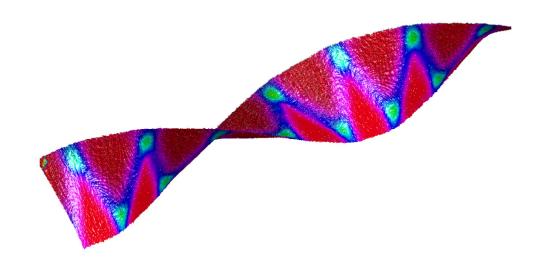
## Experiments on ribbons with a twist



## Arshad Kudrolli

Julien Chopin (ESPCI)

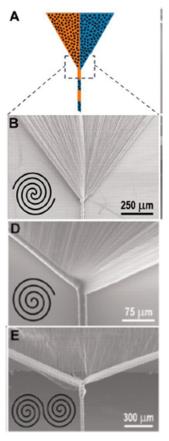
Department of Physics, Clark University

Worcester, Massachusetts

Supported by National Science Foundation

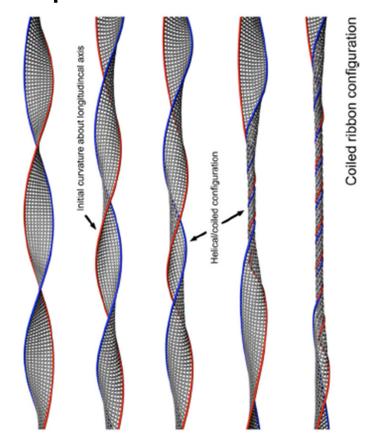
## Twisted ribbons and novel materials

#### Yarn fabrication



Lima et al. Science 331, 51 (2011)

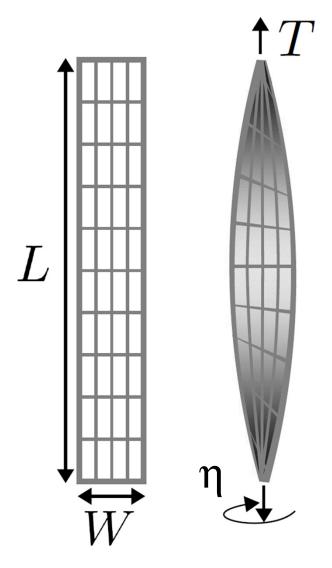
#### **Graphene nanotube fabrication**



S. Cranford and M. Buehler, Mod. Simul. Mater. Sci. Eng., 19, 054003 (2011)

# Geometry and Loading

Thin elastic ribbon where the short edge is clamped and twisted through an angle  $\eta$  under a tension T



#### **Control parameters**

Tension: T = F / (E h W)

Twist angle:  $\eta = \alpha / (L/W)$ 

#### Typical values:

Thickness:  $h = 100 \mu m$ 

Anisotropy: t = h/W < 0.02

Slenderness: L/W > 10

Young's modulus : E = 3.4GPa,

Tension:  $T \sim 10^{-3}$ 

Twist angle:  $\eta \sim 0.5$ 

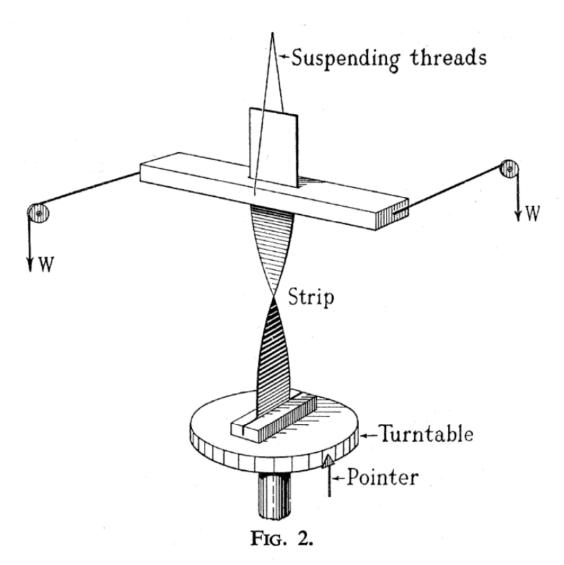
### Depending on:

1- the loading parameters η and T

2- the geometric parameters h/W and L/W

What are the equilibrium configurations of the ribbon?

### First addressed by A.E. Green (1936):



Ribbon will buckle longitudinally

A.E. Green (1936, 1937) Coman & Bassom (2008)

## Triangular buckling patterns of twisted inextensible strips

A. P. Korte, E. L. Starostin, G. H. M. van der Heijden, Proc. Roy. Soc. A (2010)



- Twisted strip of acetate or paper
- Constructed solution assuming isometric deformation

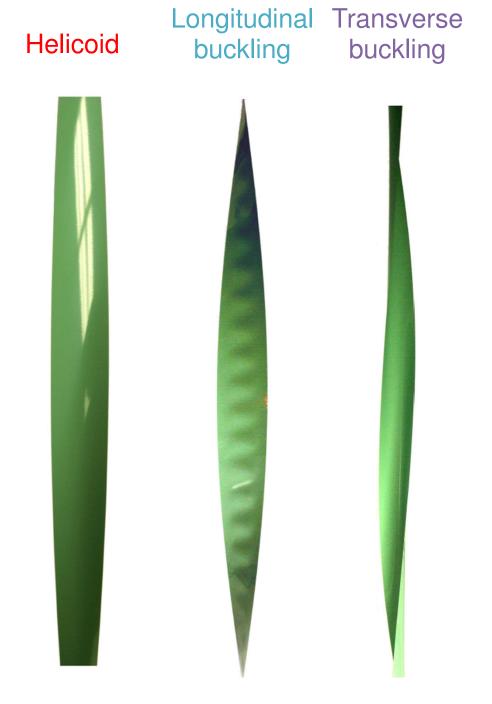
Helicoid

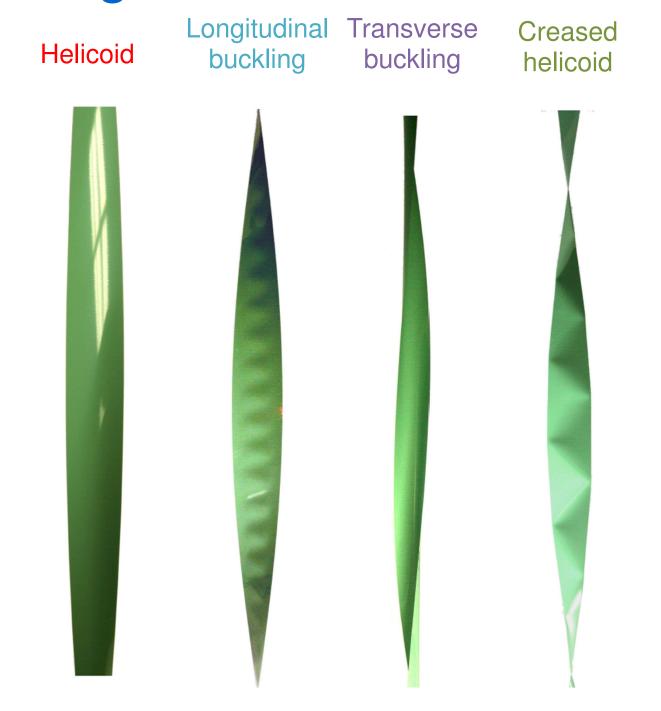


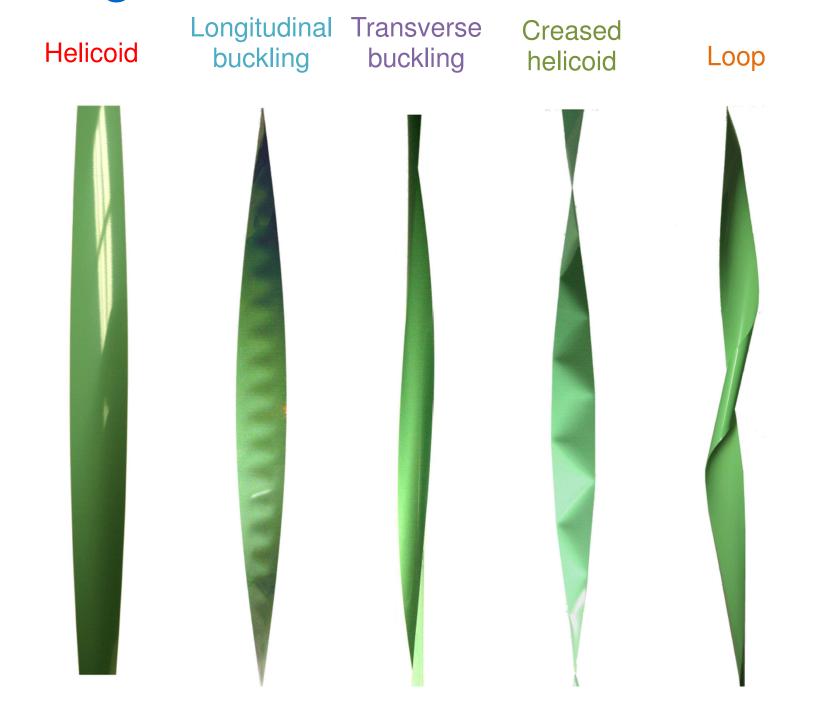
Helicoid

Longitudinal buckling

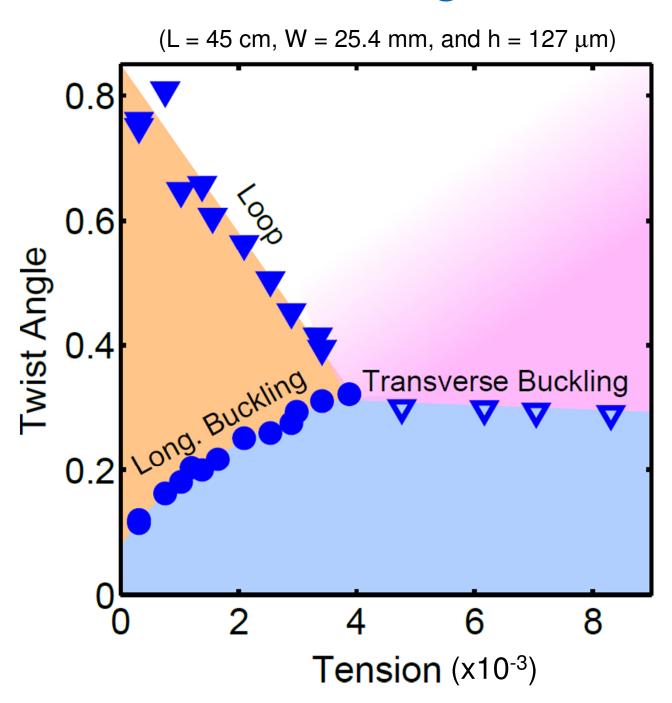




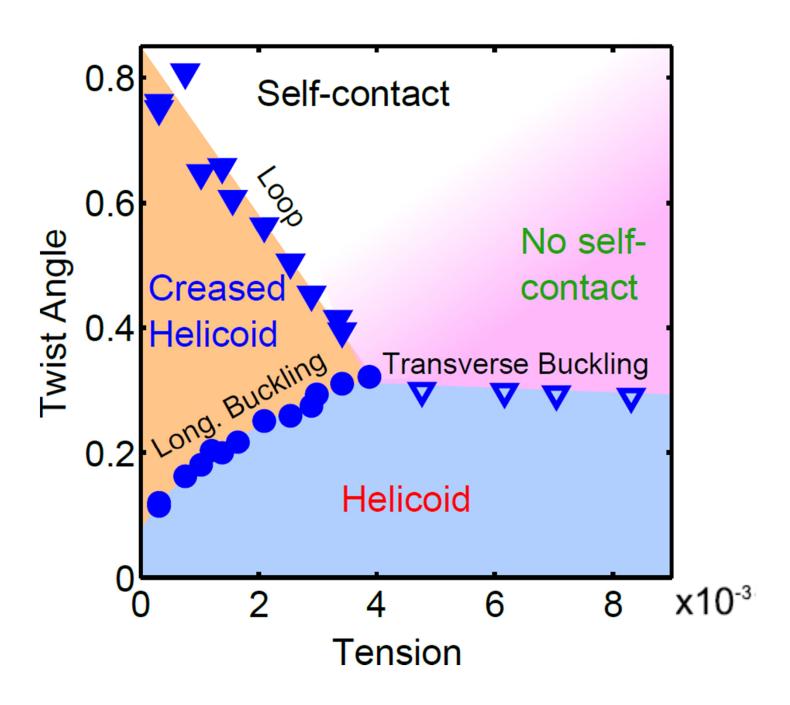




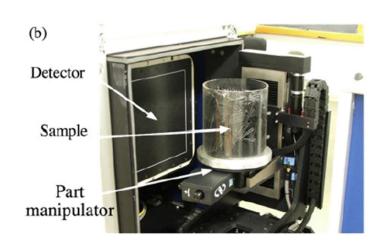
# Phase diagram

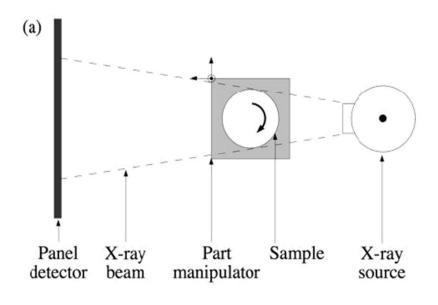


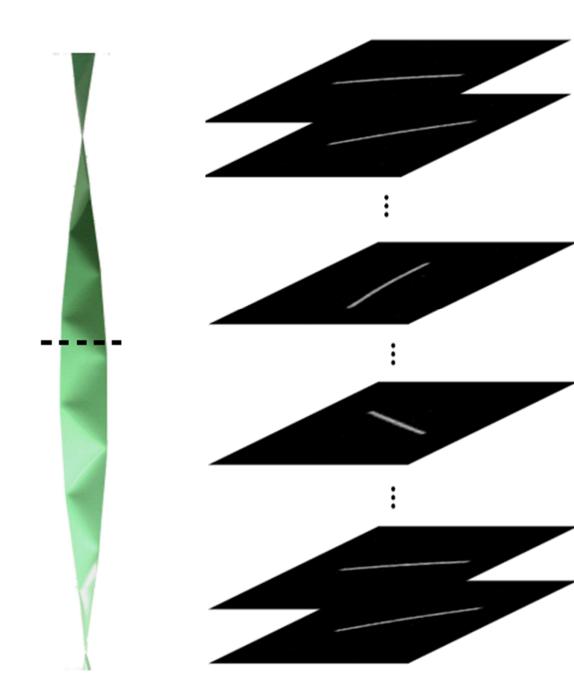
# Phase diagram



# Xray computed tomography

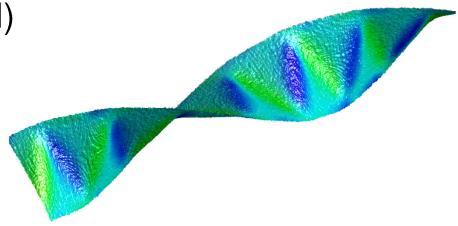




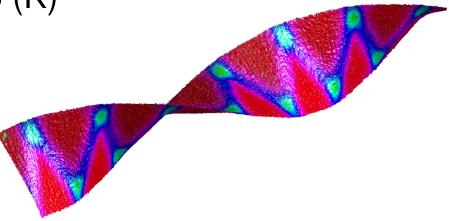


# Xray computed tomography

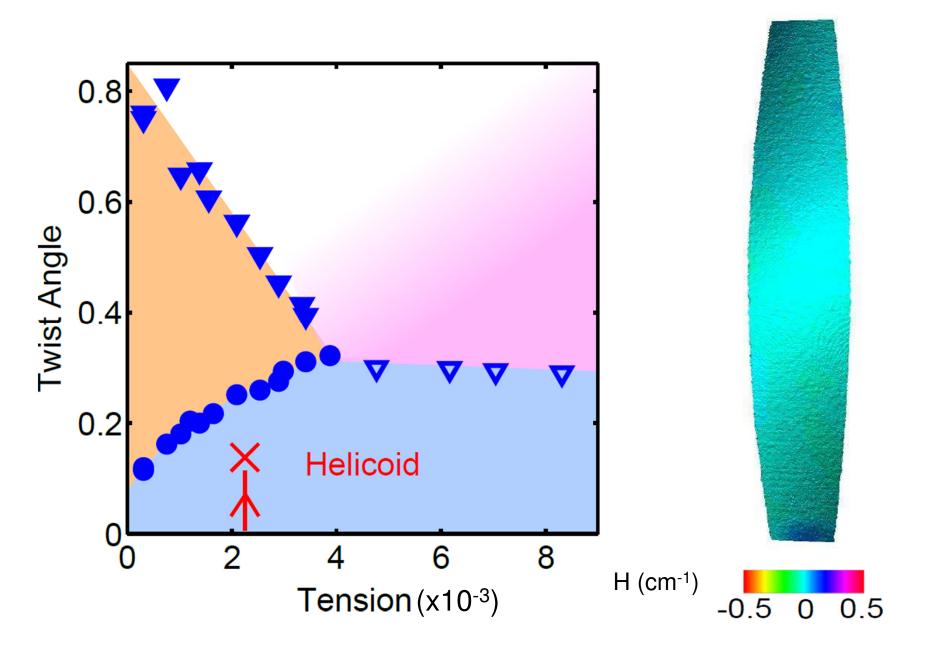
Mean curvature map (H)



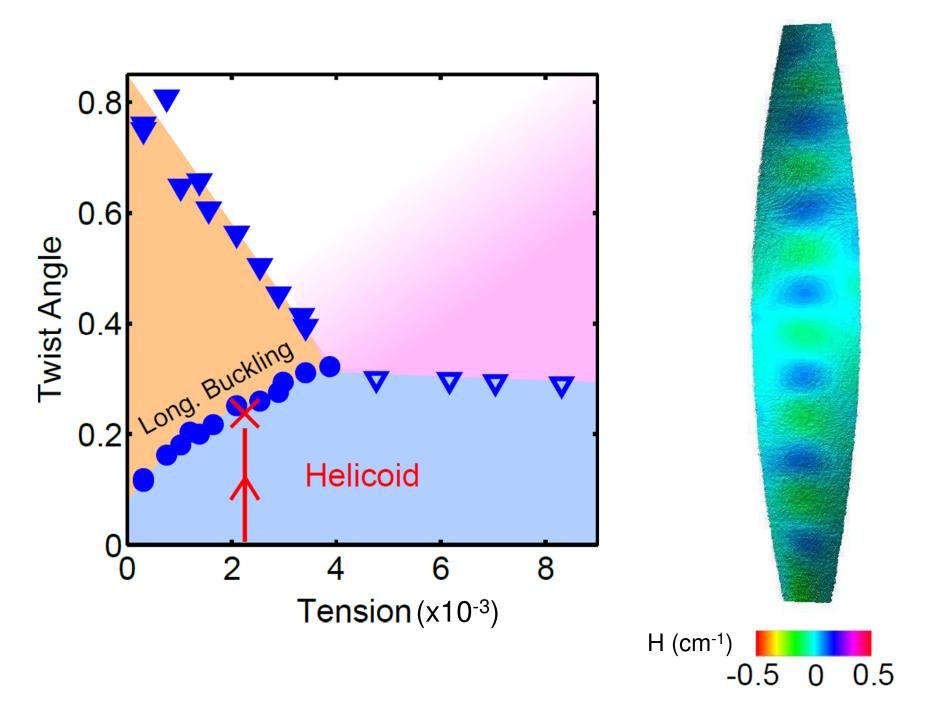
Gaussian curvature map (K)



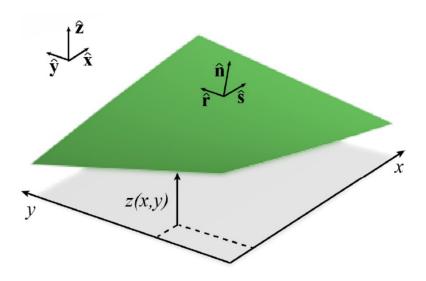
# Helicoid



# Longitudinal buckling



# Mechanical Equilibrium (Small-Slope)



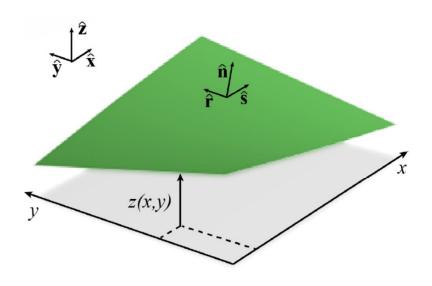
Mechanical equilibrium of the ribbon using the Föppl – von Kàrmàn (FvK) equations

$$\sigma^{ss}\partial_{ss}z + \sigma^{rr}\partial_{rr}z + 2\sigma^{rs}\partial_{rs}z = B\Delta^{2}z,$$
$$\partial_{s}\sigma^{ss} + \partial_{r}\sigma^{sr} = 0,$$
$$\partial_{s}\sigma^{rs} + \partial_{r}\sigma^{rr} = 0.$$

where  $B = t^2/[12(1-\nu^2)]$  is the bending modulus.

# Mechanical Equilibrium (Small-Slope)

$$z(s,r) = \eta s r$$



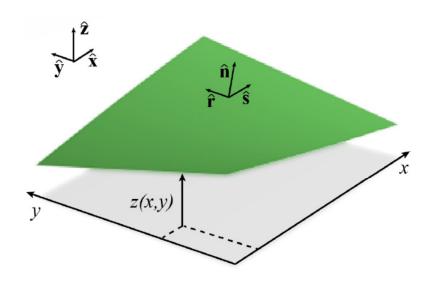
$$\eta \sigma^{sr} = 0,$$

$$\partial_s \sigma^{ss} = 0,$$

$$\partial_r \sigma^{rr} = 0.$$

# Mechanical Equilibrium (Small-Slope)

$$z(s,r) = \eta s r$$



$$\eta \sigma^{sr} = 0,$$

$$\partial_s \sigma^{ss} = 0,$$

$$\partial_r \sigma^{rr} = 0.$$

### Boundary conditions:

 $\mathsf{At}\,\mathsf{r} = \pm \mathsf{W}/2: \ \sigma^{rr} = 0$ 

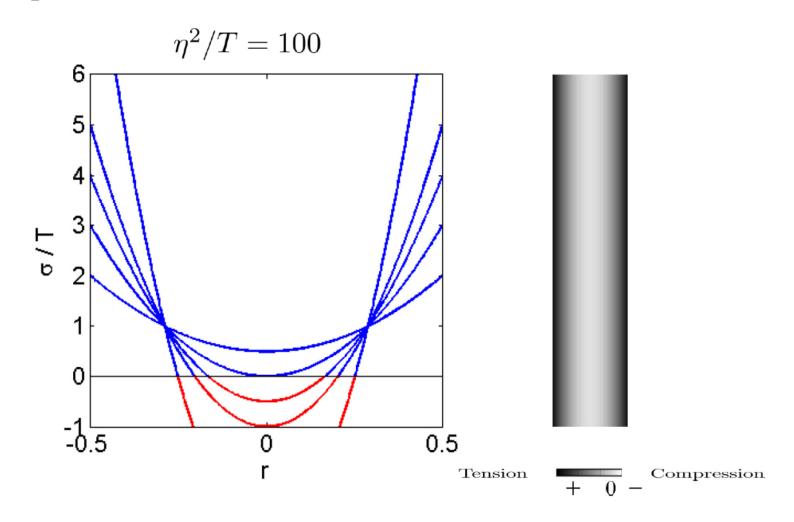
Constant tension : 
$$T = \int \sigma^{ss} dr$$

$$\sigma^{sr}(r) = 0,$$

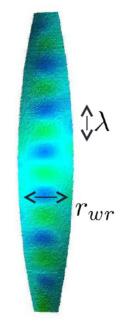
$$\sigma^{ss}(r) = T + \frac{\eta^2}{2} \left( r^2 - \frac{1}{12} \right), \quad \longleftarrow$$

$$\sigma^{rr}(r) = 0.$$

$$\sigma^{ss} = \left[ T - \frac{1}{24} \eta^2 \right] + \frac{1}{2} \eta^2 r^2$$



# Scaling of wavelength



The change in the elastic energy density due to longitudinal buckling  $\Delta U_{_{\! I}}$  is the sum of three contributions :

Stretching:  $\Delta U_S \sim \sigma^{ss} \left(\frac{A}{\lambda}\right)^2$ ,

$$\begin{array}{ll} {\sf Bending(longitudinal):} & \Delta U_B^{||} \sim B \left(\frac{A}{\lambda^2}\right)^2, \\ \\ {\sf Bending(orthogonal):} & \Delta U_B^{\perp} \sim B \left(\frac{A}{r_{wr}^2}\right)^2. \end{array}$$

Using  $\Delta U_S \sim \Delta U_B^{||} \sim \Delta U_B^{\perp}$ , we have at threshold:

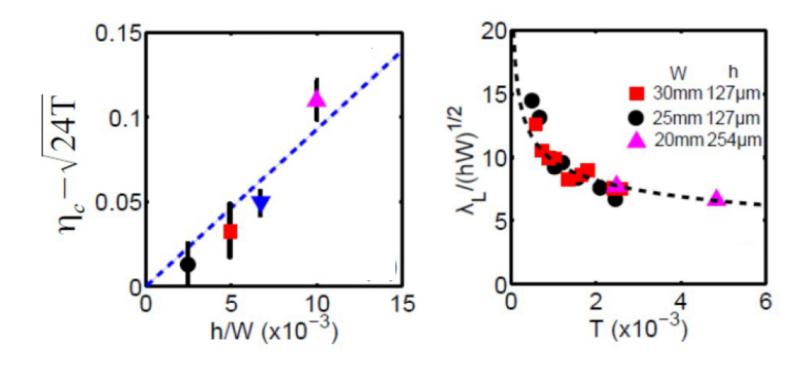
$$\lambda_{lon} \sim r_{wr}$$

$$\sigma^{ss} \sim \left(\frac{t}{r_{wr}}\right)^2$$

$$\eta_{lon} - \sqrt{24T} \sim t$$

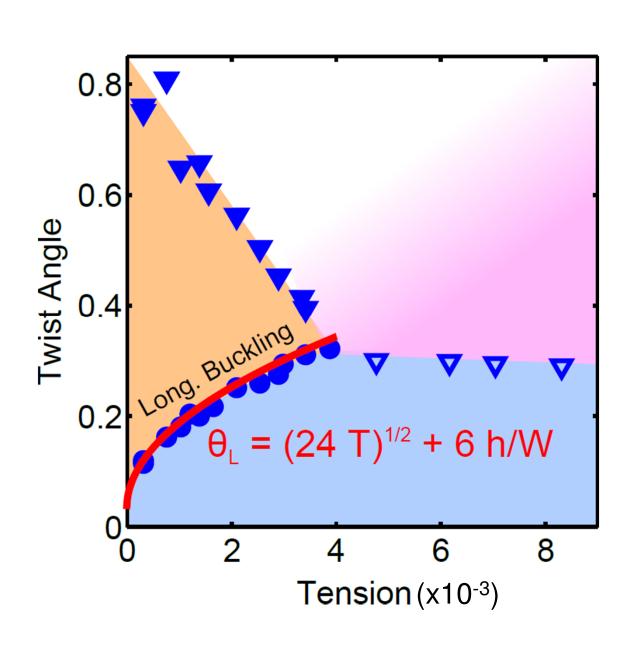
Coman and Bassom, Acta Mechanica 200, 59 (2008) Chopin and Kudrolli, PRL (2013)

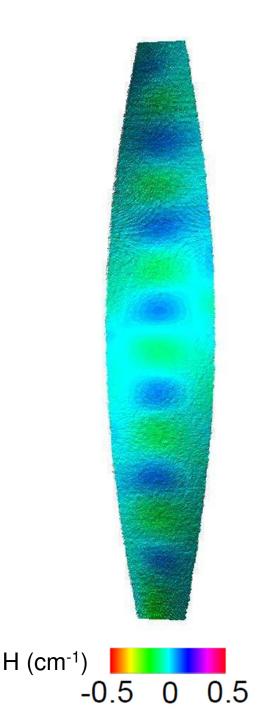
# Comparison with experiments



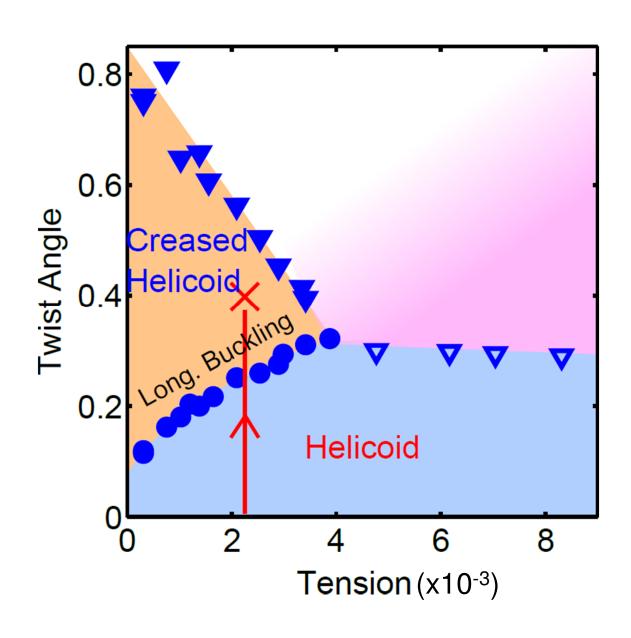
- Excess twist is observed increase linearly with h/W
- The wavelength is observed to decrease consistent with scaling analysis

# Longitudinal buckling

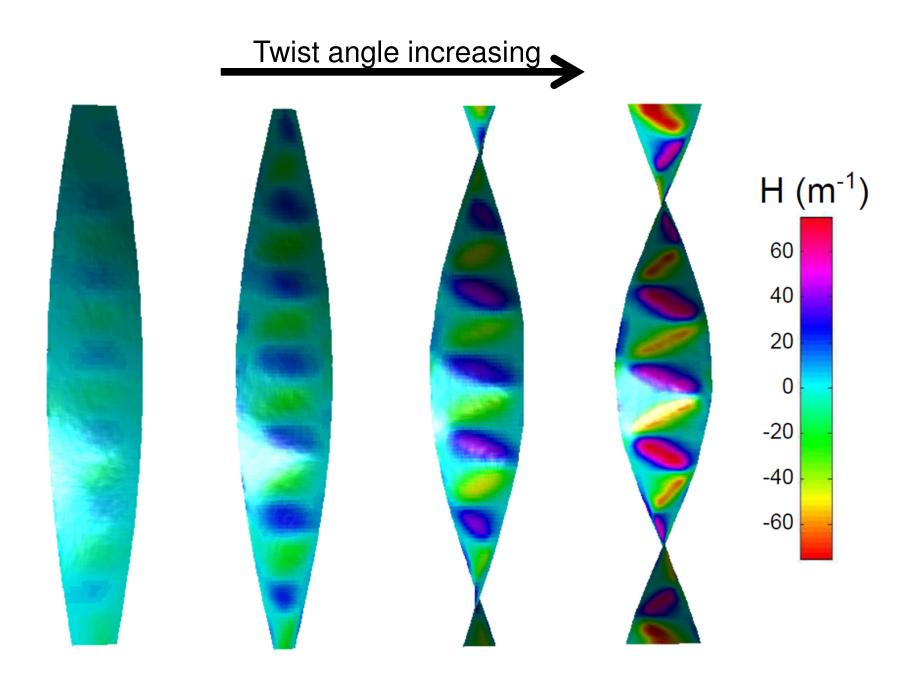




## Creased helicoid



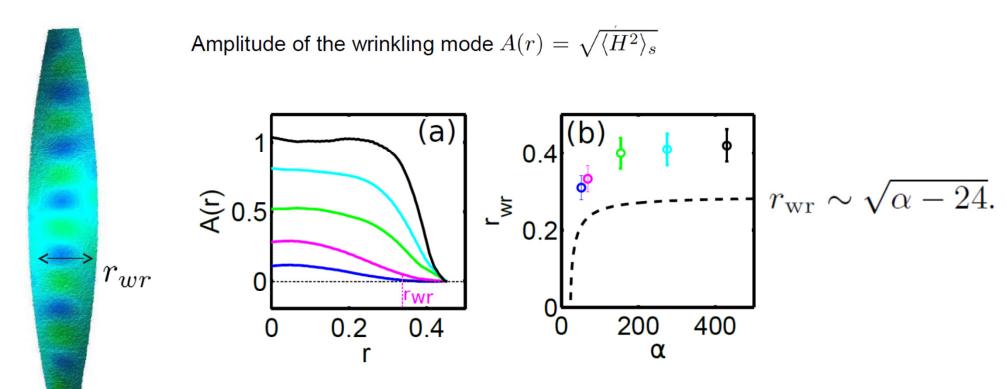
## Creased helicoid?



## Far from threshold analysis

- J. Chopin et al., J. Elasticity, **119**, 137 (2015)
- B. Davidovitch et al., PNAS 108,18227 (2011)

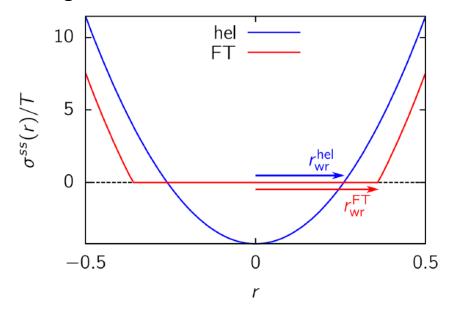
#### Longitudinal buckling:



## Far from threshold analysis

- J. Chopin et al., J. Elasticity, **119**, 137 (2015)
- B. Davidovitch et al., PNAS 108,18227 (2011)

#### Longitudinal buckling:



Compression free stress field

$$\sigma_{\mathrm{FT}}^{ss}(r) = \begin{cases} 0 & \text{for } |r| < r_{\mathrm{wr}}, \\ \frac{\eta^2}{2} \left( r^2 - r_{\mathrm{wr}}^2 \right) & \text{for } |r| > r_{\mathrm{wr}}. \end{cases}$$

## Far from threshold analysis

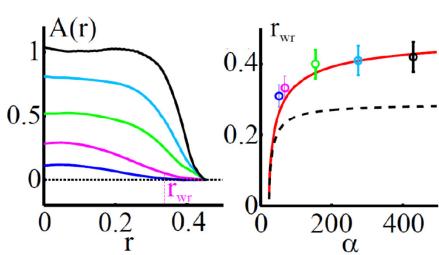
- J. Chopin et al., J. Elasticity, **119**, 137 (2015)
- B. Davidovitch et al., PNAS 108,18227 (2011)

Longitudinal buckling:

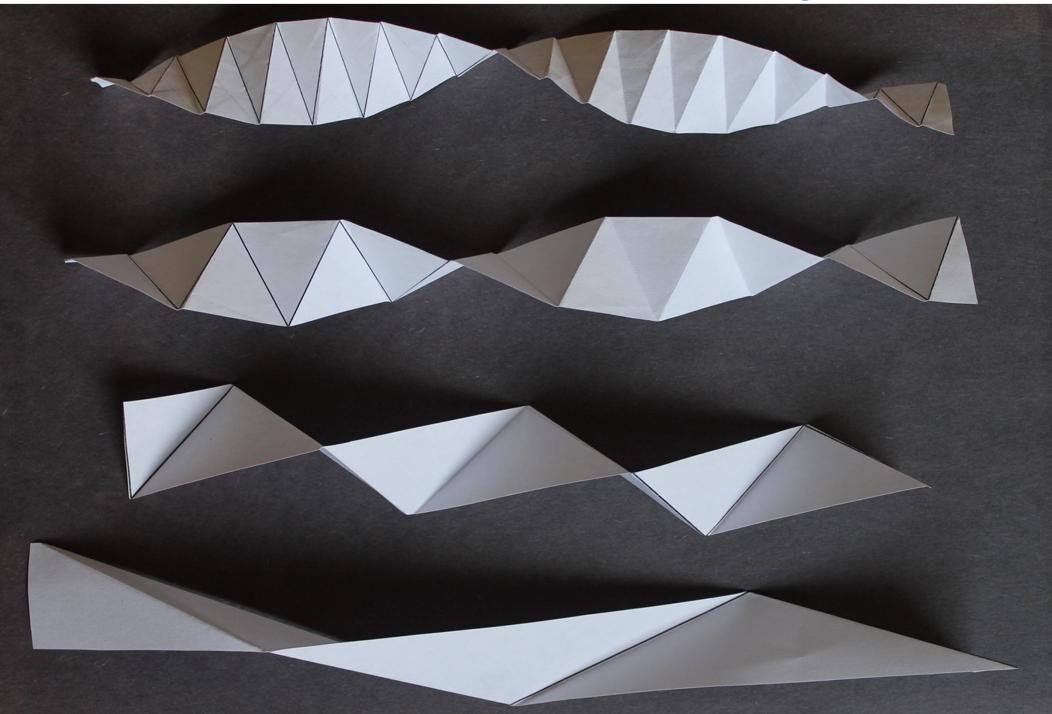
Vertical mechanical equilibrium:

$$(1 - 2r_{\rm wr})^2 (1 + 4r_{\rm wr}) = \frac{24}{\alpha}.$$

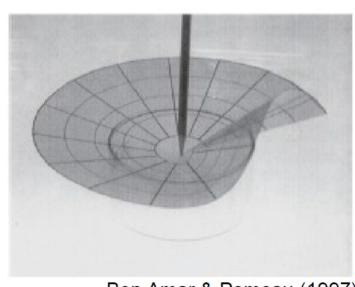
Amplitude of the wrinkling mode  $A(r)=\sqrt{\langle H^2\rangle_s}$  $r_{wr}$ 



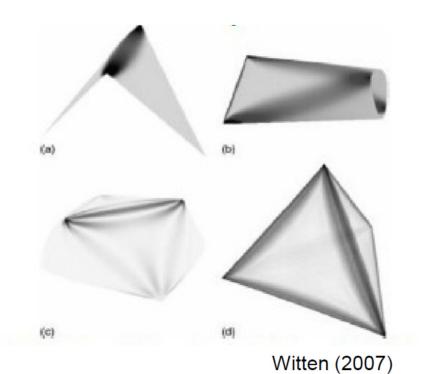
# Creased Helicoid and Origami



# Conical defects and ridges



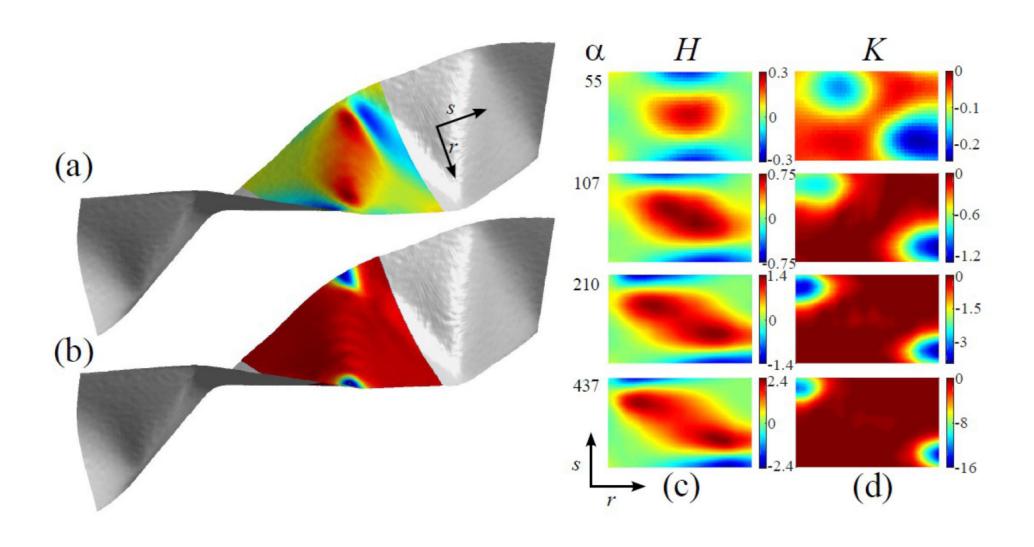
Ben Amar & Pomeau (1997) Cerda & Mahadevan (2003)



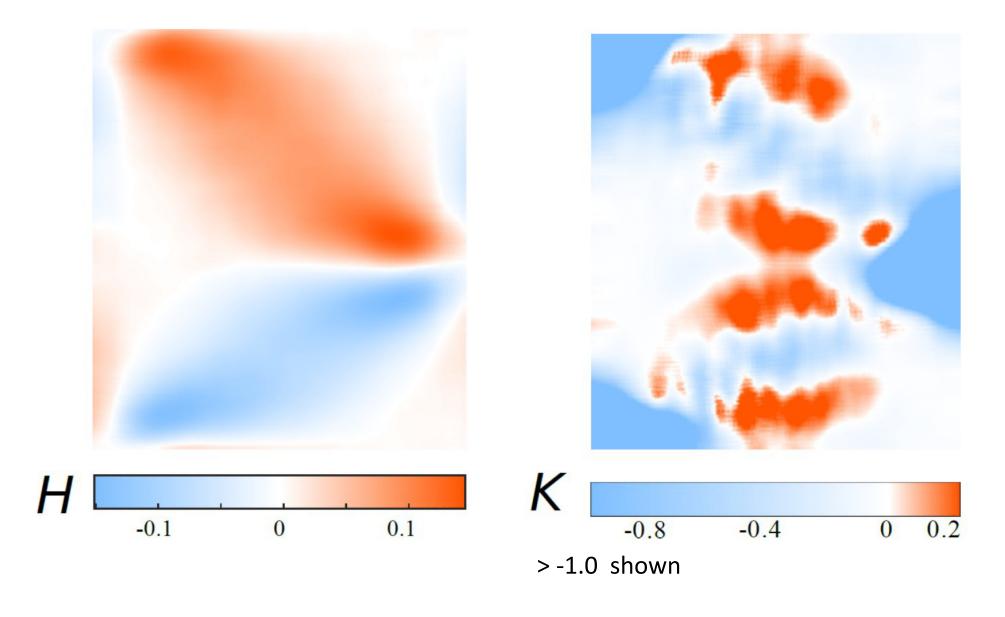
Venkataramani (2003)

Can one decompose the triangular pattern into minimal ridges?

# Ridges and Cones



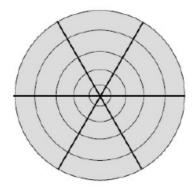
# Magnified view



#### Developable cone



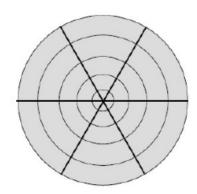
d-cone



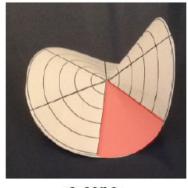
#### Developable cone



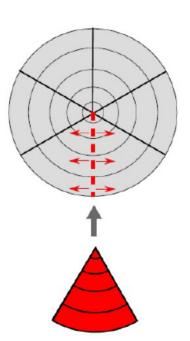
d-cone



Excess cone

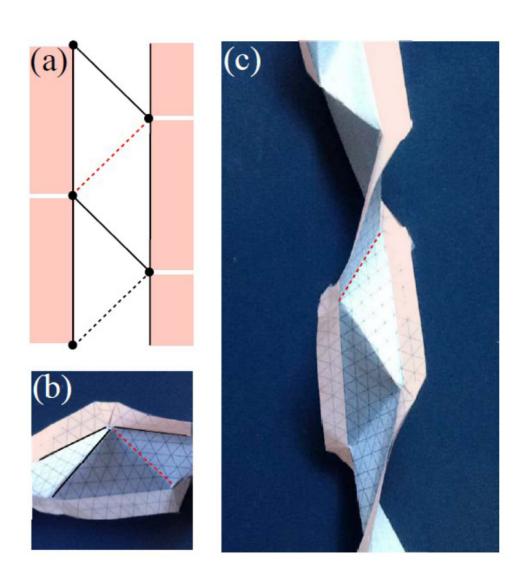


e-cone

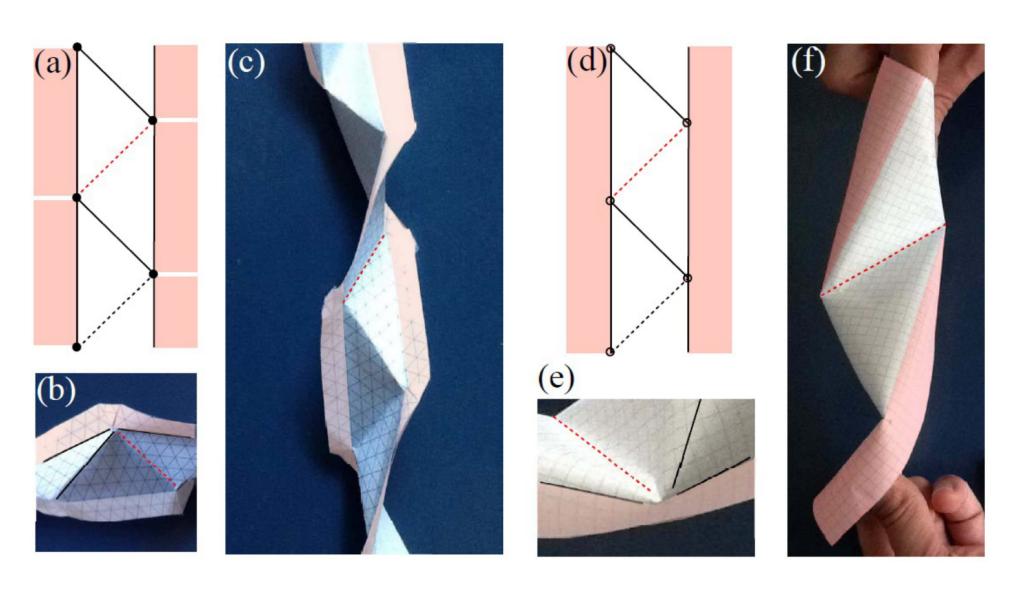


M. M. Müller, M. Ben Amar, and J. Guven, PRL (2008)

# Paper Model

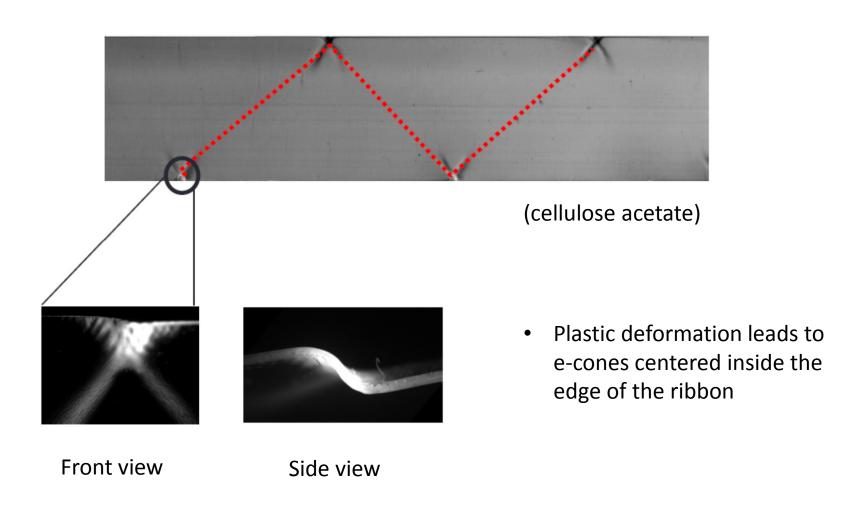


# Paper Model



e-helicoid d-helicoid

# Observed plastic deformation

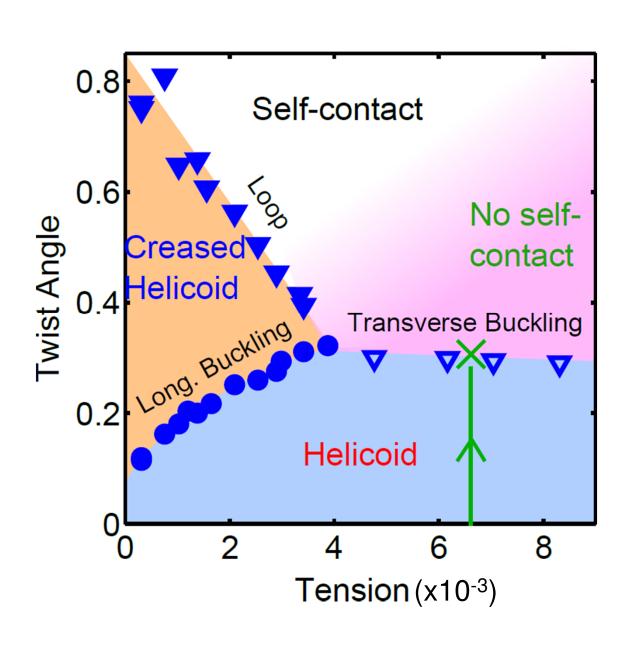


## Extensible sheets

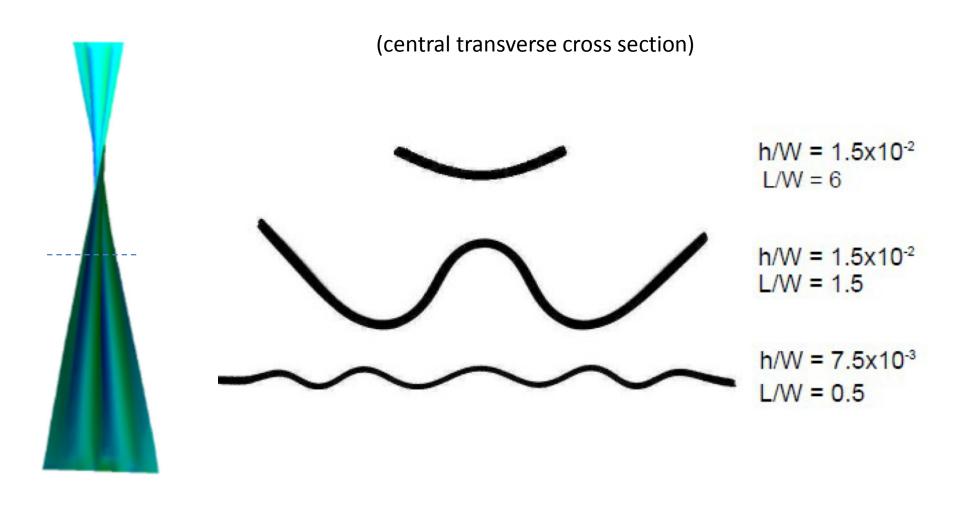
Triangular lattice pattern in fact consists of ridges connecting e-cones

Disclinations, e-cones, and their interactions in extensible sheets J. Chopin and A. Kudrolli, arXiv:1601.00575

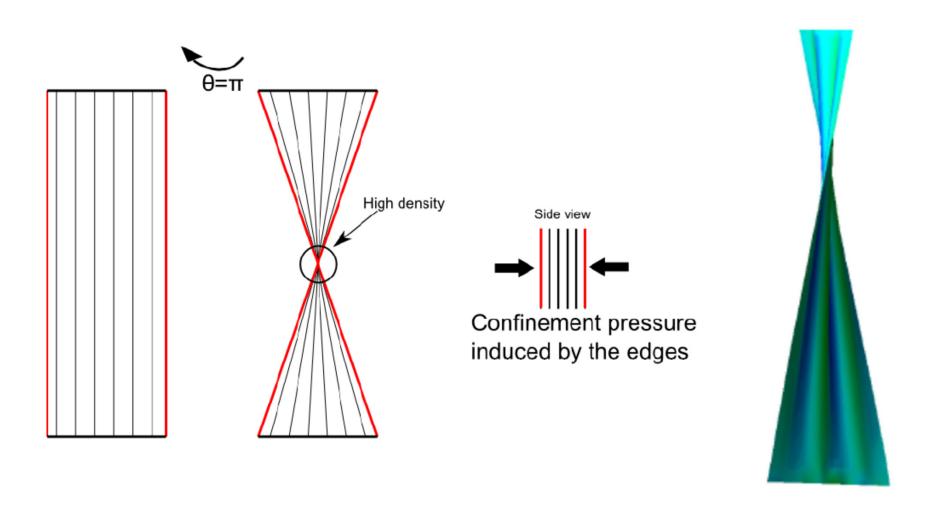
# Transverse buckling



# Transverse buckling



# Transverse buckling



## Covariant form of F-vK and Ribbon Buckling

- J. Chopin et al., J. Elasticity, 119, 137 (2015)
- B. Davidovitch et al., PNAS 108,18227 (2011)

$$\sigma^{sr} = 0,$$

$$\partial_s \sigma^{ss} = 0,$$

$$\partial_r \sigma^{rr} - \eta^2 r \sigma^{ss} = 0.$$

$$\sigma^{ss}(r) = T + \frac{\eta^2}{2} \left( r^2 - \frac{1}{12} \right),$$

$$\sigma^{rr}(r) = \frac{\eta^2}{2} \left( r^2 - \frac{1}{4} \right) \left[ T + \frac{\eta^2}{4} \left( r^2 + \frac{1}{12} \right) \right].$$

# Scaling analysis for transverse buckling

J. Chopin et al., J. Elasticity, 119, 137 (2015)



Stretching(orthogonal): 
$$\Delta U_S^{\perp} \sim \sigma^{rr} \left(\frac{A}{\lambda}\right)^2$$
,

Stretching(longitudinal): 
$$\Delta U_B^{||} \sim \sigma^{ss} \left(\frac{A}{L}\right)^2$$
,

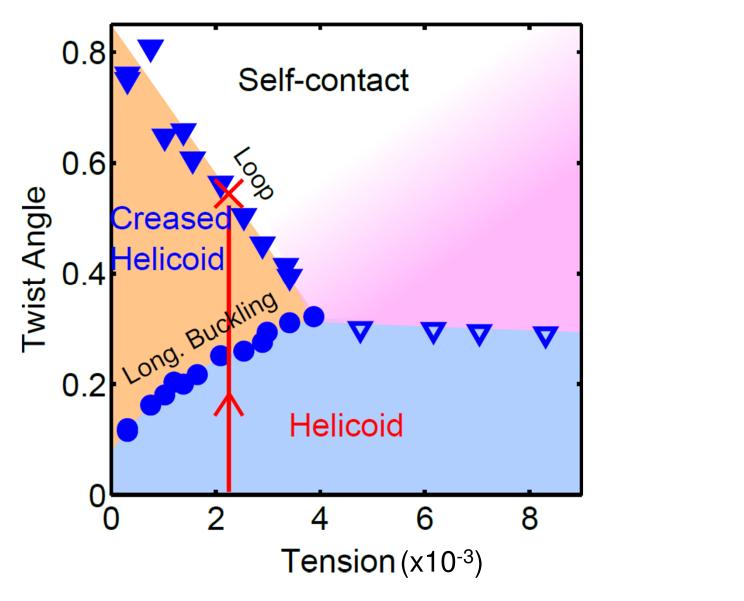
Bending(orthogonal) : 
$$\Delta U_B^{\perp} \sim B \left( \frac{A}{\lambda^2} \right)^2$$
.

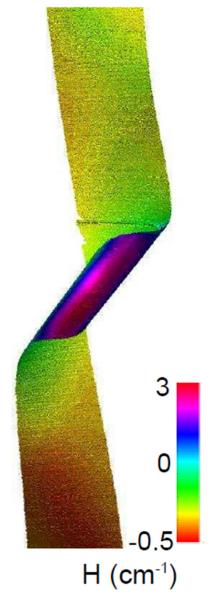
The scalings for stresses are : 
$$\sigma^{ss} \sim T$$
;  $\sigma^{rr} \sim \eta^2 T$ 

Using 
$$\Delta U_S^{\perp} \sim \Delta U_S^{||} \sim \Delta U_B^{\perp}$$
,

For 
$$L$$
 finite  $\eta_{tr}\sim\sqrt{\frac{t}{L}}T^{-1/4}$  For  $L$  infinite  $\eta_{tr}\sim\frac{t}{\sqrt{T}}$   $\lambda_{tr}\sim\sqrt{Lt}T^{-1/4}$   $\lambda_{tr}\sim1$ 

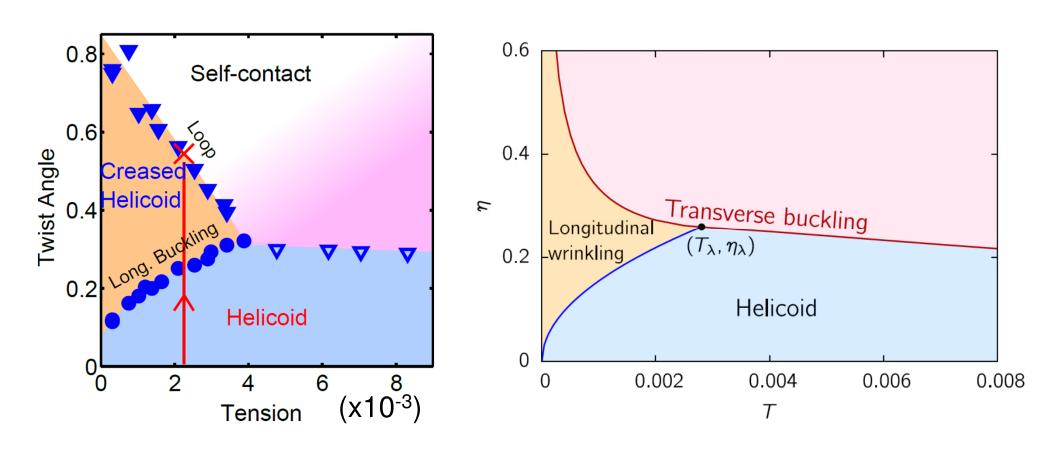
## Anomalous loop transition





The critical angle decreases with the tension!

# Anomalous loop transition



Loop transition interpreted as a combination of longitudinal and transverse buckling

Roadmap to the morphological instabilities of a stretched twisted ribbon J. Chopin\*, V. Démery\* and B. Davidovitch, *J. Elasticity* (2015)

## Conclusions

- A stretched twisted ribbon exhibits a rich set of morphologies
- Linear stability analysis explains wrinkling instability near threshold
- Far from threshold approach (compression free stress field) capture some aspect of the morphology an mechanics deep inside the post-buckling regime
- Continuous transition from smooth wrinkled helicoid to a faceted ribbon
- A faceted ribbon corresponds to the shape resulting from interacting econes/negative disclinations organized on a triangular lattice.

#### References:

- Helicoids, Wrinkles, and Loops in Twisted Ribbons, J. Chopin and A. Kudrolli, PRL **111**, 174302 (2013).
- Disclinations, e-cones, and their interactions in extensible sheets, J. Chopin and A. Kudrolli arXiv:1601.00575 (2016).