}
\sigma^{b}=\left(\begin{array}{cc}
\sigma_{x x}^{b} & \sigma_{x y}^{b} \\
\sigma_{x y}^{b} & \sigma_{y y}^{b}
\end{array}\right)=\frac{1}{2} Y \gamma^{-1}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \\
E_{b}=\frac{1}{2} \kappa \int d \mathbf{x} H^{2} \rightarrow-\int d \mathbf{x} \sigma_{i j}^{b} u_{i j}
\end{gathered}
$$

- Therefore, the effective critical tensile stress contains a simple "curvature offset",

The bending energy as an effective stress

Föppl-van Kármán number $\gamma \equiv \frac{Y R^{2}}{\kappa} \gg 1$

- $u_{y y}=-u_{x x} \approx \frac{2}{3} \gamma^{-1}$
- Bending energy has same effect as an external stress tensor

$$
\begin{gathered}
\sigma^{b}=\left(\begin{array}{cc}
\sigma_{x x}^{b} & \sigma_{x y}^{b} \\
\sigma_{x y}^{b} & \sigma_{y y}^{b}
\end{array}\right)=\frac{1}{2} Y \gamma^{-1}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \\
E_{b}=\frac{1}{2} \kappa \int d \mathbf{x} H^{2} \rightarrow-\int d \mathbf{x} \sigma_{i j}^{b} u_{i j}
\end{gathered}
$$

- Therefore, the effective critical tensile stress contains a simple "curvature offset",

Depends only on R

The bending energy as an effective stress

Föppl-van Kármán number $\gamma \equiv \frac{Y R^{2}}{\kappa} \gg 1$

- $u_{y y}=-u_{x x} \approx \frac{2}{3} \gamma^{-1}$
- Bending energy has same effect as an external stress tensor

$$
\begin{gathered}
\sigma^{b}=\left(\begin{array}{cc}
\sigma_{x x}^{b} & \sigma_{x y}^{b} \\
\sigma_{x y}^{b} & \sigma_{y y}^{b}
\end{array}\right)=\frac{1}{2} Y \gamma^{-1}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \\
E_{b}=\frac{1}{2} \kappa \int d \mathbf{x} H^{2} \rightarrow-\int d \mathbf{x} \sigma_{i j}^{b} u_{i j}
\end{gathered}
$$

- Therefore, the effective critical tensile stress contains a simple "curvature offset",

$\left(\sigma_{x x}-\sigma_{y y}\right)^{\dagger \text { eff }}$	$=\left(\sigma_{x x}-\sigma_{y y}\right)^{\dagger}+\left(\sigma_{x x}^{b}-\sigma_{y y}^{b}\right)$
$=\left(\sigma_{x x}-\sigma_{y y}\right)^{\dagger}-Y \gamma^{-1}$	
7	Depends only on R

- Bending energy opposes plastic deformations that decrease R.
- Larger $\kappa \Rightarrow$ larger $\gamma^{-1} \Rightarrow$ greater stress required to unbind dislocations.

Bending energy may make very narrow tubes unstable

- $\left(\sigma_{x x}-\sigma_{y y}\right)^{\dagger \text { eff }}=\left(\sigma_{x x}-\sigma_{y y}\right)^{\dagger}-Y \gamma^{-1}$
- What happens when $Y \gamma^{-1}>\sigma_{c} \approx 2 A$?
- Then, with zero external stress, it is energetically favorable to unbind dislocation pairs that widen the tube.
- Tubes are unstable if

$$
R<R_{c}=\sqrt{\kappa / \sigma_{c}(\phi)}
$$

- (Need $\tilde{\kappa} \equiv \kappa Y / a^{2} \gtrsim 0.2$ in order for $R<R_{c}$ to be geometrically possible.)

Bending energy may make very narrow tubes unstable

- $\left(\sigma_{x x}-\sigma_{y y}\right)^{\dagger \text { eff }}=\left(\sigma_{x x}-\sigma_{y y}\right)^{\dagger}-Y \gamma^{-1}$
- What happens when $Y \gamma^{-1}>\sigma_{c} \approx 2 A$?
- Then, with zero external stress, it is energetically favorable to unbind dislocation pairs that widen the tube.
- Tubes are unstable if

$$
R<R_{c}=\sqrt{\kappa / \sigma_{c}(\phi)}
$$

- (Need $\tilde{\kappa} \equiv \kappa Y / a^{2} \gtrsim 0.2$ in order for $R<R_{c}$ to be geometrically possible.)

Bending energy may make very narrow tubes unstable

- $\left(\sigma_{x x}-\sigma_{y y}\right)^{\dagger \text { eff }}=\left(\sigma_{x x}-\sigma_{y y}\right)^{\dagger}-Y \gamma^{-1}$
- What happens when $Y \gamma^{-1}>\sigma_{c} \approx 2 A$?
- Then, with zero external stress, it is energetically favorable to unbind dislocation pairs that widen the tube.
- Tubes are unstable if

$$
R<R_{c}=\sqrt{\kappa / \sigma_{c}(\phi)}
$$

- (Need $\tilde{\kappa} \equiv \kappa Y / a^{2} \gtrsim 0.2$ in order for $R<R_{c}$ to be geometrically possible.)

Bending energy may make very narrow tubes unstable

- $\left(\sigma_{x x}-\sigma_{y y}\right)^{\dagger \text { eff }}=\left(\sigma_{x x}-\sigma_{y y}\right)^{\dagger}-Y \gamma^{-1}$
- What happens when $Y \gamma^{-1}>\sigma_{c} \approx 2 A$?
- Then, with zero external stress, it is energetically favorable to unbind dislocation pairs that widen the tube.
- Tubes are unstable if

$$
R<R_{c}=\sqrt{\kappa / \sigma_{c}(\phi)}
$$

- (Need $\tilde{\kappa} \equiv \kappa Y / a^{2} \gtrsim 0.2$ in order for $R<R_{c}$ to be geometrically possible.)

Plastic deformation of tubular crystals

- Background: Phyllotactic geometry of tubular crystals
- Mechanics of plastic deformation: Analytic predictions
- Numerical modeling
- Necks in tubes: Radius profiles near dislocations

Numerical modeling of tubular crystals

- "Ball and spring model": Nodes connected by harmonic springs*
- Rest length $a=1$
- Spring constant $k=(\sqrt{3} / 2) Y$
- Bending energy penalizes mean curvature when neighboring nodes are not coplanar**.
- Bending rigidity $\tilde{\kappa}=\kappa Y / a^{2}$
* Seung and Nelson, Phys. Rev. A 38:1005 (1988)
** Gompper and Kroll, J. de Physique I, 6:1305 (1996)
- Periodic boundary conditions along the cylinder axis:
- No end effects for dislocations
- Zero total Gaussian curvature
- Reconnect right end to left end by a translation $-L_{X} \hat{X}$ and a rotation β about \hat{X}, found by energy minimization.
- To apply tensile strain, change L_{X}.
- To apply torsional strain, change β.

Numerical modeling of tubular crystals

- "Ball and spring model": Nodes connected by harmonic springs*
- Rest length $a=1$
- Spring constant $k=(\sqrt{3} / 2) Y$
- Bending energy penalizes mean curvature when neighboring nodes are not coplanar**.
- Bending rigidity $\tilde{\kappa}=\kappa Y / a^{2}$
* Seung and Nelson, Phys. Rev. A 38:1005 (1988)
** Gompper and Kroll, J. de Physique I, 6:1305 (1996)
- Periodic boundary conditions along the cylinder axis:
- No end effects for dislocations
- Zero total Gaussian curvature
- Reconnect right end to left end by a translation $-L_{X} \hat{X}$ and a rotation β about \hat{X}, found by energy minimization.
- To apply tensile strain, change L_{X}.
- To apply torsional strain, change β.

Numerical modeling of tubular crystals

- "Ball and spring model": Nodes connected by harmonic springs*
- Rest length $a=1$
- Spring constant $k=(\sqrt{3} / 2) Y$
- Bending energy penalizes mean curvature when neighboring nodes are not coplanar**.
- Bending rigidity $\tilde{\kappa}=\kappa Y / a^{2}$
* Seung and Nelson, Phys. Rev. A 38:1005 (1988)
** Gompper and Kroll, J. de Physique I, 6:1305 (1996)
- Periodic boundary conditions along the cylinder axis:
- No end effects for dislocations
- Zero total Gaussian curvature
- Reconnect right end to left end by a translation $-L_{X} \hat{X}$ and a rotation β about \hat{X}, found by energy minimization.
- To apply tensile strain, change L_{X}.
- To apply torsional strain, change β.

Numerical modeling of tubular crystals

- "Ball and spring model": Nodes connected by harmonic springs*
- Rest length $a=1$
- Spring constant $k=(\sqrt{3} / 2) Y$
- Bending energy penalizes mean curvature when neighboring nodes are not coplanar**.
- Bending rigidity $\tilde{\kappa}=\kappa Y / a^{2}$
* Seung and Nelson, Phys. Rev. A 38:1005 (1988)
** Gompper and Kroll, J. de Physique I, 6:1305 (1996)
- Periodic boundary conditions along the cylinder axis:
- No end effects for dislocations
- Zero total Gaussian curvature
- Reconnect right end to left end by a translation $-L_{X} \hat{X}$ and a rotation β about \hat{X}, found by energy minimization.
- To apply tensile strain, change L_{X}.
- To apply torsional strain, change β.

Numerical modeling of tubular crystals

- Dislocation glide via bond flips (plastic; slow timescale)
- Node positions update to minimize total energy (elastic; fast timescale)
- Glide move accepted only if it lowers the energy

Numerical modeling of tubular crystals

- Dislocation glide via bond flips (plastic; slow timescale)
- Node positions update to minimize total energy (elastic; fast timescale)
- Glide move accepted only if it lowers the energy

Numerical modeling of tubular crystals

- Dislocation glide via bond flips (plastic; slow timescale)
- Node positions update to minimize total energy (elastic; fast timescale)
- Glide move accepted only if it lowers the energy

Tubes under axial tension: Numerical results

n

Tubes under axial tension: Numerical results

Tubes under axial tension: Numerical results

The bending energy makes narrow tubes with $R<R_{c}$ unstable to spontaneous dislocation unbindings that widen the tube.

Plastic deformation of tubular crystals

- Background: Phyllotactic geometry of tubular crystals
- Mechanics of plastic deformation: Analytic predictions
- Numerical modeling
- Necks in tubes: Radius profiles near dislocations

The shape of a tube containing dislocations

$$
(20,20) \rightarrow(20,19)
$$

Local radius $R(\mathbf{x})$ tracks dislocation motion

The shape of a tube containing dislocations

$$
(20,20) \rightarrow(20,19)
$$

Local radius $R(\mathbf{x})$ tracks dislocation motion

The shape of a tube containing dislocations

$$
(20,20) \rightarrow(20,19)
$$

Local radius $R(\mathbf{x})$ tracks dislocation motion

The shape of a tube containing dislocations

radius variations exaggerated by factor of 10 for clarity

Buckling at small $\tilde{\kappa}$

- Large local variations in R can be understood as membrane buckling.
- A membrane with an elementary dislocation at its center buckles when the system size exceeds $\approx(127 \tilde{\kappa}) a$.
[Seung and Nelson, Phys. Rev. A 38:1005 (1988)]
- For tubes, this predicts buckling when

$$
\tilde{\kappa}<\tilde{\kappa}_{\text {buckle }} \equiv 2 \pi R_{0} / 127 \quad \rightarrow \approx 0.16 \text { for }(m, n)=(20,20)
$$

$$
\frac{R}{a \tilde{\kappa}} \approx 90
$$

$$
\frac{R}{a \tilde{\kappa}} \approx 360
$$

Buckling at small $\tilde{\kappa}$

- Large local variations in R can be understood as membrane buckling.
- A membrane with an elementary dislocation at its center buckles when the system size exceeds $\approx(127 \tilde{\kappa}) a$. [Seung and Nelson, Phys. Rev. A 38:1005 (1988)]
- For tubes, this predicts buckling when $\tilde{\kappa}<\tilde{\kappa}_{\text {buckle }} \equiv 2 \pi R_{0} / 127 \quad \rightarrow \approx 0.16$ for $(m, n)=(20,20)$

$$
\frac{R}{a \tilde{\kappa}} \approx 90
$$

$$
\frac{R}{a \tilde{\kappa}} \approx 360
$$

When there is a well-defined neck profile ($\left.\tilde{\kappa} \gg \tilde{\kappa}_{\text {buckle }}\right) \ldots$ What is the width of the neck?

Scaling argument

- $\delta_{R} \sim a$
- \Rightarrow Stretching energy density $\sim Y\left(a / R_{0}\right)^{2}$
- Curvature due to neck: a / w^{2}
- \Rightarrow Bending energy density $\sim \kappa\left(a / w^{2}\right)^{2}$
- $E_{s} \sim E_{b} \Rightarrow w \sim\left(\kappa / Y R_{0}^{2}\right)^{1 / 4} R_{0}=\gamma^{-1 / 4} R_{0}$

When there is a well-defined neck profile ($\left.\tilde{\kappa} \gg \tilde{\kappa}_{\text {buckle }}\right) \ldots$ What is the width of the neck?

Calculation for a weakly deflected cylinder

- Suppose $R(x)=R_{0}+\zeta(x), \zeta \ll R_{0}$.
- Then $H \approx \partial_{x}^{2} \zeta-R_{0}^{-1}+R_{0}^{-2} \zeta$.

When there is a well-defined neck profile ($\left.\tilde{\kappa} \gg \tilde{\kappa}_{\text {buckle }}\right) \ldots$ What is the width of the neck?

Calculation for a weakly deflected cylinder

- Suppose $R(x)=R_{0}+\zeta(x), \zeta \ll R_{0}$.
- Then $H \approx \partial_{x}^{2} \zeta-R_{0}^{-1}+R_{0}^{-2} \zeta$.

When there is a well-defined neck profile ($\left.\tilde{\kappa} \gg \tilde{\kappa}_{\text {buckle }}\right) \ldots$ What is the width of the neck?

Calculation for a weakly deflected cylinder

- Suppose $R(x)=R_{0}+\zeta(x), \zeta \ll R_{0}$.
- Then $H \approx \partial_{x}^{2} \zeta-R_{0}^{-1}+R_{0}^{-2} \zeta$.
- Assuming $u_{x x}=-u_{y y}$, the energy density is

$$
\frac{E}{2 \pi R_{0}} \approx \int d x\left\{\frac{3}{4} Y\left(\zeta(x) / R_{0}\right)^{2}+\frac{1}{2} \kappa H[\zeta(x)]^{2}\right\}
$$

- Solution: $R(x)=R_{\text {pristine }}+c \operatorname{Re}\left[e^{ \pm x / w}\right]$, with

$$
\left.w=R_{0}\left[-1+i \sqrt{\frac{3}{2} \gamma}\right]^{-1 / 2}\right] \sim \gamma^{-1 / 4} R_{0}
$$

When there is a well-defined neck profile ($\left.\tilde{\kappa} \gg \tilde{\kappa}_{\text {buckle }}\right) \ldots$ What is the width of the neck?

Calculation for a weakly deflected cylinder

- Suppose $R(x)=R_{0}+\zeta(x), \zeta \ll R_{0}$.
- Then $H \approx \partial_{x}^{2} \zeta-R_{0}^{-1}+R_{0}^{-2} \zeta$.
- Assuming $u_{x x}=-u_{y y}$, the energy density is

$$
\frac{E}{2 \pi R_{0}} \approx \int d x\left\{\frac{3}{4} Y\left(\zeta(x) / R_{0}\right)^{2}+\frac{1}{2} \kappa H[\zeta(x)]^{2}\right\}
$$

- Solution: $R(x)=R_{\text {pristine }}+c \operatorname{Re}\left[e^{ \pm x / w}\right]$, with

$$
\left.w=R_{0}\left[-1+i \sqrt{\frac{3}{2} \gamma}\right]^{-1 / 2}\right] \sim \gamma^{-1 / 4} R_{0}
$$

When there is a well-defined neck profile ($\left.\tilde{\kappa} \gg \tilde{\kappa}_{\text {buckle }}\right) \ldots$ What is the width of the neck?

Calculation for a weakly deflected cylinder

- Suppose $R(x)=R_{0}+\zeta(x), \zeta \ll R_{0}$.
- Then $H \approx \partial_{x}^{2} \zeta-R_{0}^{-1}+R_{0}^{-2} \zeta$.
- Assuming $u_{x x}=-u_{y y}$, the energy density is

$$
\frac{E}{2 \pi R_{0}} \approx \int d x\left\{\frac{3}{4} Y\left(\zeta(x) / R_{0}\right)^{2}+\frac{1}{2} \kappa H[\zeta(x)]^{2}\right\}
$$

- Solution: $R(x)=R_{\text {pristine }}+c \operatorname{Re}\left[e^{ \pm x / w}\right]$, with

$$
\left.w=R_{0}\left[-1+i \sqrt{\frac{3}{2} \gamma}\right]^{-1 / 2}\right] \sim \gamma^{-1 / 4} R_{0}
$$

When there is a well-defined neck profile ($\left.\tilde{\kappa} \gg \tilde{\kappa}_{\text {buckle }}\right) \ldots$ What is the width of the neck?

Calculation for a weakly deflected cylinder

- Suppose $R(x)=R_{0}+\zeta(x), \zeta \ll R_{0}$.
- Then $H \approx \partial_{x}^{2} \zeta-R_{0}^{-1}+R_{0}^{-2} \zeta$.
- Assuming $u_{x x}=-u_{y y}$, the energy density is

$$
\frac{E}{2 \pi R_{0}} \approx \int d x\left\{\frac{3}{4} Y\left(\zeta(x) / R_{0}\right)^{2}+\frac{1}{2} \kappa H[\zeta(x)]^{2}\right\}
$$

- Solution: $R(x)=R_{\text {pristine }}+c \operatorname{Re}\left[e^{ \pm x / w}\right]$, with

$$
\left.w=R_{0}\left[-1+i \sqrt{\frac{3}{2} \gamma}\right]^{-1 / 2}\right] \sim \gamma^{-1 / 4} R_{0}
$$

w complex
\Rightarrow predicts rise/decay and oscillations

When there is a well-defined neck profile ($\left.\tilde{\kappa} \gg \tilde{\kappa}_{\text {buckle }}\right) \ldots$ What is the width of the neck?

Calculation for a weakly deflected cylinder

- Suppose $R(x)=R_{0}+\zeta(x), \zeta \ll R_{0}$.
- Then $H \approx \partial_{x}^{2} \zeta-R_{0}^{-1}+R_{0}^{-2} \zeta$.
- Assuming $u_{x x}=-u_{y y}$, the energy density is

$$
\frac{E}{2 \pi R_{0}} \approx \int d x\left\{\frac{3}{4} Y\left(\zeta(x) / R_{0}\right)^{2}+\frac{1}{2} \kappa H[\zeta(x)]^{2}\right\}
$$

- Solution: $R(x)=R_{\text {pristine }}+c \operatorname{Re}\left[e^{ \pm x / w}\right]$, with

$$
\left.w=R_{0}\left[-1+i \sqrt{\frac{3}{2} \gamma}\right]^{-1 / 2}\right] \sim \gamma^{-1 / 4} R_{0}
$$

w complex
\Rightarrow predicts rise/decay and oscillations

Conclusions

- Glide separation of dislocation pairs provides a mode of plastic deformation by parastichy transition $(\Delta m, \Delta n)$.
- Tubes under axial tension $\sigma_{x x}$ converge toward the stable $m=n$ achiral states while their radius shrinks.
- The bending modulus κ shifts up the critical stress $\sigma_{x x}^{\dagger}$ required to drive apart dislocations, stabilizing narrow tubes.
- This shift contains all the R-dependence in $\sigma_{x x}^{\dagger}$.
- If κ is large enough, very small tubes may even be unstable to emission of dislocation pairs that widen the tube.
- The "neck" around a dislocation has width $w \sim \gamma^{-1 / 4} R$ and also oscillations in local radius.

