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Outline:

1. Background - frustrated sheets

2. Interesting directions and challenges:
Stat. Mech. of frustrated sheets
Growth and plasticity
“Self actuating” frustrated sheets

3. The minimal spring



Confined thin elastic sheets L/

E= j (energy _density)ds

For thin plates the elastic energy density can be approximated:

stretching bending

e~ (in plane strain)

| |

Dominant “Floppy”, but not zero

competition

l

Selection — Shape, length scale, type of singularities

Blistering (Ortiz and Gioia 94)



“Self Shaping” of growing sheets




Arroyo and DeSimone 2013

Sawa et.al. 2013

There is a field, in addition to elasticity, that encodes
Some internal geometry of the sheet

Desprat 2008




Shaping via “local Active deformation”

Global shape
changes due to
distribution of
local active
deformation of the
tissue

Extensively used in nature — different mechanisms, different time scales

Hardly used in manmade structures

Need suitable theoretical framework

Techniques and materials




Gauss theorem — a link between metrics and shapes

Input: Growth/swelling/reorientation/connectivity

= Equilibrium distances across a surface.

Metric field- locally expresses distances across the surface.

Qutput: Shape

Shape - is characterized by curvatures k1, k2

The Gaussian curvature: K=x1k2

The connection

Gauss: K iIs completely determined by the metric

Or: Distances define (to some level) Shapes



The 3D Euclidean space is a non trivial constraint

Example
“Exponential metric™- f(y)=Ae™ @

(Can result from a very simple growth law: dn/dy~n(y))

The result is a “pseudo-sphere”
(Constant negative Gaussian curvature)

But!

Buckling cascade

All from a constant simple growth law




Growing Thin Sheets — Theoretical framework - Elasticity

Enerii density has to account for:

- elastic response
- Thin sheet approximation: 2D surface(mid-plane) + thickness(t) :

We express the elastic energy density in terms of the fundamental forms of a surface
(rather than the displacement field)

In-plane strain curvature difference

~t(@a—13)° +t*(O—h)’

\stretching T bending

t — thickness

a — dictated 2D metric tensor
a — actual 2D metric tensor

b — dictated curvature tensor
b — actual curvature tensor

E. Efrati, Y. Klein, H Aharoni and ES, (2007), "Spontaneous Buckling of Elastic Sheets with a Prescribed Non-Euclidean Metric* Phys. D. 235, 29-32
ForE'SQFrerpI@ mﬁr n and ES, (2009) "Elastic Theory of unconstrained non- Euchdean[plates JMPS, 57, 762-775
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E. Efrati, R. Kupferman and ES, (2010) "Non-Euclidean Plates and Shells”



Incompatible sheets

¢ ~t(a-{a)’ +t*(b4b)’

7

__stretching bending
growth profile dictates @, b system chooses d, b

Why not simply choose a=a, b=Db and have zero energy?

Because a and b are not independent: det(b)
Gauss Theorema Egregium: - det(a) B

f(a)

Gaussian curvature

The interesting behavior occurs for incompatible surfaces:

dictated a, b do not satisfy Gauss theorem (thus allow no zero energy configuration).

Very likely to happen in biological tissues and locally growing systems.



Limits

e {(a—-a)’ +{)b—Db)’

—

stretching bending

* Thin limit — body will obey 5_, because the bending is “cheap”.
« Thick limit — body will obey b and will pay in stretching.

Many “interesting” equilibrium configurations were discovered and studied

B. Roman, M. Marder E. Efrati, S. Venkataramani, B. Adouly, C. Santangelo, M. Ben Amar, M. Muller, R. Kohn, L. Mahadevan,
H. Aharoni, A. De Simone...



Experimental system: “Engineered” responsive non-Euclidean plates (vael Kiein, Hillel Aharoni)

N-Isopropylacrylamide gel - A volume reduction transition at a 32C° that strongly depends on
monomer concentration

High concentration Low concentration

solution solution

60 ™5 T T T —

n Bis/monomer ratio

johv ]

gv " 7%
50 E
B o 5% |
¥ A 6% I A “programed” flat disc
&v v 8%/
X 10% PC

Controllable -
Hele Shaw

cell

N
o
1

1

Shrinking (%)
w N
=} o
*
Oxa
<
OXp KEX O
*
n
1

=
o
(0]
<

com m
<

HO

o

Monomer Concentration (%) Non uniform gel disc

The Axi-symmetric reference metric in polar coordinates:

dI? =dp® +f(p)d6?

f(p) is determined by the concentration profile




Cold - Flat Many possible geometries

Warm (negative curvature)

Positive + negative

£,=0.3 mm Y. Klein, E. Efrati and ES, Science. 315, 1116 (2007).



“Lithography of curvature”

Selective UV crosslinking of the gel, via a mask

ES and E. Efrati Soft Matter 2010 Ido Levin (2012) Kim et al. Science 2012



Sheets made of nematic elastomers/glasses
See works by Modes and Warner, DeSimone, White...

+2
(-1)
The local deformation: " 132
(-172)
-~ 1 O =~ CZZ 0 +1
%o )7 0 o i

: . . . +1/2
*In coordinates that are locally aligned with the director f +122)

In fixed coordinates for a director field 6(u,v):
a(u,v) =R[6(u

=> An expression for K[&(u,V)]

Setting b by prescribing different director fields on top

S\
H. Aharoni, R. Kupferman and E. S. (2014), “Geometry of Thin Nematic Elastomer Sheets”, Phys. Rev. Lett. 113, 257801.
Tim White’s group — Adv. Matt 3013, Science 2014.... Hear more from Robin and Jonathan (?)



Integrating incompatible elasticity to Statistical mechanics

A flat-to-helical transition




Incompatible Hyperbolic shell

Using the principle directions of [

a=

Euclidian

Hyperbolic
“Minimal®



Narrow strips in different angles Bauhinias, strips & simulation:

latex Bauhinia
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Same material —different configurations, including handedness flipping

Armon et.al. Science (2011)

See also: Chen et.al. Appl. Phys.Lett. (2011), Sawa et.al. PNAS (2011)




Twisted to Helical transition

Normalized pitch, radius and width
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Observed flat->twisted->helical-> tube transitions in amphiphile aggregates (D. Danino):

WA/ 4

Thin fibers/ribbons Twisted ribbons Coiled ribbons Nanotubes

L. Ziserman, A. Mor, D. Harries, and D. Danino, (2011) PRL 106, 238105.

Evolution of Amyloid fibrils (r. Mezzenga)
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Adamcik et.al., 2011, Angew. Chem.- Int. Ed. , 50, 5495.



Application to self assembled chemical systems - Mingming Zhang in collaboration with D. Danino

Quantitative predictions, connecting the “large scale” geometry to the molecular structure

C1,-B1, Amphiphils DC89PC, DNPC lipids 1:1 mixture
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Pitch / Radius [nm]

Results (C,-B;, system)
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The transition is observed

Best fit leads to:

Effective thickness: 3.53 nm (real thickness =3.4 nm)

K, = 0.02NnMm ™ = “bonding angle”= 4.3°
Kee
Poisson’sratio=05 => Kg = >



Plates mechanics is relevant to plants morphogenesis

Using Auxin to change leaf geometry

\/Auxin
No Auxin

?

Generation of gradient
of Auxin in the leaf After 1 week
. A
Generation of a hyperbolic l R
metric on the leaf '
After 12 days §

>

Application of Auxin
on the edge of the leaves

The leaf should turn
wavy

After 2 weeks




Noisy growth field with non trivial “rheology” of a leaf
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NEP under load - The minimal spring

Ribbon springs

Extension

Characterized by their reference curvature or twist

Deforms by bending e & oC AWk

Non trivial behavior. See: E. Starostin and G. van der Heijden (2008), J. Chopin, V. D ’emery, and B. Davidovitch, (2014).



Incompatible ribbon springs

Armon et al.
(2014)

Gerbode et al. (2012)

Pancratium

sickenbergeri
M. Zhang (our lab)

length scale

ciNo stress-free configuration Non trivial energy landscape at minimum




Almost minimal Non-Euclidean strips (frati, Kupferman, Es 2011)

¢§

Consider a thin narrow strip with an imposed negative curvature (invariant
along the strip)

(b)

In this case there is an infinite number of exact embeddings. What will be the
configuration?

Find the embedding with smallest bending (a proof by Lewicka and Pakzad)

Sboc4H2@

Would like to have H=0 everywhere: A minimal surface Fixed: K=K,

Though it is impossible for an arbitrary K , it can be shown that for any K<0 we can find
an exact embedding with g,~w® - very floppy.



Experimental Results

But what is the reference metric IS that of a minimal surface?



Non-Euclidean minimal springs

« Non-Euclidean minimal sg ) is a non-Euclidean ribbon
With g Of a helicoid ( A continuous isometric transformation with H=0

a(p-a Lo~
H (p)=0 4 '§a

 Inthat case both E; and E >rate under this

transformation: 2 —
E, oct 5 EBoct?’j — K |dS
' -V
- | An Apparent total degeneracy of the elastic energy




Mechanical properties of the minimal springs

Degeneracy is removed only by boundary (layers) effects (see Efrati et.al. 2009)

K. oc /1— p°—> Boundary layers are less effective for lower pitch values

the degeneracy is removed W, o /% E, oct’ j ds (]Z-H : — IZ]
n —V

E(p)ort, P[(L-v) p*rLev ]+
E, - degenerate bulk energyj
p - pitch

We predict three unique properties of the NEMS: [

2
* Anomalous softness : x — d E o t%

- Rigidity does not depend explicitly on the width

« Extended linearity (small quartic term)



Numerical results - Only boundary effects

x10°*

radial coordinate (v)



Linearity

x10°

0.2

0.4
Pitch
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Ultra soft + Softening with increasing width

100
7 +
2
2 @ _K~(1+(I5+vmax)2)_g+Const
%10 =+ sl |
a2

W 1

l. Levin and ES, prl 2016




Experimental realization




Shaping via
Active deformation

— \.

Chemistry _
Macromolecules deSIQn
©) L Soft machinery-
= \.\ _ Coupling to an energy
Math-geometry Biology  source
Physics
‘Embedding experiments” _ Application
Dynamics to morphogenesis
Defects in amorphous

material

Plasticity — equations of
Motion for the target metric
Other materials

Thank you




The relevance to other plants and to self assembly of macromolecules

different growth strategies may lead to the same result:

5—k Oj k O k cos @ 0
o —k 0 —k 0 —kcosé

Fahn and Zohari, “on the Pericarpial Structure of the
Legumen, its Evolution and Relation To Dehiscence” (1955)



Some leaves seems to be “mechanically wrinkled”

E. S., M. Marder and H. L. Swinney , American Scientist,92, 254, (2004).



Lagrangian Measurements (Particle Tracking)

Trichomes

5.5

Surface growth within one week




Decomposition to azimuthal and “radial” directions

Decomposition to principle directions
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Stress application and feedback on growth

tension is applied between Numerical calculation of
the needles stress distribution

A

normal

Possible feedback:

Cell shape (SEM)
Gene expression (live GFP, MicroArray)

Venation network
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Anisotropy

What type of effect?

Passive “plasticity”?
Active biological response?



