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rical end caps remains fixed, the dynamics of the cylindrical sur-
face area SðtÞ (taking all dislocations as completely independent,
for now), is given by:

dS
dt

¼ Nacvb; [1]

whereNac is the total number of actively moving dislocations and
v is their velocity. Taking the measured velocity v to be several
tens of nanometers/second (10–12), we find that a few tens of
active dislocations moving along the circumference and growing
the cell wall would be sufficient to account for the measured
growth rate. This estimate is consistent with pioneering work of
ref. 13, obtained using a very different method of radioactive
labeling. Current technology does not yet enable a direct deter-
mination of Nac, because only a subset of the total number of
active dislocations is fluorescently marked (10–12).

The structure of the manuscript is as follows. We first define
the model and the approximations made, and describe the force
on a dislocation, including the elastic interactions between dislo-
cations on a cylinder. The implications of the large turgor pres-
sure inside the bacterium and the effects of the long-ranged
elastic interactions are highlighted. We then propose a set of
equations for the growth dynamics and its coupling to the num-
bers of active and inactive dislocations, and show that they often
lead to exponential lengthening of a single bacterium. The expo-
nential growth rate itself depends on a few simple parameters,
with a well defined microscopic interpretation. The theoretical
expectations are illustrated and visualized by numerical simula-
tions, both in the main text and SI Text. A numerical calculation
presented in SI Text is used to estimate the disorder strength
due to the elastic interactions with a large number of randomly
positioned dislocations, chosen according to the biological para-
meters. Certain parameters of the rate-equations model [Eqs. 5
and 6], can not be determined from a numerical simulations, and
are dictated by the underlying biochemistry, for example vðGÞ
(the dependence of the dislocation velocity on the driving force)
and the dislocation processivity γ1.

The Model
Interesting recent works have modeled and simulated the pepti-
doglycan structure in molecular detail, and have predicted a
number of nontrivial phenomena which were indeed observed ex-
perimentally (15, 16). Our approach is somewhat different (and
perhaps complementary), because we study a highly simplified
model and focus on a relatively dilute concentration of defects
(both actively moving and frozen) in an otherwise regular pepti-
doglycan mesh. As a result both analytic and numerical progress
is possible, although we suppress fine details of the structure.

Consider, motivated by bacterial cell wall growth, a number of
interacting edge dislocations with a Burgers vector ~b oriented in
both directions along the cylinder’s long axis, as illustrated sche-
matically in Fig. 1. The radius of the cylinder, R, will be assumed

to be constant, as is approximately true for rod-shaped bacteria.
For simplicity, consider an infinite cylinder, neglecting the effects
of the boundaries [Experiments indicate that strand extension
dynamics does not change significantly near the cylinder’s end
caps, consistent with this assumption (11).].

We also simplify by assuming linear elasticity, except near
dislocation cores. Various works have indicated, both from the
theoretical (17) and experimental (18) perspective, that the high
osmotic pressure (18, 19), referred to as turgor pressure in bac-
teria and plant cells, produces large strains compared to the
relaxed state. We shall take the elastic moduli as constants, which
in practice should be considered as effective constants relative to
the working turgor pressure.

In order for a dislocation to be able to “climb” [i.e., move per-
pendicular to its Burgers vector (6) and contribute to the growth
process], various proteins have to be present at the dislocation
core, responsible for “recruiting” and assembling the sugars and
peptides necessary for the construction of the peptidoglycan
mesh. Hence, we separate the dislocations into two populations,
active and inactive ones. Inactive defects still exert elastic forces
on the active ones, and create an effective disordered energy
landscape for them. The cores of inactive dislocations also repre-
sent favorable locations for the creation of new active disloca-
tions: the elongation machinery can attach to the free strands
(i.e., the inactive dislocations), creating active ones. The finite
processivity of the elongation machinery will also give rise to the
opposite process, whereby an active dislocation can become in-
active when the machinery falls off. In general, the rates of these
processes will not balance, because the system is never in steady-
state but is instead constantly growing via dislocation climb, as it
incorporates material from the third dimensions, a situation
rarely encountered in conventional materials science (6).

The Force on a Dislocation. Elastic stresses exert a Peach-Koehler
force (6, 20) on a dislocation [analogous to the Magnus force act-
ing on vortices (21)] which in our case is given by:

Fx ¼ bσxy; Fy ¼ −bσxx; [2]

where σ is the 2D stress tensor of the peptidoglycan mesh, and we
assume a Burgers vector along the x-axis.

For a cylinder of radius R we have σyy ¼ 2σxx ¼ pR , where x
denotes the coordinate along the long axis, and p is the turgor
pressure, and Fy ¼ − 1

2 bpR. In addition to the contribution of
the turgor pressure, if the free energy is changed by U by the bio-
chemical process of adding one unit cell to the peptidglycan
mesh, it will contribute an additional force of U∕b in the y direc-
tion, as can be seen using the principle of virtual work.

Under physiological conditions, we expect that the dislocations
are in the overdamped regime, with the dislocation velocity pro-
portional to the force, i.e., vi ¼ ∑jμijFj, where μij is a mobility
tensor with glide and climb components that depends on the ex-
tension machinery and the abundance of sugars, peptides, etc. In
the following we assume that μij is diagonal, with μxx and μyy de-
scribing glide and climb mobilities, respectively. We expect that
the mobility tensor itself will have a turgor pressure dependence,
as the resulting forces can lower the activation barriers of the
various biochemical pathways involved in the process. Thus, the
observed velocity of the strand extension machinery should
depend on the excess pressure for rod-shaped bacteria.

The Role of Interactions. In condensed matter physics, the long-
range elastic interactions between dislocations can have impor-
tant consequences, and have recently been suggested to lead to
glassy effects and nonthermal, heavy-tailed, dislocation velocity
distributions (22–24).

To illuminate the importance of interactions in a biological
context, we have solved for the interaction energy of two disloca-

Fig. 1. Schematic illustration of active (arrows) and inactive (asterisk) dislo-
cations in an otherwise ordered peptidoglycan mesh. The dislocations with
arrows attached are activated by the enzymatic machinery and move with
velocity v. Those with asterisks are inactive.
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Key questions
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(m,n) = (6, 5)parastichy numbers

• How much stress is required to plastically deform a tubular crystal via dislocation motion?

• How do the softest plastic modes change the tube geometry?

• How well does continuum elasticity theory predict deformations in very small tubes?

• How does a crystals’ bending modulus change the plastic deformation mechanics as
compared with the plane?

This talk is about

Parastichy transitions, i.e., changes in (m,n),
as plastic deformations

accomplished by unbinding and separation of
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rical end caps remains fixed, the dynamics of the cylindrical sur-
face area SðtÞ (taking all dislocations as completely independent,
for now), is given by:

dS
dt

¼ Nacvb; [1]

whereNac is the total number of actively moving dislocations and
v is their velocity. Taking the measured velocity v to be several
tens of nanometers/second (10–12), we find that a few tens of
active dislocations moving along the circumference and growing
the cell wall would be sufficient to account for the measured
growth rate. This estimate is consistent with pioneering work of
ref. 13, obtained using a very different method of radioactive
labeling. Current technology does not yet enable a direct deter-
mination of Nac, because only a subset of the total number of
active dislocations is fluorescently marked (10–12).

The structure of the manuscript is as follows. We first define
the model and the approximations made, and describe the force
on a dislocation, including the elastic interactions between dislo-
cations on a cylinder. The implications of the large turgor pres-
sure inside the bacterium and the effects of the long-ranged
elastic interactions are highlighted. We then propose a set of
equations for the growth dynamics and its coupling to the num-
bers of active and inactive dislocations, and show that they often
lead to exponential lengthening of a single bacterium. The expo-
nential growth rate itself depends on a few simple parameters,
with a well defined microscopic interpretation. The theoretical
expectations are illustrated and visualized by numerical simula-
tions, both in the main text and SI Text. A numerical calculation
presented in SI Text is used to estimate the disorder strength
due to the elastic interactions with a large number of randomly
positioned dislocations, chosen according to the biological para-
meters. Certain parameters of the rate-equations model [Eqs. 5
and 6], can not be determined from a numerical simulations, and
are dictated by the underlying biochemistry, for example vðGÞ
(the dependence of the dislocation velocity on the driving force)
and the dislocation processivity γ1.

The Model
Interesting recent works have modeled and simulated the pepti-
doglycan structure in molecular detail, and have predicted a
number of nontrivial phenomena which were indeed observed ex-
perimentally (15, 16). Our approach is somewhat different (and
perhaps complementary), because we study a highly simplified
model and focus on a relatively dilute concentration of defects
(both actively moving and frozen) in an otherwise regular pepti-
doglycan mesh. As a result both analytic and numerical progress
is possible, although we suppress fine details of the structure.

Consider, motivated by bacterial cell wall growth, a number of
interacting edge dislocations with a Burgers vector ~b oriented in
both directions along the cylinder’s long axis, as illustrated sche-
matically in Fig. 1. The radius of the cylinder, R, will be assumed

to be constant, as is approximately true for rod-shaped bacteria.
For simplicity, consider an infinite cylinder, neglecting the effects
of the boundaries [Experiments indicate that strand extension
dynamics does not change significantly near the cylinder’s end
caps, consistent with this assumption (11).].

We also simplify by assuming linear elasticity, except near
dislocation cores. Various works have indicated, both from the
theoretical (17) and experimental (18) perspective, that the high
osmotic pressure (18, 19), referred to as turgor pressure in bac-
teria and plant cells, produces large strains compared to the
relaxed state. We shall take the elastic moduli as constants, which
in practice should be considered as effective constants relative to
the working turgor pressure.

In order for a dislocation to be able to “climb” [i.e., move per-
pendicular to its Burgers vector (6) and contribute to the growth
process], various proteins have to be present at the dislocation
core, responsible for “recruiting” and assembling the sugars and
peptides necessary for the construction of the peptidoglycan
mesh. Hence, we separate the dislocations into two populations,
active and inactive ones. Inactive defects still exert elastic forces
on the active ones, and create an effective disordered energy
landscape for them. The cores of inactive dislocations also repre-
sent favorable locations for the creation of new active disloca-
tions: the elongation machinery can attach to the free strands
(i.e., the inactive dislocations), creating active ones. The finite
processivity of the elongation machinery will also give rise to the
opposite process, whereby an active dislocation can become in-
active when the machinery falls off. In general, the rates of these
processes will not balance, because the system is never in steady-
state but is instead constantly growing via dislocation climb, as it
incorporates material from the third dimensions, a situation
rarely encountered in conventional materials science (6).

The Force on a Dislocation. Elastic stresses exert a Peach-Koehler
force (6, 20) on a dislocation [analogous to the Magnus force act-
ing on vortices (21)] which in our case is given by:

Fx ¼ bσxy; Fy ¼ −bσxx; [2]

where σ is the 2D stress tensor of the peptidoglycan mesh, and we
assume a Burgers vector along the x-axis.

For a cylinder of radius R we have σyy ¼ 2σxx ¼ pR , where x
denotes the coordinate along the long axis, and p is the turgor
pressure, and Fy ¼ − 1

2 bpR. In addition to the contribution of
the turgor pressure, if the free energy is changed by U by the bio-
chemical process of adding one unit cell to the peptidglycan
mesh, it will contribute an additional force of U∕b in the y direc-
tion, as can be seen using the principle of virtual work.

Under physiological conditions, we expect that the dislocations
are in the overdamped regime, with the dislocation velocity pro-
portional to the force, i.e., vi ¼ ∑jμijFj, where μij is a mobility
tensor with glide and climb components that depends on the ex-
tension machinery and the abundance of sugars, peptides, etc. In
the following we assume that μij is diagonal, with μxx and μyy de-
scribing glide and climb mobilities, respectively. We expect that
the mobility tensor itself will have a turgor pressure dependence,
as the resulting forces can lower the activation barriers of the
various biochemical pathways involved in the process. Thus, the
observed velocity of the strand extension machinery should
depend on the excess pressure for rod-shaped bacteria.

The Role of Interactions. In condensed matter physics, the long-
range elastic interactions between dislocations can have impor-
tant consequences, and have recently been suggested to lead to
glassy effects and nonthermal, heavy-tailed, dislocation velocity
distributions (22–24).

To illuminate the importance of interactions in a biological
context, we have solved for the interaction energy of two disloca-

Fig. 1. Schematic illustration of active (arrows) and inactive (asterisk) dislo-
cations in an otherwise ordered peptidoglycan mesh. The dislocations with
arrows attached are activated by the enzymatic machinery and move with
velocity v. Those with asterisks are inactive.
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rical end caps remains fixed, the dynamics of the cylindrical sur-
face area SðtÞ (taking all dislocations as completely independent,
for now), is given by:

dS
dt

¼ Nacvb; [1]

whereNac is the total number of actively moving dislocations and
v is their velocity. Taking the measured velocity v to be several
tens of nanometers/second (10–12), we find that a few tens of
active dislocations moving along the circumference and growing
the cell wall would be sufficient to account for the measured
growth rate. This estimate is consistent with pioneering work of
ref. 13, obtained using a very different method of radioactive
labeling. Current technology does not yet enable a direct deter-
mination of Nac, because only a subset of the total number of
active dislocations is fluorescently marked (10–12).

The structure of the manuscript is as follows. We first define
the model and the approximations made, and describe the force
on a dislocation, including the elastic interactions between dislo-
cations on a cylinder. The implications of the large turgor pres-
sure inside the bacterium and the effects of the long-ranged
elastic interactions are highlighted. We then propose a set of
equations for the growth dynamics and its coupling to the num-
bers of active and inactive dislocations, and show that they often
lead to exponential lengthening of a single bacterium. The expo-
nential growth rate itself depends on a few simple parameters,
with a well defined microscopic interpretation. The theoretical
expectations are illustrated and visualized by numerical simula-
tions, both in the main text and SI Text. A numerical calculation
presented in SI Text is used to estimate the disorder strength
due to the elastic interactions with a large number of randomly
positioned dislocations, chosen according to the biological para-
meters. Certain parameters of the rate-equations model [Eqs. 5
and 6], can not be determined from a numerical simulations, and
are dictated by the underlying biochemistry, for example vðGÞ
(the dependence of the dislocation velocity on the driving force)
and the dislocation processivity γ1.

The Model
Interesting recent works have modeled and simulated the pepti-
doglycan structure in molecular detail, and have predicted a
number of nontrivial phenomena which were indeed observed ex-
perimentally (15, 16). Our approach is somewhat different (and
perhaps complementary), because we study a highly simplified
model and focus on a relatively dilute concentration of defects
(both actively moving and frozen) in an otherwise regular pepti-
doglycan mesh. As a result both analytic and numerical progress
is possible, although we suppress fine details of the structure.

Consider, motivated by bacterial cell wall growth, a number of
interacting edge dislocations with a Burgers vector ~b oriented in
both directions along the cylinder’s long axis, as illustrated sche-
matically in Fig. 1. The radius of the cylinder, R, will be assumed

to be constant, as is approximately true for rod-shaped bacteria.
For simplicity, consider an infinite cylinder, neglecting the effects
of the boundaries [Experiments indicate that strand extension
dynamics does not change significantly near the cylinder’s end
caps, consistent with this assumption (11).].

We also simplify by assuming linear elasticity, except near
dislocation cores. Various works have indicated, both from the
theoretical (17) and experimental (18) perspective, that the high
osmotic pressure (18, 19), referred to as turgor pressure in bac-
teria and plant cells, produces large strains compared to the
relaxed state. We shall take the elastic moduli as constants, which
in practice should be considered as effective constants relative to
the working turgor pressure.

In order for a dislocation to be able to “climb” [i.e., move per-
pendicular to its Burgers vector (6) and contribute to the growth
process], various proteins have to be present at the dislocation
core, responsible for “recruiting” and assembling the sugars and
peptides necessary for the construction of the peptidoglycan
mesh. Hence, we separate the dislocations into two populations,
active and inactive ones. Inactive defects still exert elastic forces
on the active ones, and create an effective disordered energy
landscape for them. The cores of inactive dislocations also repre-
sent favorable locations for the creation of new active disloca-
tions: the elongation machinery can attach to the free strands
(i.e., the inactive dislocations), creating active ones. The finite
processivity of the elongation machinery will also give rise to the
opposite process, whereby an active dislocation can become in-
active when the machinery falls off. In general, the rates of these
processes will not balance, because the system is never in steady-
state but is instead constantly growing via dislocation climb, as it
incorporates material from the third dimensions, a situation
rarely encountered in conventional materials science (6).

The Force on a Dislocation. Elastic stresses exert a Peach-Koehler
force (6, 20) on a dislocation [analogous to the Magnus force act-
ing on vortices (21)] which in our case is given by:

Fx ¼ bσxy; Fy ¼ −bσxx; [2]

where σ is the 2D stress tensor of the peptidoglycan mesh, and we
assume a Burgers vector along the x-axis.

For a cylinder of radius R we have σyy ¼ 2σxx ¼ pR , where x
denotes the coordinate along the long axis, and p is the turgor
pressure, and Fy ¼ − 1

2 bpR. In addition to the contribution of
the turgor pressure, if the free energy is changed by U by the bio-
chemical process of adding one unit cell to the peptidglycan
mesh, it will contribute an additional force of U∕b in the y direc-
tion, as can be seen using the principle of virtual work.

Under physiological conditions, we expect that the dislocations
are in the overdamped regime, with the dislocation velocity pro-
portional to the force, i.e., vi ¼ ∑jμijFj, where μij is a mobility
tensor with glide and climb components that depends on the ex-
tension machinery and the abundance of sugars, peptides, etc. In
the following we assume that μij is diagonal, with μxx and μyy de-
scribing glide and climb mobilities, respectively. We expect that
the mobility tensor itself will have a turgor pressure dependence,
as the resulting forces can lower the activation barriers of the
various biochemical pathways involved in the process. Thus, the
observed velocity of the strand extension machinery should
depend on the excess pressure for rod-shaped bacteria.

The Role of Interactions. In condensed matter physics, the long-
range elastic interactions between dislocations can have impor-
tant consequences, and have recently been suggested to lead to
glassy effects and nonthermal, heavy-tailed, dislocation velocity
distributions (22–24).

To illuminate the importance of interactions in a biological
context, we have solved for the interaction energy of two disloca-

Fig. 1. Schematic illustration of active (arrows) and inactive (asterisk) dislo-
cations in an otherwise ordered peptidoglycan mesh. The dislocations with
arrows attached are activated by the enzymatic machinery and move with
velocity v. Those with asterisks are inactive.
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Dislocation motion ) Parastichy transition!

(�m,�n) ) �R, �� ) Plastic deformation!



• Background: Phyllotactic geometry of tubular crystals

• Mechanics of plastic deformation: Analytic predictions

• Numerical modeling

• Necks in tubes: Radius profiles near dislocations

Plastic deformation of tubular crystals
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The bending energy

Mean curvature H =
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+
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Gaussian curvature K =
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• Helfrich free energy for a bent membrane

Eb =

Z
dx

⇥
1
2(H(x))2 + ̄K(x)

⇤

• Infinite cylinders/periodic B.C.’s )
R
dxK(x) = 0.

• For a perfect cylinder, H = 1/R so bending energy per unit

length is Eb/L = ⇡/R .
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• How important is bending energy Eb compared to stretching
energy Es?

• Dimesionless ratio: the Föppl-van Kármán number
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• For large �, bending is easier than stretching.

• E.g. For single-walled carbon nanotubes, � ⇠ 102 � 103.
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Bending energy may make very narrow tubes unstable
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• Background: Phyllotactic geometry of tubular crystals

• Mechanics of plastic deformation: Analytic predictions

• Numerical modeling

• Necks in tubes: Radius profiles near dislocations

Plastic deformation of tubular crystals



Numerical modeling of tubular crystals

• “Ball and spring model”: Nodes connected by harmonic springs

⇤

– Rest length a = 1

– Spring constant k = (
p
3/2)Y

• Bending energy penalizes mean curvature when neighboring

nodes are not coplanar

⇤⇤
.

– Bending rigidity ̃ = Y/a2

⇤
Seung and Nelson, Phys. Rev. A 38:1005 (1988)

⇤⇤
Gompper and Kroll, J. de Physique I, 6:1305 (1996)

• Periodic boundary conditions along the cylinder

axis:

– No end e↵ects for dislocations

– Zero total Gaussian curvature

• Reconnect right end to left end by a translation

�LXX̂ and a rotation � about X̂, found by

energy minimization.

• To apply tensile strain, change LX .

• To apply torsional strain, change �.

X
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• Dislocation glide via bond flips (plastic; slow timescale)

• Node positions update to minimize total energy (elastic; fast timescale)

• Glide move accepted only if it lowers the energy
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Tubes under axial tension: 
Numerical results

computed critical axial stress (pulling) 
for dislocation unbinding
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Tubes under axial tension: 
Numerical results

The bending energy makes narrow tubes with R < Rc

unstable to spontaneous dislocation unbindings that

widen the tube.
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• Background: Phyllotactic geometry of tubular crystals

• Mechanics of plastic deformation: Analytic predictions

• Numerical modeling

• Necks in tubes: Radius profiles near dislocations

Plastic deformation of tubular crystals



3.02 3.03 3.04 3.05 3.06 3.07

Radius/lattice spacing

(20, 20) (20, 19)

The shape of a tube containing dislocations

Local radius R(x) tracks dislocation motion



3.02 3.03 3.04 3.05 3.06 3.07

Radius/lattice spacing

(20, 20) (20, 19)

The shape of a tube containing dislocations

Local radius R(x) tracks dislocation motion



3.02 3.03 3.04 3.05 3.06 3.07

Radius/lattice spacing

(20, 20) (20, 19)

The shape of a tube containing dislocations

Local radius R(x) tracks dislocation motion



̃ = 0.5

̃ = 1 ̃ = 2

̃ ⌘ /(Y a2) = 0.1

(20, 20) (20, 20)

(20, 19)

�R

w

The shape of a tube containing dislocations

radius variations exaggerated by factor of 10 for clarity
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a̃
⇡ 360

Buckling at small ̃

• Large local variations in R can be understood as membrane

buckling.

• A membrane with an elementary dislocation at its center

buckles when the system size exceeds ⇡ (127̃)a.
[Seung and Nelson, Phys. Rev. A 38:1005 (1988)]

• For tubes, this predicts buckling when

̃ < ̃
buckle

⌘ 2⇡R0/127 !⇡ 0.16 for (m,n) = (20, 20)

R

a̃
⇡ 90

̃ ⌘ /(Y a2) = 0.1
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• �R ⇠ a

• ) Stretching energy density ⇠ Y (a/R0)2

• Curvature due to neck: a/w2

• ) Bending energy density ⇠ (a/w2)2

• Es ⇠ Eb ) w ⇠
�
/Y R2

0

�1/4
R0 = ��1/4R0

Scaling argument

When there is a well-defined neck profile ( ̃ � ̃buckle)...

What is the width of the neck?
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• Suppose R(x) = R0 + ⇣(x), ⇣ ⌧ R0.

• Then H ⇡ @2
x

⇣ �R�1
0 +R�2

0 ⇣.

• Assuming u
xx

= �u
yy

, the energy density is

E

2⇡R0
⇡

Z

dx
n

3
4Y (⇣(x)/R0)

2 + 1
2H[⇣(x)]2

o

• Solution: R(x) = Rpristine + cRe
⇥

e±x/w

⇤

, with

w = R0



�1 + i
q

3
2�
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Calculation for a weakly deflected cylinder
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• Glide separation of dislocation pairs provides a mode of plastic deformation

by parastichy transition (�m,�n).

• Tubes under axial tension �
xx

converge toward the stable m = n achiral

states while their radius shrinks.

• The bending modulus  shifts up the critical stress �†
xx

required to drive

apart dislocations, stabilizing narrow tubes.

– This shift contains all the R-dependence in �†
xx

.

• If  is large enough, very small tubes may even be unstable to emission of

dislocation pairs that widen the tube.

• The “neck” around a dislocation has width w ⇠ ��1/4R and also

oscillations in local radius.


