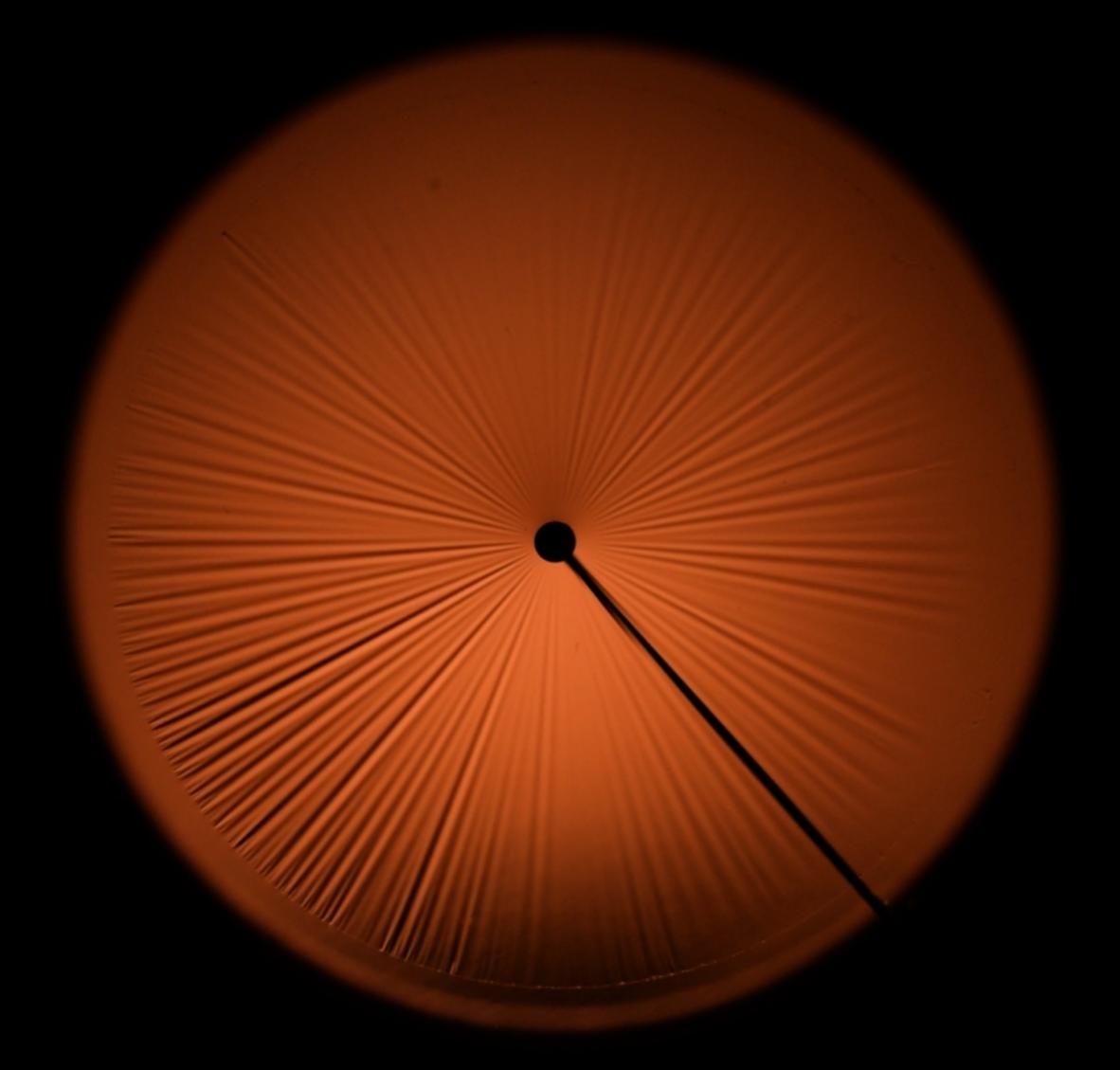
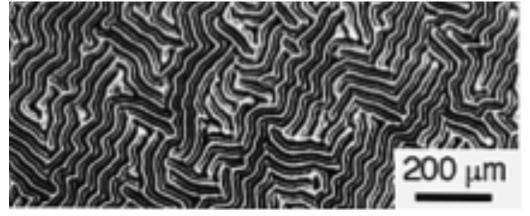
# The wavelength of wrinkles in curved tensioned sheets

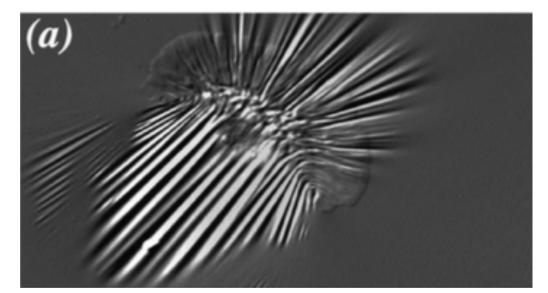


Joseph D Paulsen, Syracuse University

### Thin sheets can wrinkle



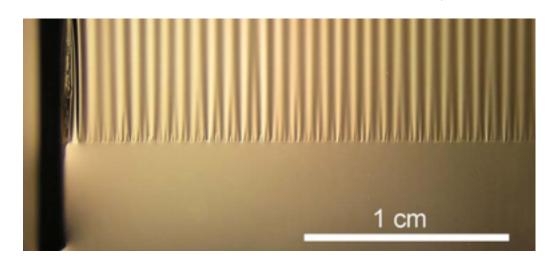
N. Bowden et al., 1998



K. Burton et al., 1999



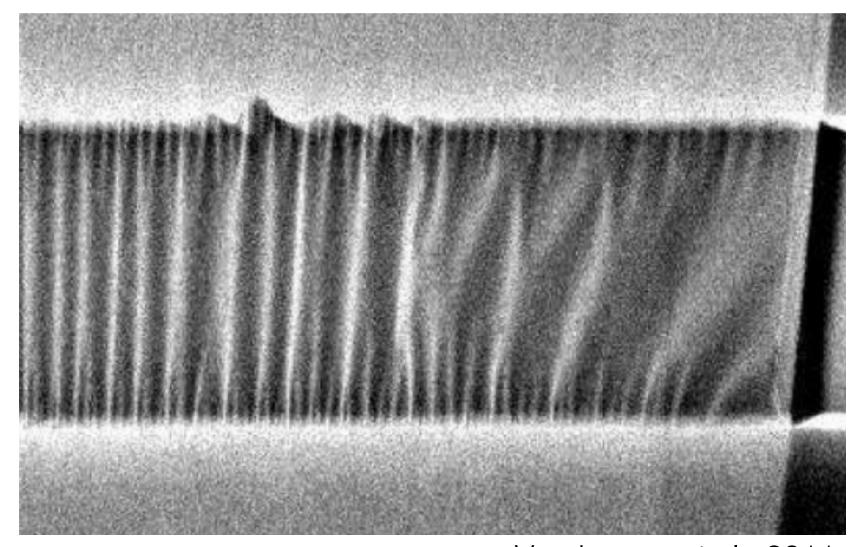
Mahadevan and Cerda, 2003



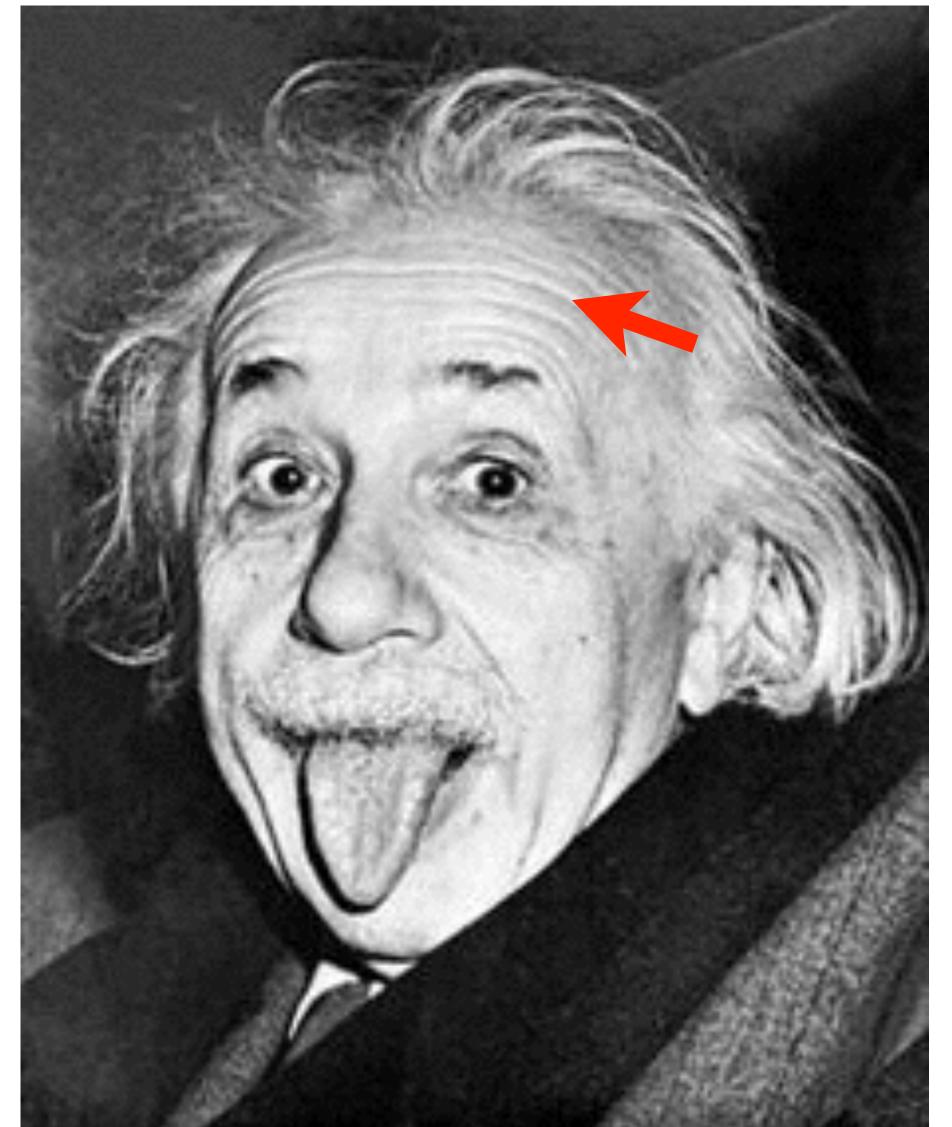
J. Huang et al., 2010



infobarrel.com

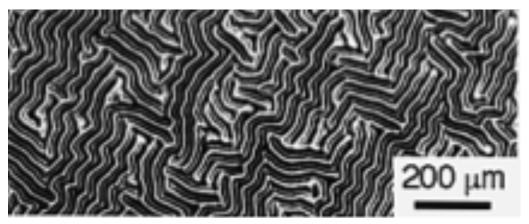


Vandeparre et al., 2011

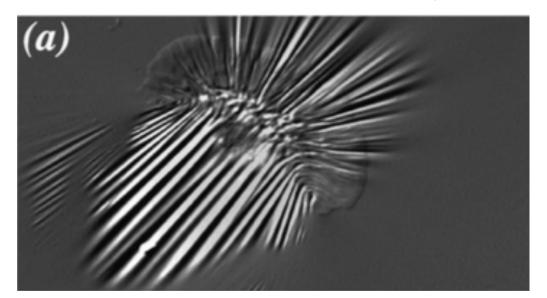


wikipedia.org

# Why do we care?



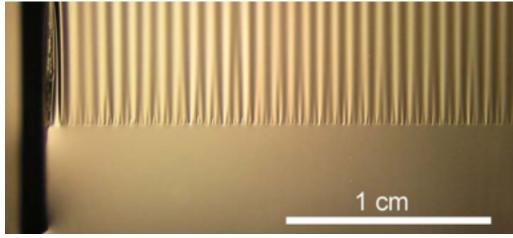
N. Bowden et al., 1998



K. Burton et al., 1999



Mahadevan and Cerda, 2003



J. Huang et al., 2010

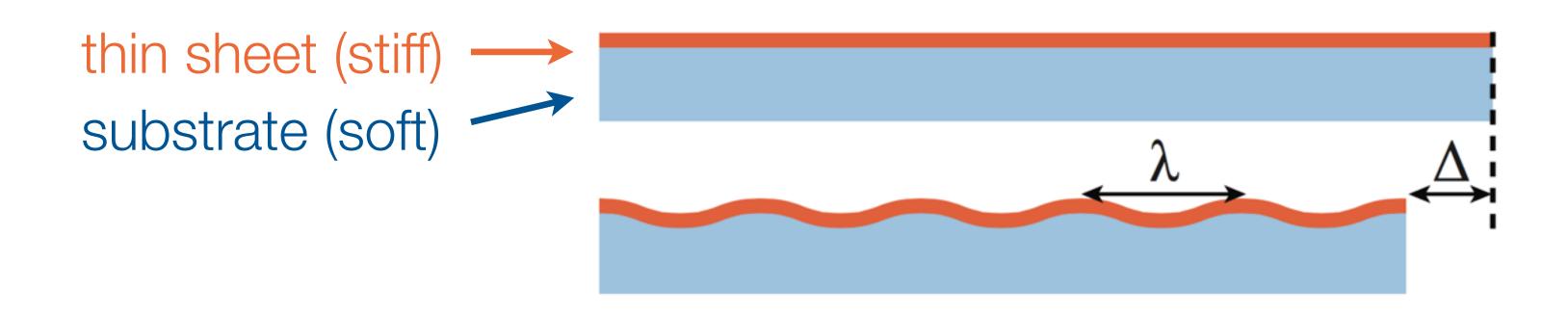
### **Applications**

- Micropatterning
- Non-invasive probe of local environment
- Metrology for modulus/thickness of thin films

### **Fundamental Questions**

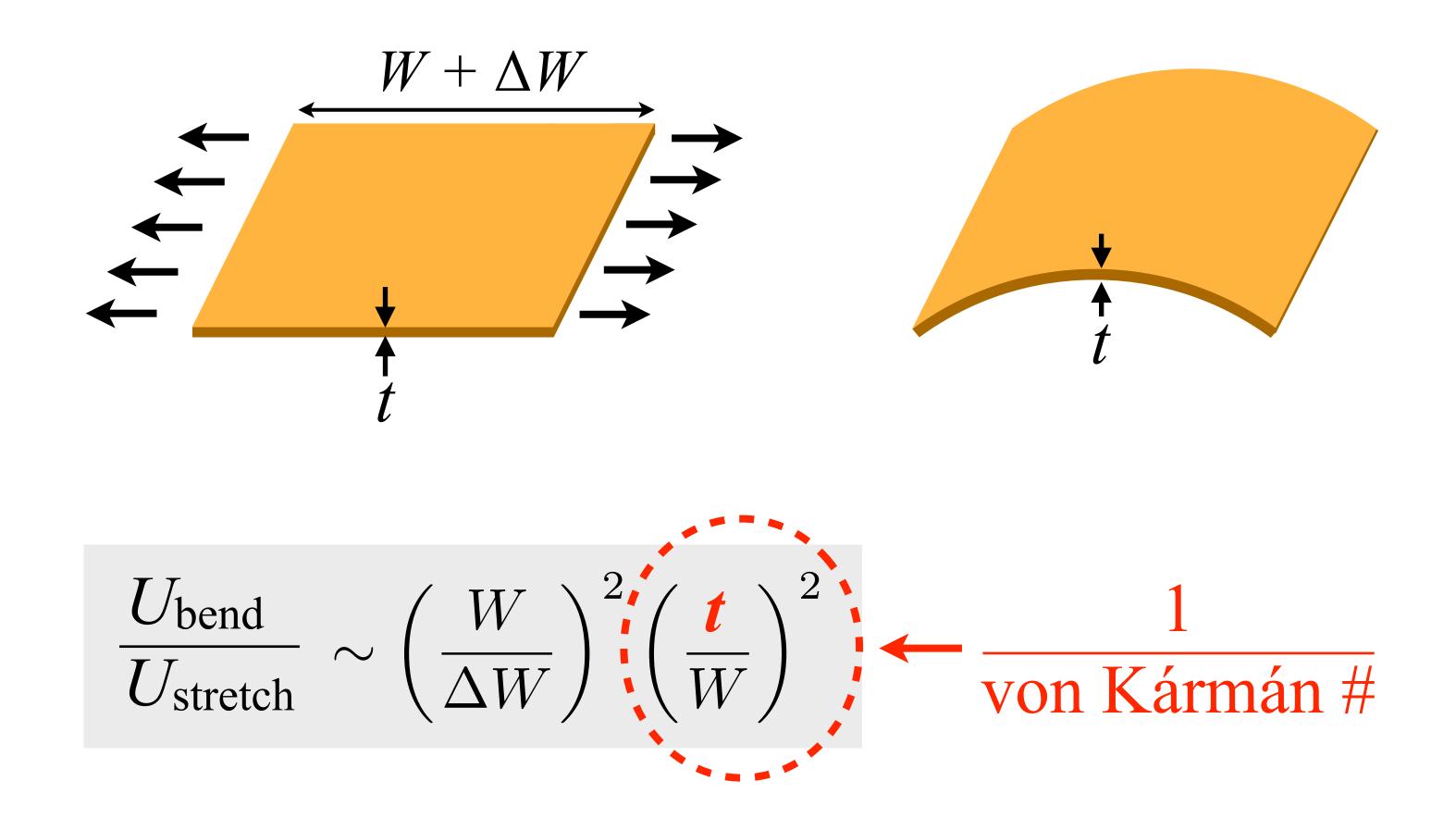
- Threshold?
- Wavelength?
- How is stress/strain distributed in thin materials?

### What do we know?



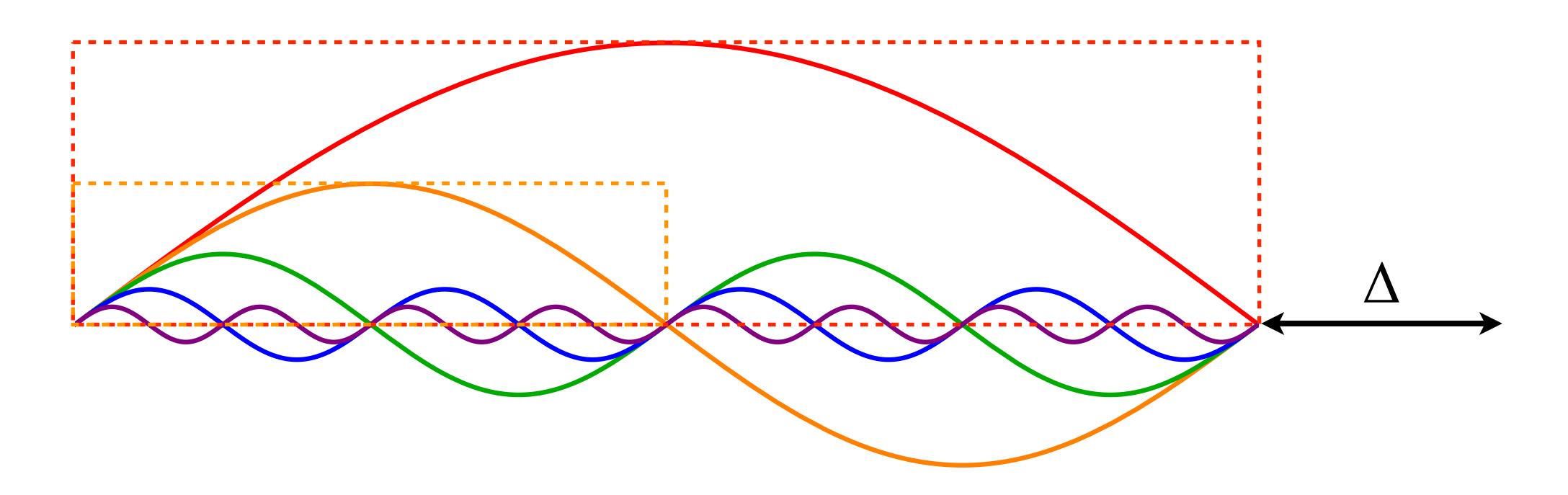
Wrinkles "hide" excess material

# Bending is cheaper than stretching



small t/W: bending energy « stretching energy

# How are wrinkle wavelength & amplitude related?



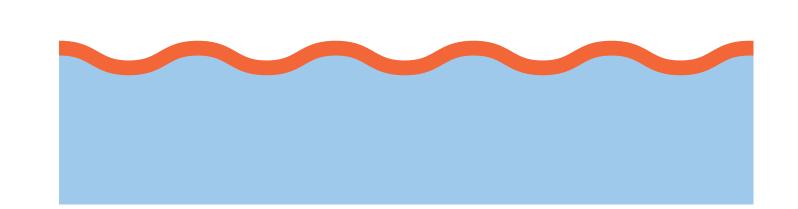
"Slaving condition": fixed compression  $\Leftrightarrow A/\lambda$  constant

Large amplitude, large  $\lambda$  Small amplitude, small  $\lambda$ 

amplitude wavelength

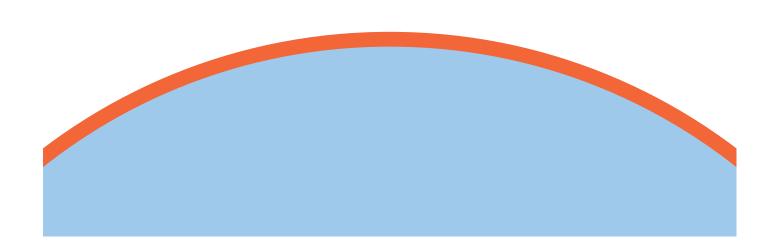
# Wavelength selection. Example: Sheet floating on liquid surface

#### Short wavelength: good for liquid



 $U_{\rm gravity} \sim \rho g \lambda^2$ 

#### Long wavelength: good for sheet



$$U_{\rm bend} \sim \frac{B}{\lambda^2}$$

where 
$$B=rac{Et^3}{12(1-\Lambda^2)}$$

Balance energies: compromise

$$\lambda = 2\pi \left(\frac{B}{\rho g}\right)^{1/4}$$

# Another type of stiffness: Tension

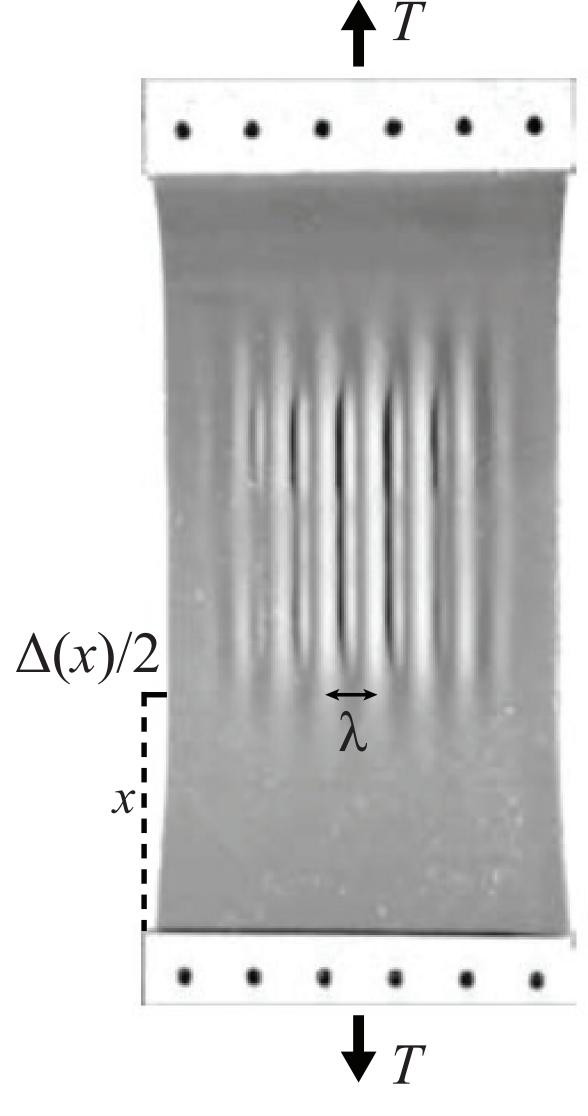


Image: K. Ravi-Chandar

#### Tension penalizes long wavelengths

Long wavelength

- ⇒ Large amplitude
- ⇒ Stretching along wrinkles (expensive)

Balance with bending: 
$$\lambda = 2\pi \left(\frac{B}{K}\right)^{1/4}$$

with 
$$K_{\mathrm{tens}} = T \left( \frac{\Phi'(x)}{\Phi(x)} \right)^2$$
 , where  $\Phi = A/\lambda$ 

Universal law: just insert relevant stiffness, K

Cerda & Mahadevan, PRL 2003

# Another type of stiffness: Tension

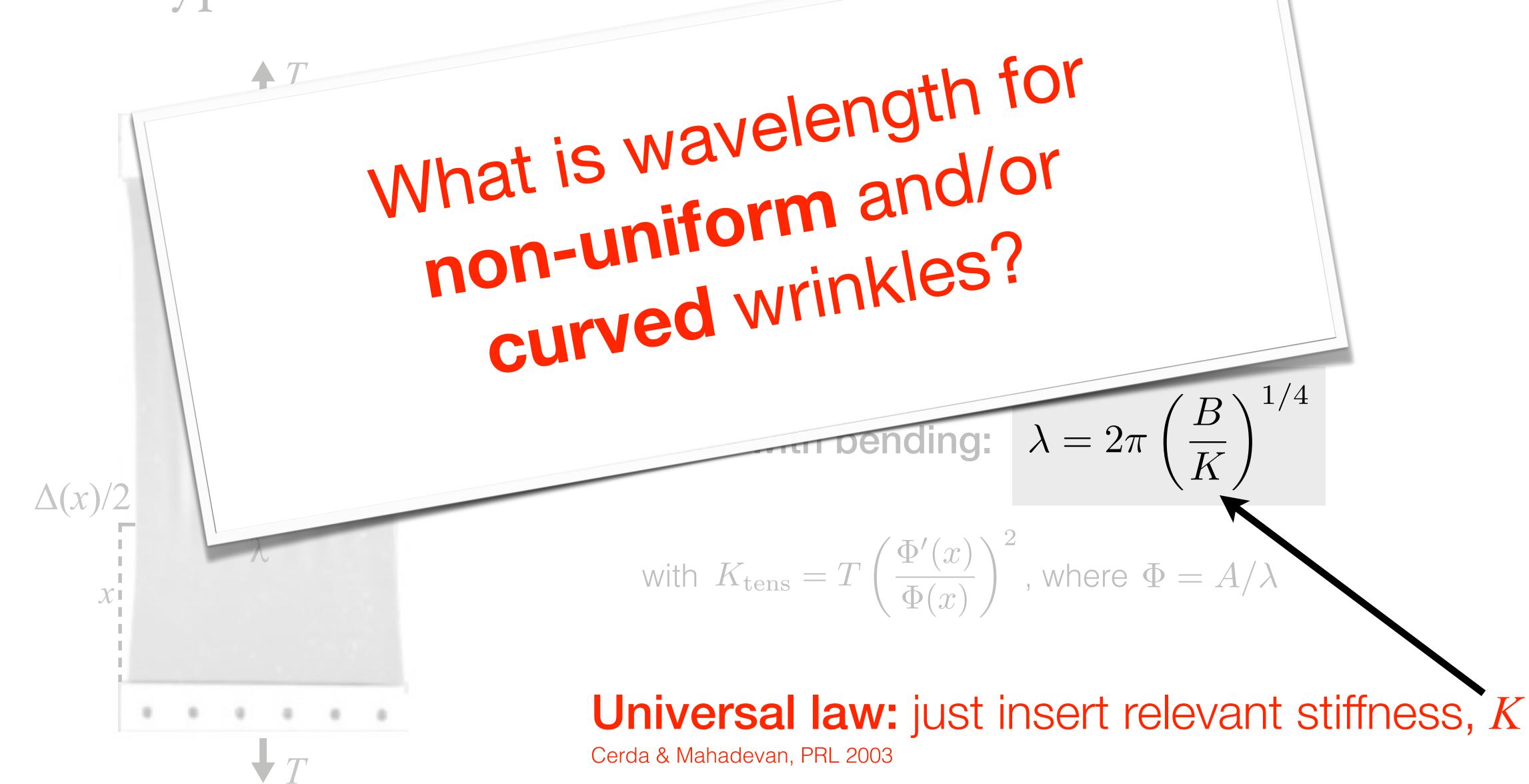
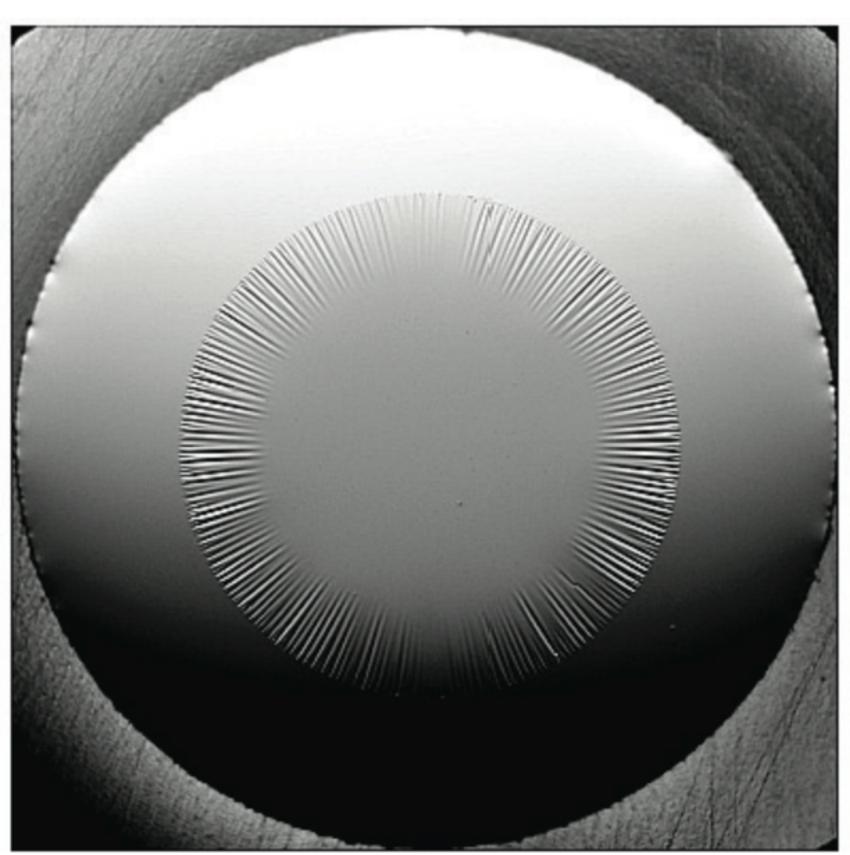


Image: K. Ravi-Chandar

# Initially flat polymer film on a curved water drop

King, Schroll, Davidovitch, & Menon, PNAS 2012
Hunter King, PhD Thesis, 2013



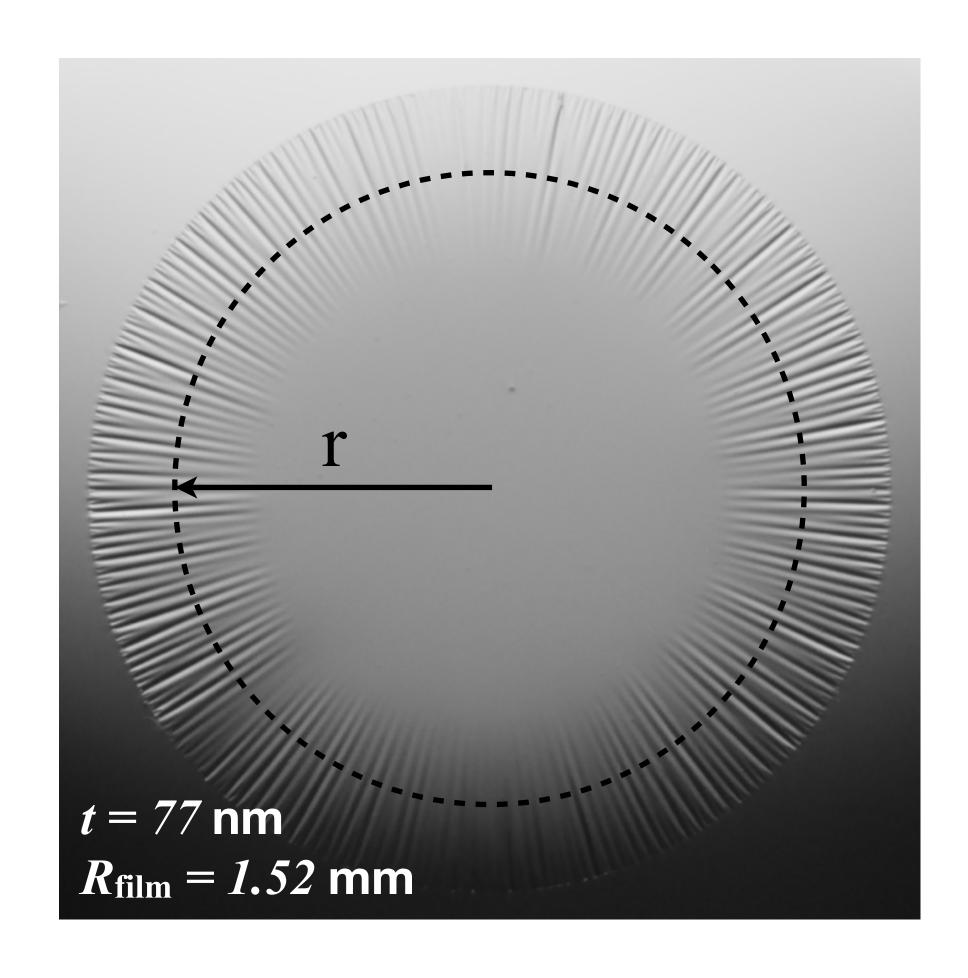


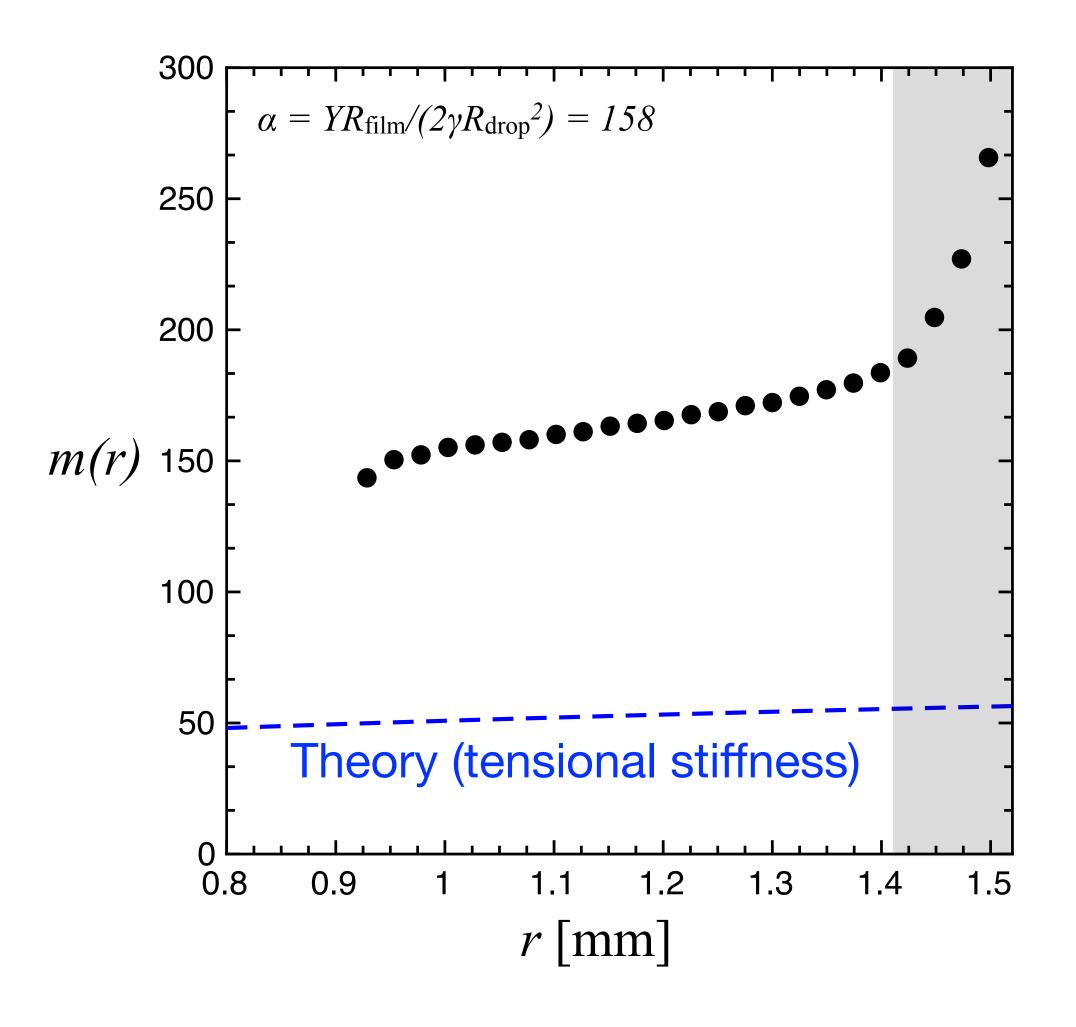
side:

Curvature playing two roles:

Gaussian curvature *causes* wrinkles Wrinkles *live* in curved environment

## Polymer film on curved surface: Number of wrinkles, m(r)

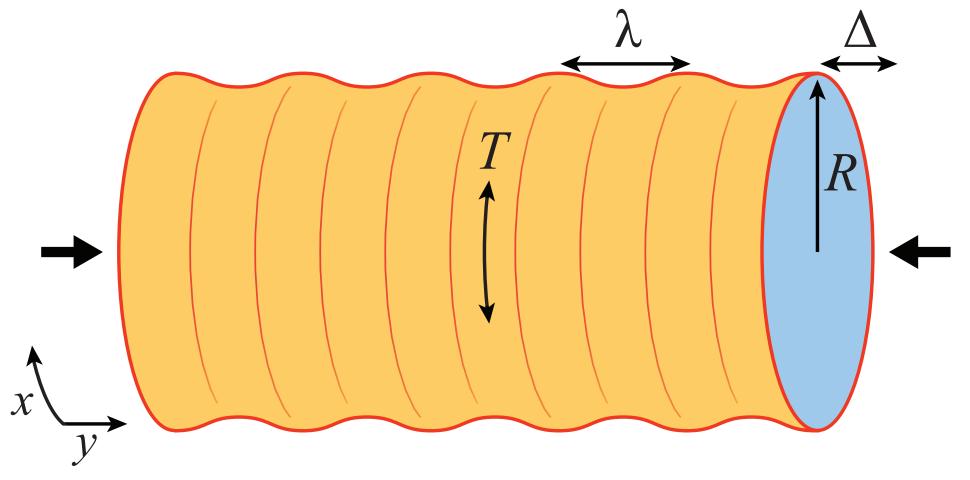




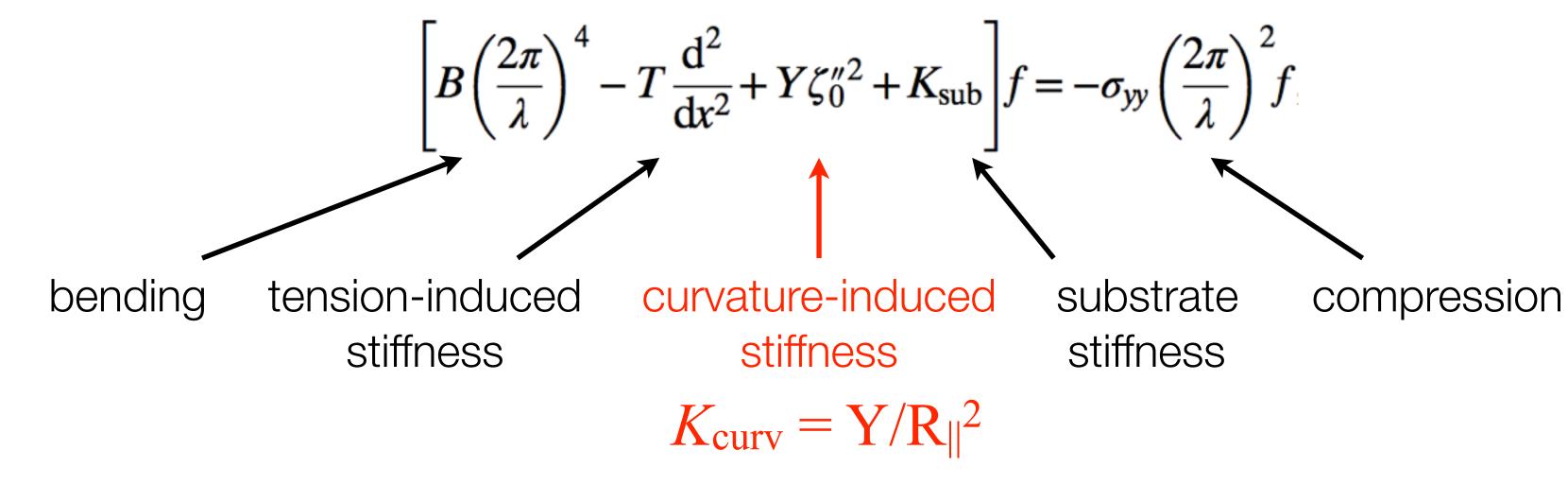
Environment *stiffer* than expected Motivates new stiffness:  $K_{curv} = ?$ 

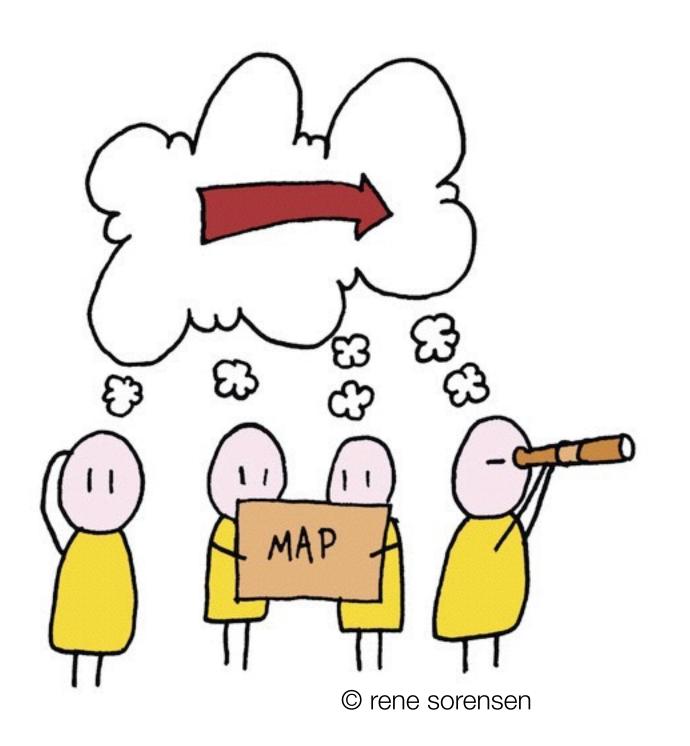
# Another type of stiffness: Curvature

Evan Hohlfeld, Dominic Vella, Benny Davidovitch



- 1. Normal force balance (1st FvK eqn.)
- 2. Assume cylindrical shape + sinusoidal wrinkles
- 3. Far-from-threshold expansion: find first order correction to stress along wrinkle direction
- 4. Plug correction into normal force balance:



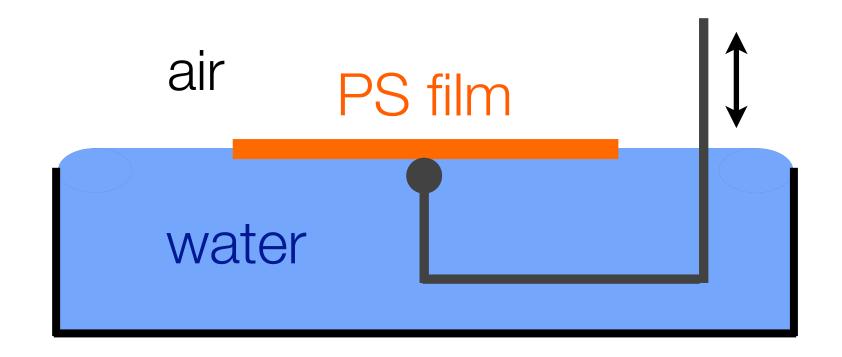


Shown: Must account for curvature

**Prediction:** Curvature-induced stiffness,  $K_{\text{curv}} = Y/R_{\parallel}^2$ 

Now: Test in two experimental settings

# Experiment: Poking

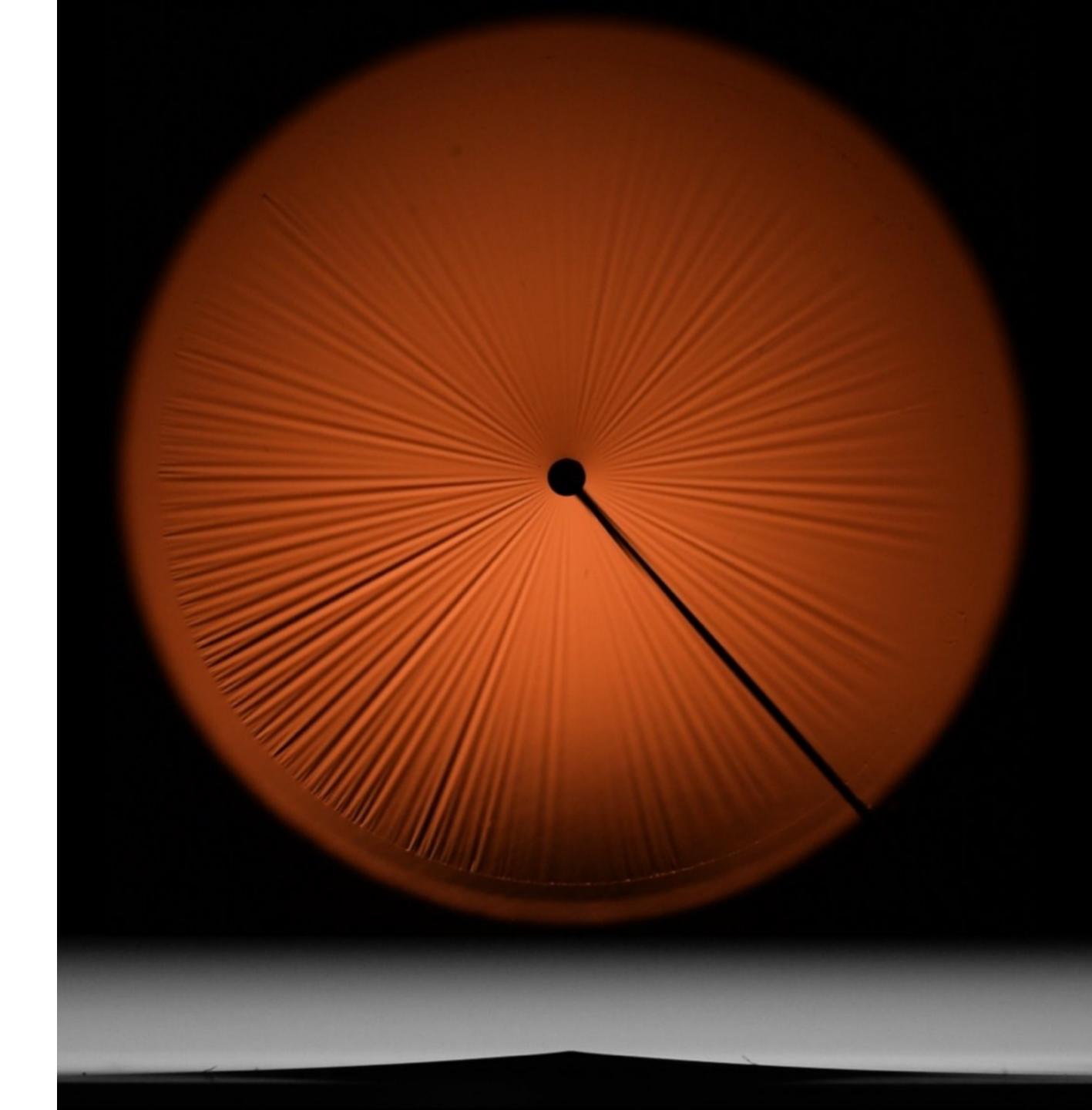


Circular film:  $R_{film} = 11$  to 22 mm

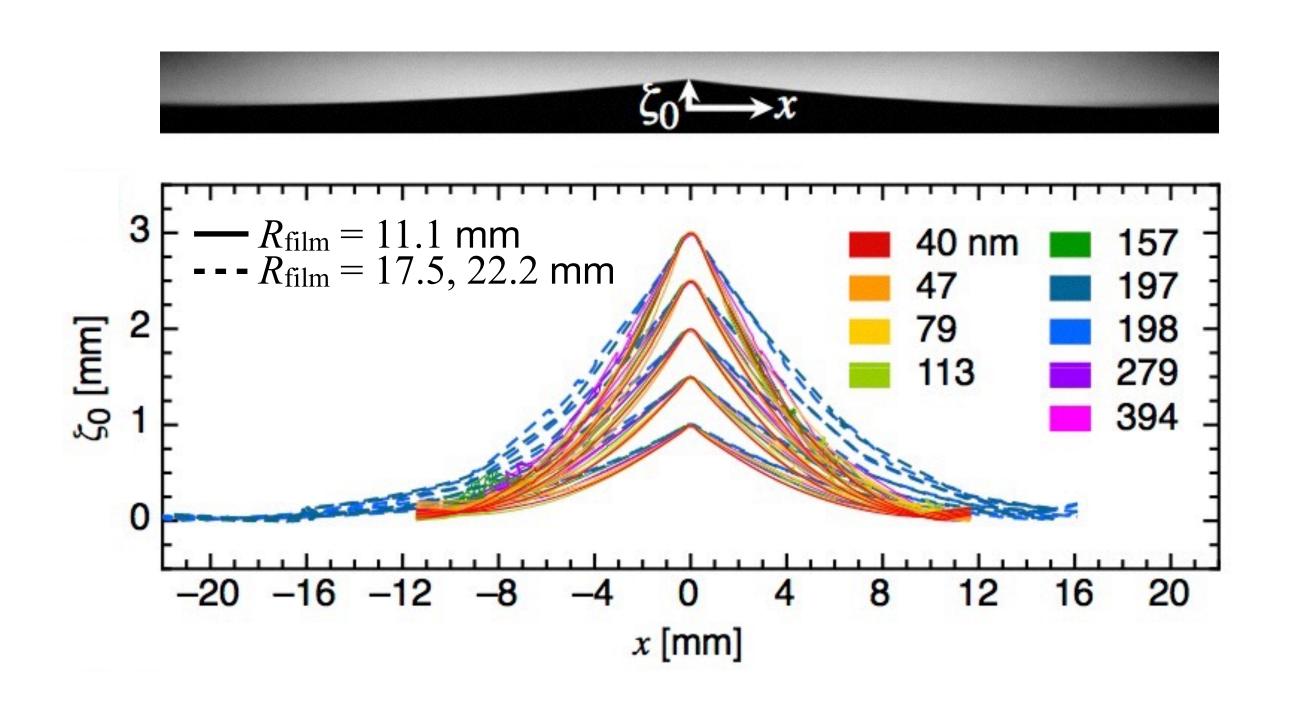
Thickness: t = 40 to 400 nm

von Kármán number, (W/t)<sup>2</sup>:

 $10^9 \text{ to } 10^{11}$ 



# Side profile: measure local curvature

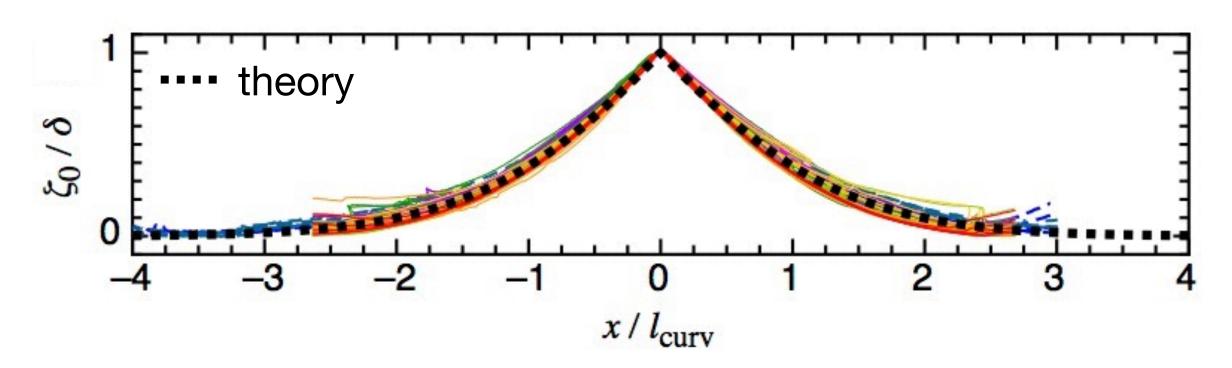


### Theoretical prediction:

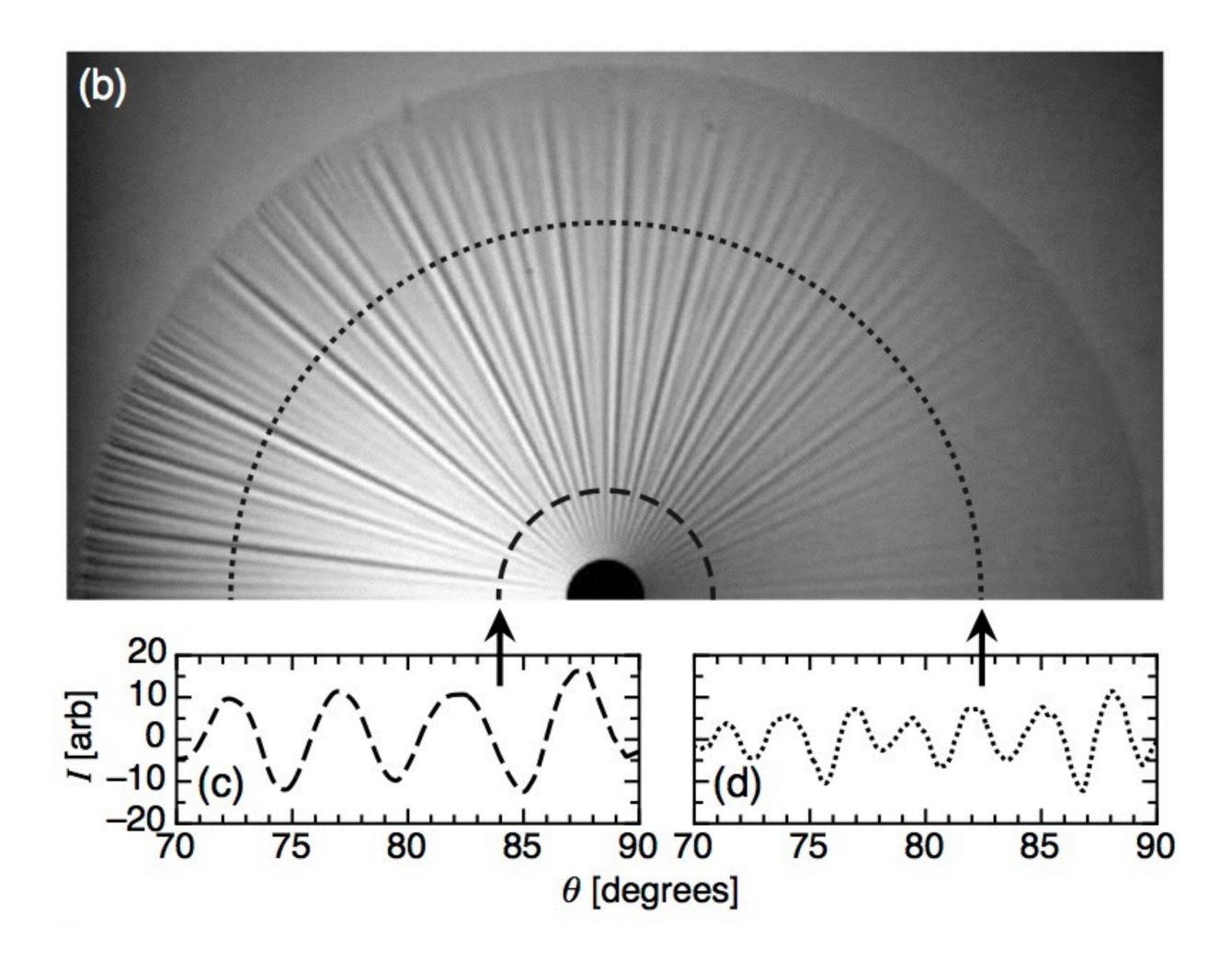
Vella, Huang, Menon, Russell, & Davidovitch, PRL 2015

$$\zeta_0(r) \approx \delta \text{Ai}(r/\ell_{\text{curv}})/\text{Ai}(0)$$

where 
$$\ell_{\rm curv}=R_{\rm film}^{1/3}\ell_c^{2/3}$$
 and  $\ell_c=\sqrt{\gamma/\rho g}$ 



# Number of wrinkles varies radially



Simplest theoretical assumption:

Minimize energy *locally* at every radius (neglect energetic cost of  $d\lambda/dr$ )

# Wrinkle wavelength at $r = l_{curv}$ , versus poking amplitude, $\delta$

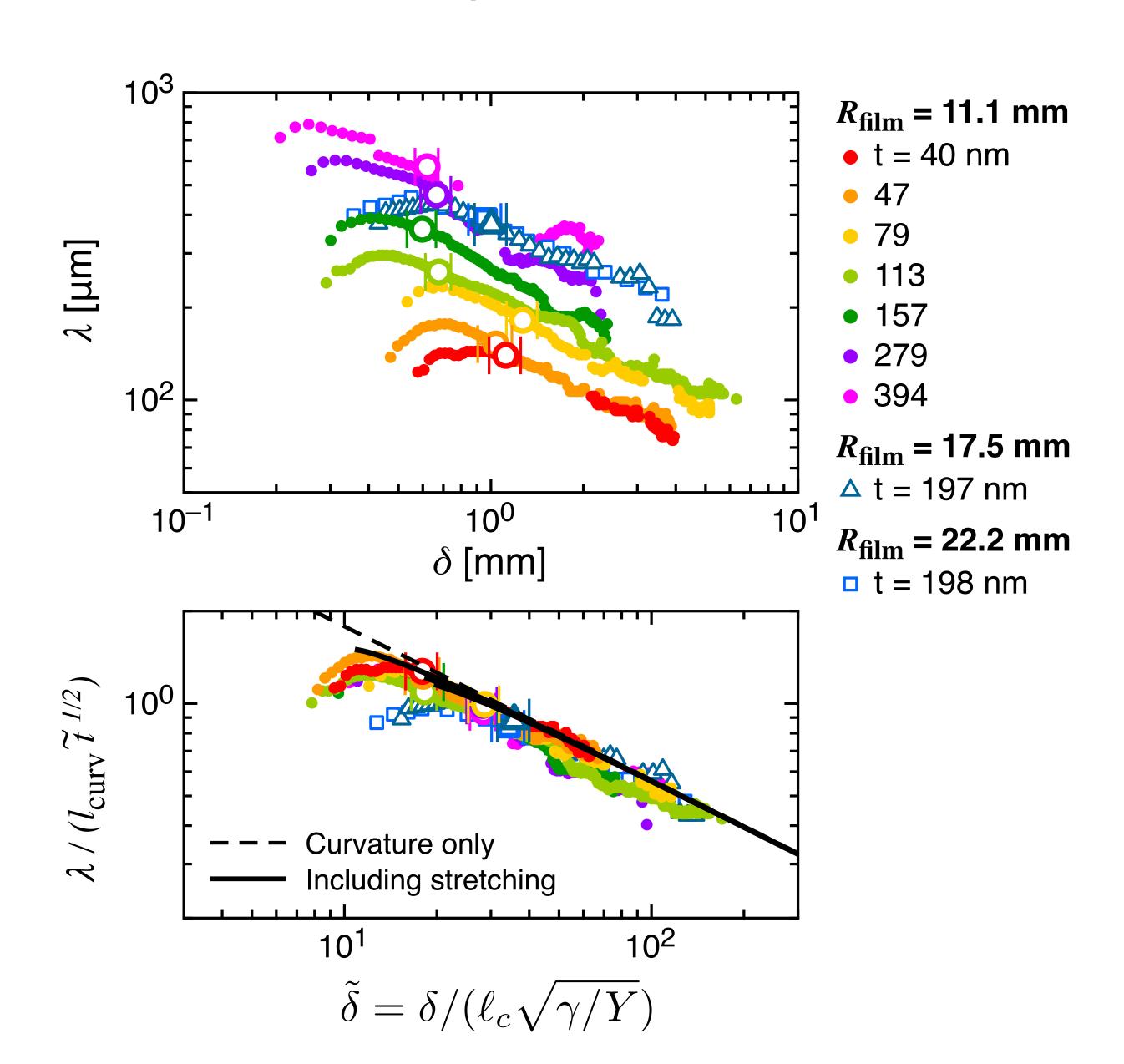
### **Expectation:**

δ increases

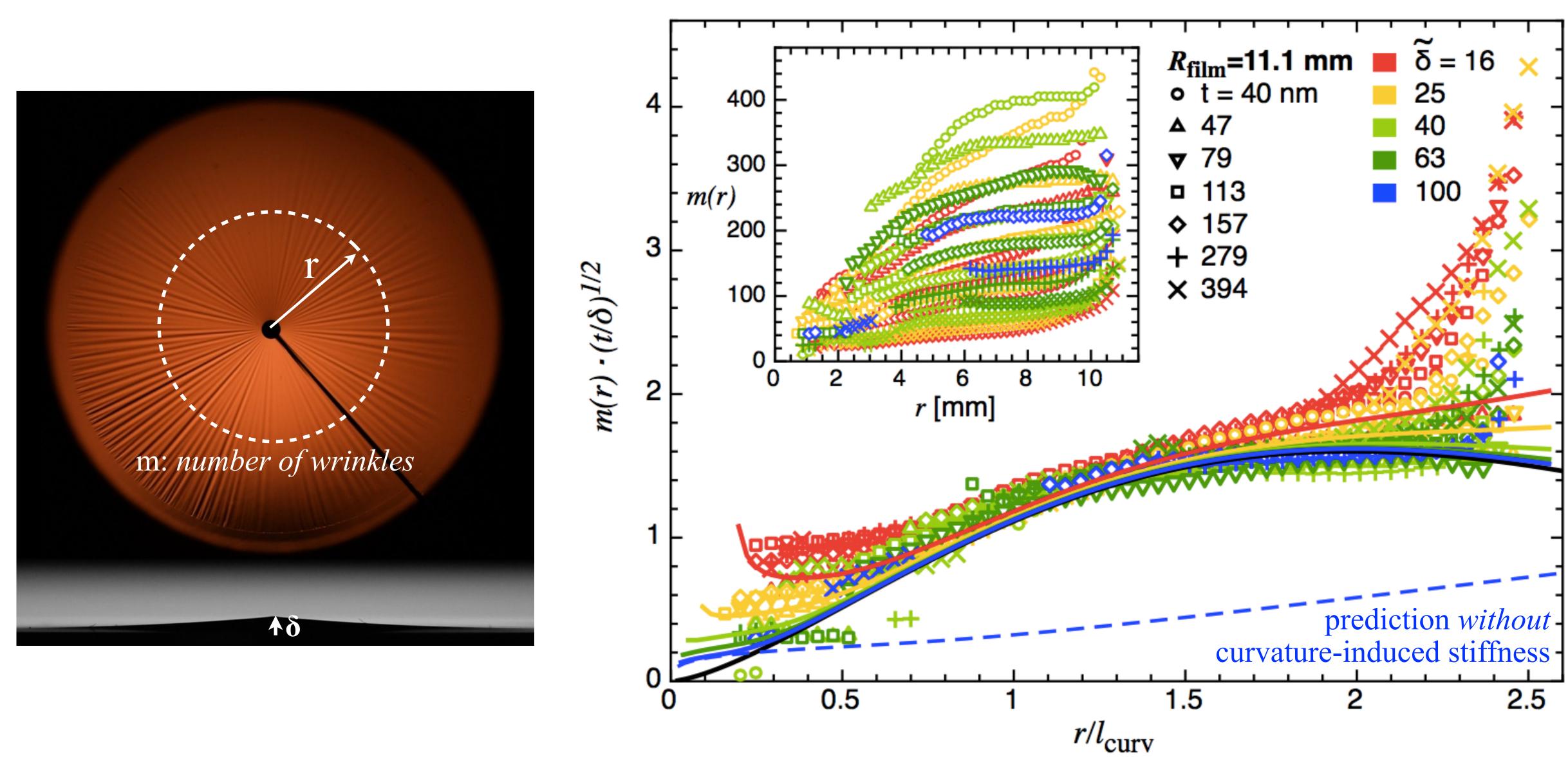
- ⇒ curvature increases
- ⇒ stiffness increases
- ⇒ wavelength decreases

### Quantitatively,

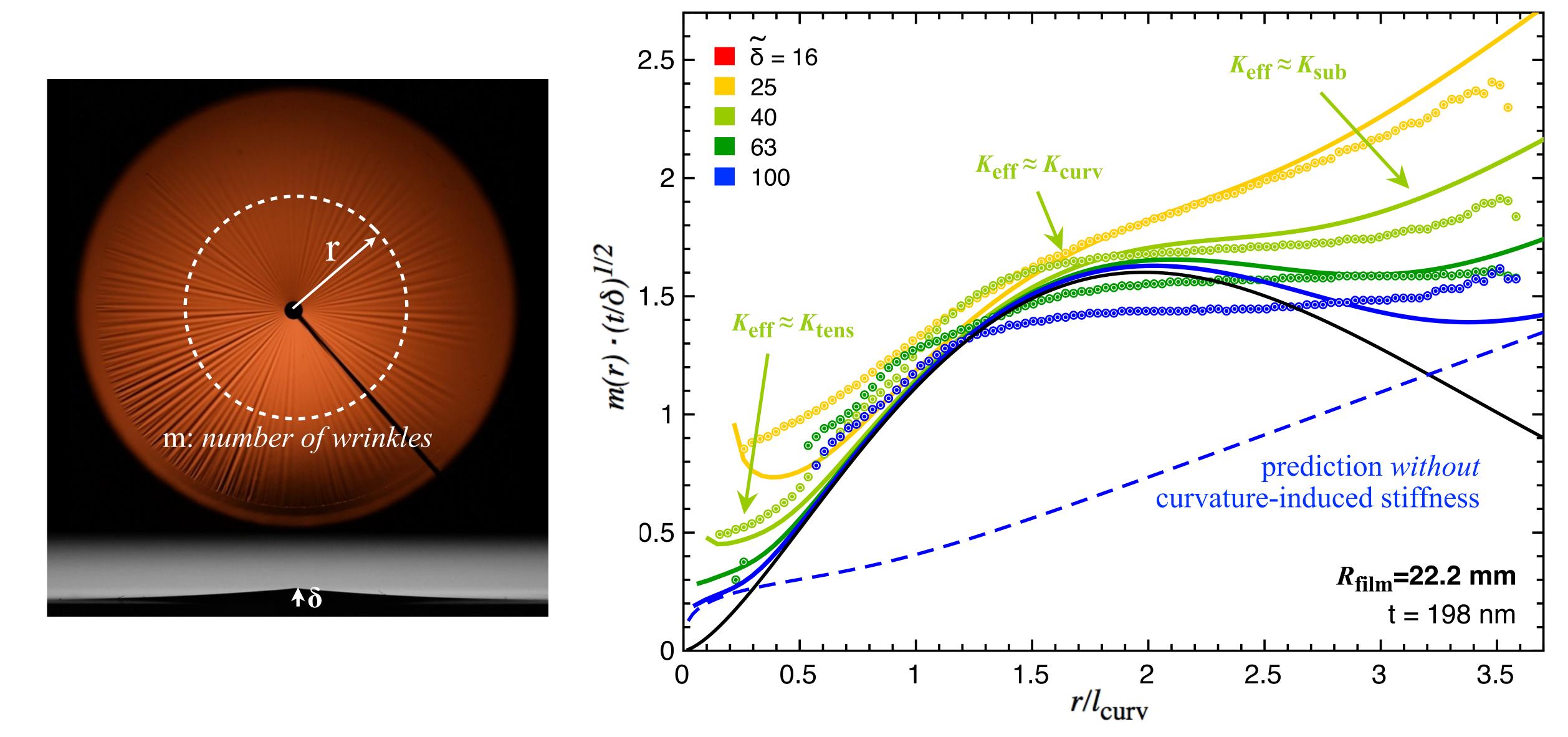
 $\lambda \sim (B/K_{curv})^{1/4} \sim (t\,R_{||})^{-1/2} \sim (t/\delta)^{-1/2}$  (numerical prefactors also predicted)



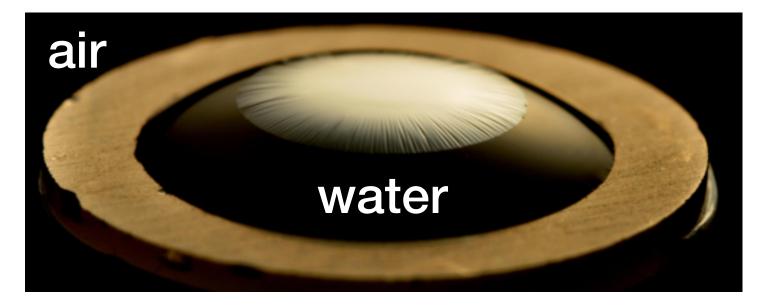
# Wrinkle number versus poking amplitude, $\delta$ , and radius



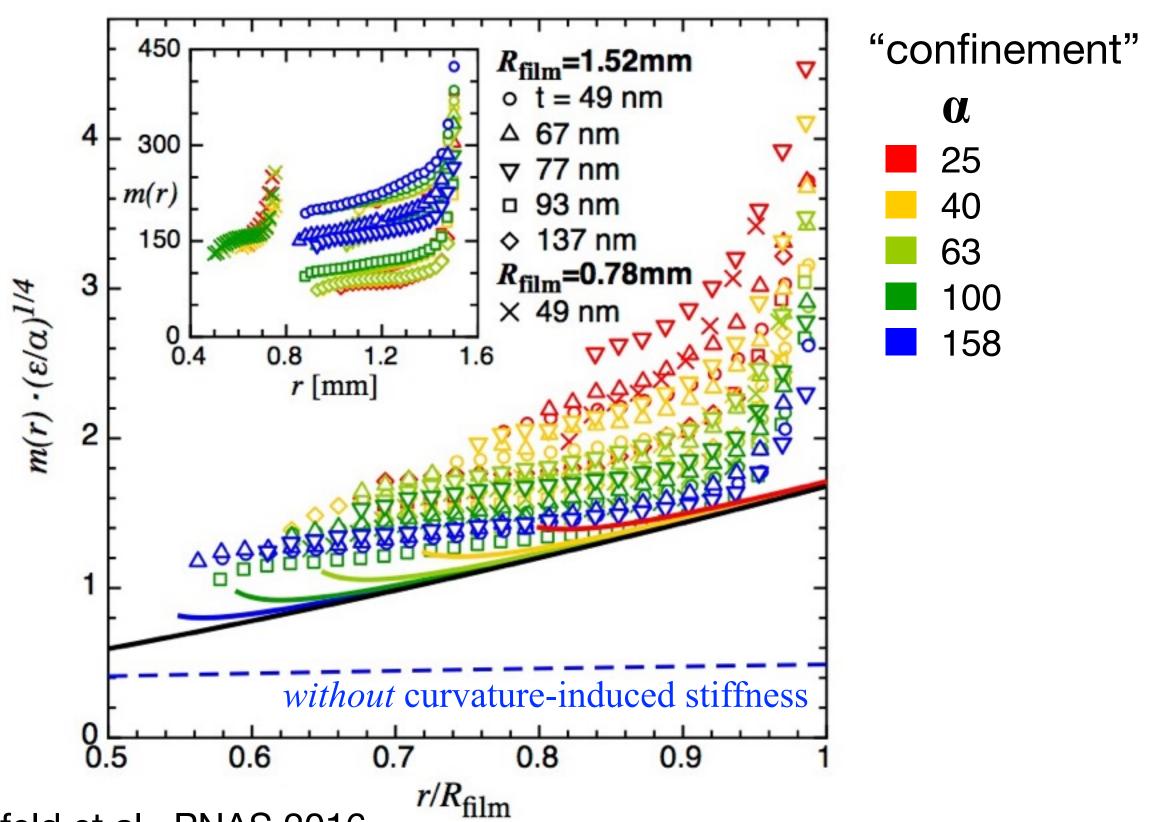
# Wrinkle number versus poking amplitude, $\delta$ , and radius



## Back to where we started: a sheet on a drop

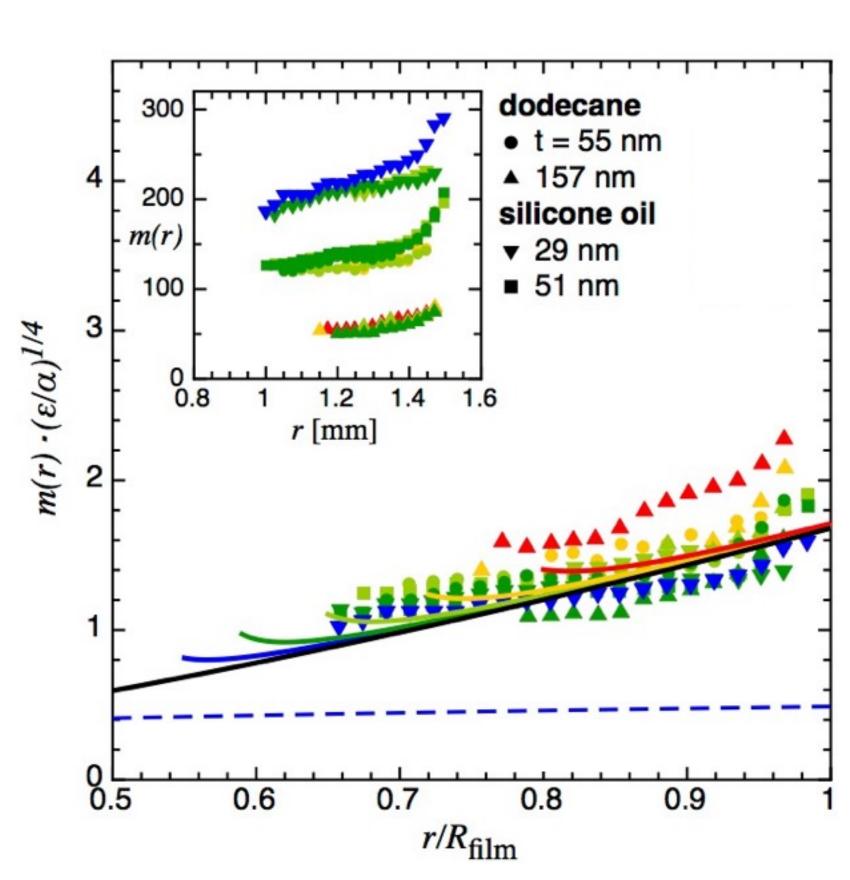


Air/water: Hunter King



oil water

Oil/water: Me



Paulsen, Hohlfeld et al., PNAS 2016

Take-home message: curvature can be crucial in wrinkle wavelength selection



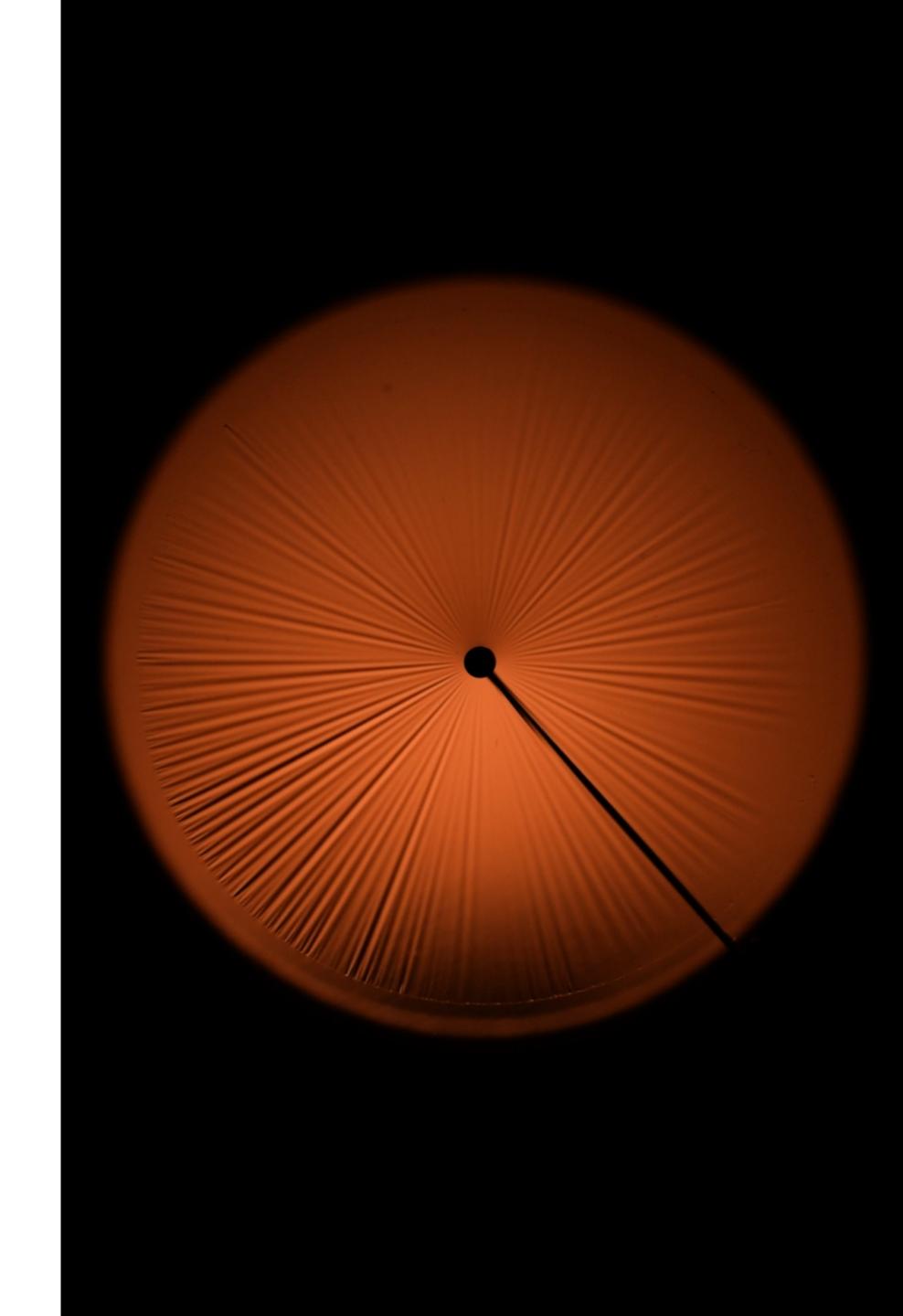
### Conclusions

### "Local-lambda law"

- Curvature-induced stiffness,  $K_{\text{curv}} = Y/R_{\parallel}^2$
- $-K_{\text{eff}} = K_{\text{tens}} + K_{\text{curv}} + K_{\text{subs}}$
- Wavelength selection: local energy minimization

### Open questions

- When can we neglect  $d\lambda/dx$ ?
- How does edge cascade depend on curvature?
- What happens without tension?



Curvature-induced stiffness and the spatial variation of wavelength in wrinkled sheets. Paulsen, Hohlfeld, King, Huang, Qiu, Russell, Menon, Vella, and Davidovitch, PNAS 2016

### Theory:



Evan Hohlfeld



Zhanlong Qui



Dominic Vella



Benny Davidovitch

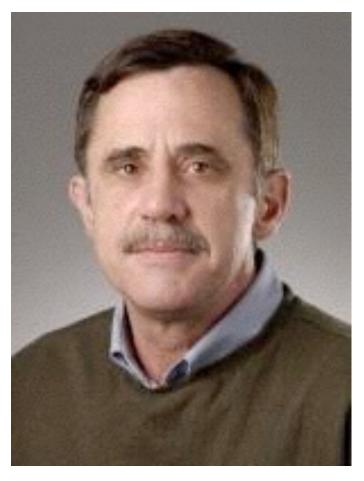
### Experiment:



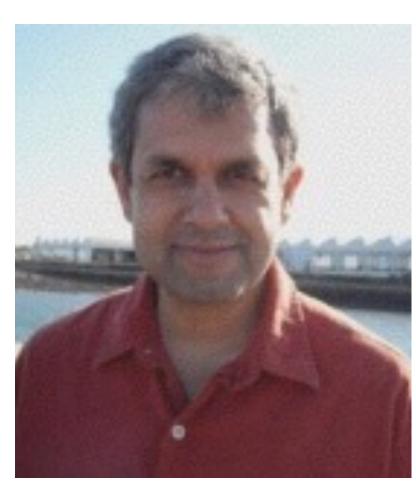
Hunter King



Jiangshui Huang



Thomas Russell



Narayanan Menon

\$\$\$

W. M. Keck Foundation, NSF-DMR 120778, NSF-DMR-11-51780 ERC StG 637334, Simons Foundation Award 305306