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Outline:

1. Background – frustrated sheets

2. Interesting directions and challenges:

Stat. Mech. of frustrated sheets

Growth and plasticity

“Self actuating” frustrated sheets

3. The minimal spring
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stretching bending

Confined thin elastic sheets

Crumpling (Lobkovsky 95)

Wrinkling (Bowden 98)

Blistering (Ortiz and Gioia 94)

For thin plates the elastic energy density can be approximated:

e~ t (in plane strain)2 + t3 (curvature)2

Dominant “Floppy”, but not zero

competition

Selection – Shape, length scale, type of singularities

 dsdensityenergyE )_(



“Self Shaping” of growing sheets



Desprat 2008

D.TaiminaNath et.al. 2003

There is a field, in addition to elasticity, that encodes

Some internal geometry of the sheet

Sawa et.al. 2013
M. Zhang

50 nm

Aharoni et.al 2012

Arroyo and DeSimone 2013



Shaping via “local Active deformation”

Global shape 

changes due to 

distribution of 

local active 

deformation of the 

tissue

Extensively used in nature – different mechanisms, different time scales

Hardly used in manmade structures

Need suitable theoretical framework

Techniques and materials



Gauss theorem – a link between metrics and shapes

Gauss: K is completely determined by the metric

Or: Distances define (to some level) Shapes

Metric field- locally expresses distances across the surface.

Shape - is characterized by curvatures k1, k2

The Gaussian curvature: K=k1k2

= Equilibrium distances across a surface.

Input: Growth/swelling/reorientation/connectivity

Output: Shape

The connection



The 3D Euclidean space is a non trivial constraint

Example

“Exponential metric”- f(y)=Ae
-by

(Can result from a very simple growth law: dn/dy~n(y))

The result is a “pseudo-sphere”

But!

It has a “cutoff” beyond which it does not exist

(Constant negative Gaussian curvature)

Buckling cascade

All from a constant simple growth law



In-plane strain

Growing Thin Sheets – Theoretical framework - Elasticity

Energy density has to account for: 

- growth 

- elastic response 

- Thin sheet approximation: 2D surface(mid-plane) + thickness(t) :

curvature difference

t – thickness

a – dictated 2D metric tensor

a – actual 2D metric tensor

b – dictated curvature tensor

b – actual curvature tensor

232 )()( bbtaat e
stretching bending

E. Efrati, Y. Klein, H. Aharoni and ES, (2007), "Spontaneous Buckling of Elastic Sheets with a Prescribed Non-Euclidean Metric"  Phys. D. 235, 29-32

E. Efrati, R. Kupferman and ES, (2009) "Elastic Theory of unconstrained non-Euclidean plates". JMPS, 57, 762-775

E. Efrati, R. Kupferman and ES, (2009) "Buckling transitions and boundary layers in non-Euclidean plates", Phys. Rev. E, 80, 016602.

E. S. and E. Efrati “ (2010)The Mechanics of Non-Euclidean Plates”, Soft Matt.,

E. Efrati, R. Kupferman and ES, (2010) "Non-Euclidean Plates and Shells”

We express the elastic energy density in terms of the fundamental forms of a surface 

(rather than the displacement field)

For isotropic material



growth profile dictates    system choosesba ,
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af

a

b
K 

Because a and b are not independent:

Gauss Theorema Egregium:

232 )()( bbtaat e
stretching bending

ba,

The interesting behavior occurs for incompatible surfaces: 

dictated           do not satisfy Gauss theorem (thus allow no zero energy configuration).ba ,

Very likely to happen in biological tissues and locally growing systems.

Why not simply choose and have zero energy?bbaa  ,

Gaussian curvature

Incompatible sheets



• Thin limit – body will obey    , because the bending is “cheap”.

• Thick limit – body will obey    and will pay in stretching.

232 )()( bbtaat e
stretching bending

a
b

Limits

Many “interesting” equilibrium configurations were discovered and studied

B. Roman, M. Marder E. Efrati, S. Venkataramani, B. Adouly, C. Santangelo, M. Ben Amar, M. Muller, R. Kohn, L. Mahadevan,

H. Aharoni, A. De Simone…



Experimental system: “Engineered” responsive non-Euclidean plates (Yael Klein, Hillel Aharoni)

N-Isopropylacrylamide gel - A volume reduction transition at a 32C0 that strongly depends on 

monomer concentration
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The Axi-symmetric reference metric in polar coordinates:

f(r) is determined by the concentration profile



Warm (negative curvature)

Many possible geometries

Positive (no symmetry breaking)

Positive + flat

Positive + negative

t0=1 mm

t0=0.3 mm

Tubes

cold

Cold - Flat

warm

Y. Klein, E. Efrati and ES, Science.  315,  1116  (2007).



“Lithography of curvature”

Selective UV crosslinking of the gel, via a mask

Mask Gel

Kim et al. Science 2012
ES and E. Efrati Soft Matter 2010 Ido Levin (2012)



Sheets made of nematic elastomers/glasses
See works by Modes and Warner, DeSimone, White…

H. Aharoni, R. Kupferman and E. S. (2014), “Geometry of Thin Nematic Elastomer Sheets”, Phys. Rev. Lett. 113, 257801.

The local deformation:
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*In coordinates that are locally aligned with the director field

In fixed coordinates for a director field q(u,v):
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Setting    by prescribing different director fields on top and bottomb

Tim White’s group – Adv. Matt 3013, Science 2014…. Hear more from Robin and Jonathan (?)



Integrating incompatible elasticity to Statistical mechanics

A flat-to-helical transition
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Copying the pod tissue architecture

Using the principle directions of b



Narrow strips in different angles Bauhinias, strips & simulation:

latex Bauhinia

Theoretical configuration

Same material –different configurations, including handedness flipping

Armon et.al. Science (2011)

See also: Chen et.al. Appl. Phys.Lett. (2011), Sawa et.al. PNAS (2011)



Twisted to Helical transition

r~

Avoiding bending: 
obeying b
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avoiding stretching: 
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Observed flat->twisted->helical-> tube transitions in amphiphile aggregates (D. Danino):

L. Ziserman, A. Mor, D. Harries, and D. Danino, (2011) PRL 106, 238105.

twisted

Helical

tubes

Adamcik et.al., 2011, Angew. Chem. Int. Ed. , 50, 5495.

Evolution of Amyloid fibrils (R. Mezzenga)



C12-b12 Amphiphils

Application to self assembled chemical systems - Mingming Zhang in collaboration with D. Danino

DC89PC, DNPC lipids 1:1 mixture

Quantitative predictions, connecting the “large scale” geometry to the molecular structure



Results (C12-b12 system)

The transition is observed

Best fit leads to:

Effective thickness: 3.53 nm  (real thickness =3.4 nm)

 1

0 02.0 nmk “bonding angle”= 4.30

Poisson’s ratio = 0.5      =>
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Explain the scatter  (Doron Grossman)



No Auxin

After 1 week

After 12 days

After 2 weeks

Application of Auxin

on the edge of the leaves

Auxin

Generation of gradient

of Auxin in the leaf

Generation of a hyperbolic

metric on the leaf

?

?

The leaf should turn

wavy

?

Using Auxin to change leaf geometry

Plates mechanics is relevant to plants morphogenesis



Noisy growth field with non trivial “rheology” of a leaf

Shahaf Armon

Michal Sahaf



Ribbon springs

Characterized by their reference curvature or twist

Deforms by bending
3 2kt Wk 

t

W

Extension

1R k

Non trivial behavior. See: E. Starostin and G. van der Heijden (2008), J. Chopin, V. D´emery, and B. Davidovitch, (2014).

NEP under load – The minimal spring



Incompatible ribbon springs

Armon et al. 

(2014)

M. Zhang (our lab)

Pancratium

sickenbergeri

Gerbode et al. (2012)

length scale

cm mm nmNo stress-free configuration Non trivial energy landscape at minimum



Almost minimal Non-Euclidean strips (Efrati, Kupferman, ES 2011)

Consider a thin narrow strip with an imposed negative curvature (invariant 

along the strip)

w

In this case there is an infinite number of exact embeddings. What will be the 

configuration?

Find the embedding with smallest bending (a proof by Lewicka and Pakzad)

2

b 4H Ke  

Fixed: K=KtarWould like to have H=0 everywhere: A minimal surface

Though it is impossible for an arbitrary K , it can be shown that for any K<0 we can find 

an exact embedding with eb~w5  - very floppy.



Experimental Results

But what is the reference metric IS that of a minimal surface?



• Non-Euclidean minimal spring (NEMS) is a non-Euclidean ribbon 

with       of  a helicoid

• In that case both       and        are degenerate under this 

transformation:

• An Apparent total degeneracy of the elastic energy

Non-Euclidean minimal springs 
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A continuous isometric transformation with H=0



Mechanical properties of the minimal springs 

Boundary layers are less effective for lower pitch values

the degeneracy is removed

We predict three unique properties of the NEMS:

• Anomalous softness :

• Rigidity  does not depend explicitly on the width 

• Extended linearity (small quartic term)
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Degeneracy is removed only by boundary (layers) effects (see Efrati et.al. 2009) 



Numerical results – Only boundary effects

1D numerical simulations 

1p  0.7p  0p 

Elastic energy  E p

v



Linearity



Ultra soft + Softening with increasing width
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I. Levin and ES, prl 2016



Experimental realization

1 erg

F 1 dyne

E 





Math-geometry

“Embedding experiments”

Biology

Application

to morphogenesis

Physics

Dynamics

Defects in amorphous 

material

Plasticity – equations of

Motion for the target metric

Other materials

Shaping via

Active deformation

design

Soft machinery-

Coupling to an energy 

source

Chemistry

Macromolecules

n

Assa Ashoach

Thank you



Fahn and Zohari, “on the Pericarpial Structure of the 

Legumen, its Evolution and Relation To Dehiscence”  (1955)

different growth strategies may lead to the same result:
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The relevance to other plants and to self assembly of macromolecules



Some leaves seems to be “mechanically wrinkled”

E. S., M. Marder and H. L. Swinney , American Scientist,92, 254, (2004).



Lagrangian Measurements (Particle Tracking)

Surface growth within one week
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Decomposition to principle directions Decomposition to azimuthal and “radial” directions



isotropic

anisotropic

Area reduction



Stress application and feedback on growth

tension is applied between 

the needles

Possible feedback:

Cell shape (SEM) 

Gene expression (live GFP, MicroArray) 

Venation network

Numerical calculation of 

stress distribution

normal stretched



Day 1

Day 5

Day 11

Calculating the “texture tensor”

What type of effect?

Passive “plasticity”?

Active biological response?

Anisotropy


